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Abstract

The article considers the transformation of the covariant derivative of a rank one contravariant tensor to
bring out a conflicting aspect of the theory in that we arrive at an impossible equation.

Introduction

The covariant derivative of a rank one contravariant tensor is a mixed tensor of rank two. Its
transformation leads to an impossible equation to bring out a contradiction in the theory.

Calculations

We consider the transformation of the covariant derivative!* of the rank one contravariant tensor[which

is a mixed tensor of rank two ]
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Equation (2) holds for any manifold.In particular we consider the flat space time manifold.

In the flat space time context the Christoffel symbols[all of them] are zero only in the Cartesian system
but non zero[all not zero] in the others. On the right side of equation (2)we consider Cartesian
coordinates in flat space time: I';,, = 0. On the left side we consider some other coordinate system
manifold being the same that is flat space time.

Therefore from (2) we obtain:
f“paﬁ"df” =0(3)

But l:“pa #+ 0,and the fieldA? is arbitrary! The possibility of equation (3) materializing comes into

question.

We may obtain the Christoffel symbols for flat pace time in the spherical system by applying M=0 to the
Schwarzschild Christoffel symbols!?. We have six non vanishing Christoffel symbols for M=0

[Tog = =117 gy = —1Sin20,1%,9 = =, 1%, = —C0s8Sind, [, = 1/7,T%, = Cot 6
Direct Verification[flat space time, sphericall:

Following the usual technique®,
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[No summation on k]

In the orthogonal system the only surviving term on the left side is gkkl"kﬁy with no summation on k.

We have,
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As for an example we may have,
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The other Christoffel symbols may be verified in a similar manner.[Covariant derivative reduces to
partial derivative in the fat space time context only in the Cartesian system]

Conclusions

As stated at the outset we have arrived at an impossible equation starting from the transformation of
the covariant derivative of a contravariant tensor. This points to difficulties in the basic theory.
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