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Abstract

Following the results of our publications, in the first part of this letter,
we explain that quantum theory based on finite mathematics (FQT) is more
general (fundamental) than standard quantum theory based on Poincare invari-
ance. Standard concept of particle-antiparticle is not universal because it arises
as a result of symmetry breaking from FQT to standard quantum theory based
on Poincare or standard anti-de Sitter symmetries. In FQT one irreducible
representation of the symmetry algebra describes a particle and its antiparticle
simultaneously, and there are no conservation laws of electric charge and baryon
quantum number. Poincare and standard anti-de Sitter symmetry are good ap-
proximations at the present stage of the universe but in the early stages they
cannot take place. Therefore, the statement that in such stages the numbers of
baryons and antibaryons were the same, does not have a physical meaning, and
the problem of baryon asymmetry of the universe does not arise. Analogously,
the numbers of positive and negative electric charges at the present stage of the
universe should not be the same, i.e., the total electric charge of the universe
should not be zero.
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1 Introduction

Modern fundamental particle theories (QED, QCD and electroweak theory) are based
on Poincare symmetry, and in those theories the electric charge conservation and
baryon number conservation are a must. In his famous paper ”Missed Opportuni-
ties” [1] Dyson proves that de Sitter (dS) and anti-de Sitter (AdS) symmetries are
more general (fundamental) than Poincare one, even from pure mathematical consid-
erations, because dS and AdS groups are more symmetric than Poincare one. The
transition from the former to the latter is described by a procedure called contraction
when a parameter R (see below) goes to infinity. At the same time, since dS and
AdS groups are semisimple, they have a maximum possible symmetry and cannot be
obtained from more symmetric groups by contraction.

The paper [1] appeared in 1972 and, in view of Dyson’s results, a question
arises why the fundamental particle theories are still based on Poincare symmetry and
not dS or AdS ones. The parameter R arises from particle theory but in the literature
it is often interpreted as the radius of the universe. Probably, physicists believe that,
since R is even much greater than sizes of stars, the dS and AdS symmetries can play
an important role only in cosmology and there is no need to use them for describing
elementary particles. We believe that this argument is not consistent because usually
more general theories shed a new light on standard concepts, and the discussion in
this paper is a good illustration of this point.

In Sec. 2 we describe the concept of symmetry on quantum level. In Sec.
3 we describe important properties of dS and AdS symmetries in standard quantum
theory and in a quantum theory based on finite mathematics (FQT). Here we give
a popular explanation why standard concepts of particle-antiparticle, electric charge
and baryon number have only a limited meaning when the symmetry in FQT is broken
to Poincare or standard anti-de Sitter symmetries. Following the results of our book
[2], we also describe some applications of those results. The latter symmetries are
good approximations at the present stage of the universe but in the early stages
they cannot take place. Therefore, as explained in Sec. 4, the statement that in
such stages the numbers of baryons and antibaryons were the same, does not have a
physical meaning, and the problem of baryon asymmetry of the universe (BAU) does
not arise. Finally, Sec. 5 is discussion.

In this paper we describe all physical quantities in units c = h̄ = 1.

2 Symmetry on quantum level

In relativistic quantum theory, the usual approach to symmetry on quantum level
follows. Since the Poincare group is the group of motions of Minkowski space, quan-
tum states should be described by representations of this group. This implies that
the representation generators commute according to the commutation relations of the
Poincare group Lie algebra:

[P µ, P ν ] = 0, [P µ,Mνρ] = −i(ηµρP ν − ηµνP ρ),
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[Mµν ,Mρσ] = −i(ηµρMνσ + ηνσMµρ − ηµσMνρ − ηνρMµσ) (1)

where µ, ν = 0, 1, 2, 3, P µ are the operators of the four-momentum and Mµν are
the operators of Lorentz angular momenta. This approach is in the spirit of Klein’s
Erlangen program in mathematics.

However, as discussed in detail in Refs. [2, 3, 4], in quantum theory the
concept of space-time background does not have a physical meaning. Although for
constructing modern theories of elementary particles local Lagrangians are used, the
goal of the theory is to construct the S-matrix in momentum space, and, when this
construction has been accomplished, one can forget about space-time background.
This is in the spirit of the Heisenberg S-matrix program according to which in quan-
tum theory one can describe only transitions of states from the infinite past when
t→ −∞ to the distant future when t→ +∞.

