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Abstract 

The article considers the transformation of the covariant derivative of a rank one contravariant tensor to 

bring out a conflicting aspect of the theory in that we arrive at an impossible equation.  

Introduction 

The covariant derivative of a rank one contravariant  tensor is a mixed tensor of rank two. Its 

transformation leads to an impossible equation to bring out a contradiction in the theory. 

Calculations 

We consider the transformation of the covariant derivative[1] of the rank one contravariant tensor[which 

is  a mixed tensor of rank two ] 
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Equation (2) holds for any manifold.In particular we consider the flat space time manifold. 

In the flat space time context the Christoffel symbols[all of them] are zero only in the Cartesian system 

but non zero[all not zero] in the others. On the right side  of equation (2)we consider Cartesian 

coordinates in flat space time: Γ𝛼
𝑘𝛾 = 0 . On the left side we consider some other coordinate system 

manifold being the same that is flat space time. 

Therefore from (2) we obtain: 

Γ̅𝜇
𝜌𝜎�̅�𝜎𝑑�̅�𝜌 = 0(3) 

But Γ̅𝜇
𝜌𝜎 ≠ 0,and the field�̅�𝜎  is arbitrary! The possibility of equation (3) materializing comes into 

question. 

We may obtain the Christoffel symbols for flat pace time in the spherical system by applying M=0 to the 

Schwarzschild Christoffel symbols[2]. We have six non vanishing Christoffel symbols for M=0 

 

Γ𝑟
𝜃𝜃 = −𝑟, Γ𝑟

𝜑𝜑 = −𝑟𝑆𝑖𝑛2𝜃, Γ𝜃
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1

𝑟
, Γ𝜃

𝜑𝜑 = −𝐶𝑜𝑠𝜃𝑆𝑖𝑛𝜃, Γ𝜑
𝑟𝜑 = 1/𝑟, Γ𝜑

𝜃𝜑 = 𝐶𝑜𝑡 𝜃 

Direct Verification[flat space time, spherical]: 

Following the usual technique[3], 
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[No summation on k] 

In the orthogonal system the only surviving term on the left side is 𝑔𝑘𝑘Γ𝑘
𝛽𝛾

 with no summation on k.  

We have, 
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As for an example we may have, 
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The other Christoffel symbols may be verified in a similar manner.[Covariant derivative reduces to 

partial derivative in the fat space time context only in the Cartesian system] 

Conclusions 

As stated at the outset we have arrived at an impossible equation starting from the transformation of 

the covariant derivative of a contravariant tensor. This points to difficulties in the basic theory. 
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