As argued in Refs. [2, 5], the approach should be the opposite. Each
system is described by a set of linearly independent operators. By definition, the
rules how they commute with each other define the symmetry algebra. In particular,
by definition, Poincare symmetry on quantum level means that the operators commute
according to Eq. (1). This definition does not involve Minkowski space at all. I am
very grateful to Leonid Avksent’evich Kondratyuk for explaining me this definition
during our collaboration.

For illustration, let us consider the concept of particle-antiparticle. His-
torically, this concept arose because the Dirac equations have solutions with both
positive and negative energies. It is a great success of the Dirac equations that in the
approximation (v/c)2 they reproduce the fine structure of the hydrogen atom with a
very high accuracy. However, in higher order approximations, non-quantized Dirac
spinors do not have a physical meaning for several reasons. First, as noted below, in
systems consisting of particles and antiparticles the energy sign of all of them should
be the same. Also, in higher order approximations in v/c, the probabilistic interpreta-
tion of non-quantized Dirac spinors is lost because the coordinate description implies
that they are described by representations induced from non-unitary representations
of the Lorenz algebra. On the other hand, in Poincare invariant particle theories, the
concept of particle-antiparticle is a consequence of the fact that elementary particles
are described by irreducible representations (IRs) of the algebra (1), such that in each
IR energies can be either strictly positive or strictly negative but there are no IRs
where energies have different signs. Then objects described by positive-energy IRs are
called particles, and objects described by negative-energy IRs are called antiparticles.
As explained in detail in the next section, energies of both particles and antiparticles
become positive after second quantization.

By analogy with the definition of Poincare symmetry on quantum level,
the definition of dS symmetry on quantum level should not involve the fact that
the dS group is the group of motions of dS space. Instead, the definition is that
the operators Mab (a, b = 0, 1, 2, 3, 4, Mab = −M ba) describing the system under
consideration satisfy the commutation relations of the dS Lie algebra, i.e.,

[Mab,M cd] = −i(ηacM bd + ηbdMac − ηadM bc − ηbcMad) (2)
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where ηab is the diagonal metric tensor such that η00 = −η11 = −η22 = −η33 =
−η44 = 1. The definition of AdS symmetry on quantum level is given by the same
equations but η44 = 1.

The procedure of contraction from dS and AdS symmetries to Poincare
one is defined as follows. If we define the operators P ν as P ν = Mν4/R where R
is a parameter with the dimension length then in the formal limit when R → ∞,
Mν4 →∞ but the quantities P ν are finite, Eqs. (2) become Eqs. (1). This procedure
is the same for the dS and AdS symmetries.

The above contraction is analogous to the contraction from Poincare sym-
metry to Galilei one, where the parameter of contraction is c. On quantum level, R
and c are only the parameters describing the relations between Lie algebras of higher
and lower symmetries. On classical level, the physical meaning of c is well-known,
while R is the radius of the dS or AdS space. A detailed discussion of the both con-
tractions is described in a vast literature, in particular, in Refs. [2, 3, 4] where it has
been proposed the following

Definition: Let theory A contain a finite nonzero parameter and theory
B be obtained from theory A in the formal limit when the parameter goes to zero or
infinity. Suppose that, with any desired accuracy, theory A can reproduce any result
of theory B by choosing a value of the parameter. On the contrary, when the limit is
already taken, one cannot return back to theory A, and theory B cannot reproduce all
results of theory A. Then theory A is more general (fundamental) than theory B and
theory B is a special degenerate case of theory A.

As proved in Refs. [2, 3, 4], dS and AdS symmetries are more general
(fundamental) than Poincare symmetry. The latter is a special degenerate case of the
former in the formal limit R→∞. As noted above, in contrast to Dyson’s approach
based on Lie groups, our approach is based on Lie algebras. Then, as proved in
Refs. [2, 3, 4], classical theory is a special degenerate case of quantum one in the
formal limit h̄ → 0, and nonrelativistic theory (NT) is a special degenerate case of
relativistic one (RT) in the formal limit c→∞. In the literature the above facts are
explained from physical considerations but, as shown in Refs. [2, 3, 4] they can be
proved mathematically by using properties of Lie algebras.

As proved in Refs. [2, 4] classical mathematics (involving the concepts of
limits, infinitesimals, continuity etc.) is a special degenerate case of finite mathematics
in the formal limit when the characteristic p of the ring or field in the latter goes
to infinity. Therefore standard dS and AdS symmetries over the field of complex
numbers can be generalized to dS and AdS symmetries over a finite ring or field of
characteristic p.

Finite mathematics rejects infinities from the beginning. It starts from
the ring Rp = (0, 1, 2, ...p − 1) where addition, subtraction and multiplication are
performed as usual but modulo p, and p is called the characteristic of the ring. In
the literature the ring Rp is usually denoted as Z/pZ. In our opinion this notation is
not adequate because it may give a wrong impression that finite mathematics starts
from the infinite set Z and that Z is more general than Rp. However, although Z
has more elements than Rp, Z cannot be more general than Rp because Z does not
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contain operations modulo a number.
One can rigorously prove [2, 4] that any operation in Z can be reproduced

in Rp if p is chosen to be sufficiently large, and that is why Z can be treated as a
limit of Rp when p→∞. This result looks natural from the following considerations.
Since all operations in Rp are modulo p, Rp can be treated as a set (−(p− 1)/2, ...−
1, 0, 1, ...(p−1)/2) if p is odd and as a set (−p/2 + 1, ...−1, 0, 1, ...p/2) if p is even. In
this representation, for numbers with the absolute values much less than p, the results
of addition, subtraction and multiplication are the same in Rp and in Z, i.e., for such
numbers it is not manifested that in Rp operations are modulo p. This example also
demonstrates that in finite mathematics the concepts of positive and negative cannot
be fundamental. For example, the numbers −(p − 1)/2 and (p + 1)/2 represent the
same element of Rp because they are the same modulo p.

We use the abbreviation FQT (finite quantum theory) to denote quantum
theory over the ring or field of characteristic p. By using the fact that Z is a limit
of Rp when p → ∞, one can prove [2] that FQT is more general (fundamental)
than standard quantum theory (SQT). In view of Definition, this implies that, by
choosing a sufficiently large value of p, FQT can reproduce any result of SQT with any
desired accuracy while SQT cannot reproduce all results of FQT: it cannot reproduce
results where it is important that p is finite and not infinitely large. In Ref. [2], several
physical phenomena where it is important that p is finite have been considered. Some
of those phenomena are mentioned in Subsec. 3.4. We also discuss that this fact is
also important for understanding BAU.

The above relation between FQT and standard quantum theory is anal-
ogous to the relation between RT and NT: by choosing a sufficiently large value of
c, RT can reproduce any result of NT with any desired accuracy while NT cannot
reproduce all results of RT: it cannot reproduce results where it is important that c
is finite and not infinitely large.

One can now consider the commutation relations (2) in spaces over a finite
ring or field of characteristic p. In this way we get a generalization of standard dS
and AdS quantum theories to dS and AdS quantum theories over a finite ring or field
(see Refs. [2, 6] for details).

3 Properties of quantum theories based on

Poincare, dS and AdS symmetries

3.1 Particles and antiparticles in Poincare invariant theories

Let pν be the four-momentum of a particle in Poincare invariant theory. Define
p2 = pνpν , where a sum over repeated indices is assumed. Then for usual particles
p2 ≥ 0 while for tachyons p2 < 0. The existence of tachyons is a problem, and we
will consider only usual particles. Then the mass of the particle can be defined as a
nonnegative number m such that m2 = p2.

Elementary particles in Poincare invariant theory are described by IRs of
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the Poincare algebra by selfadjoint operators. The energy E of a particle with the
momentum p and mass m equals ±(m2 + p2)1/2. The choice of the sign of the square
root is only the matter of convention but not the matter of principle. Depending
on this sign, there are IRs where energies can be only either positive or negative
while the probability to have zero energy is zero. By convention, objects described
by positive energy IRs are called particles, and objects described by negative energy
IRs are called antiparticles.

When we consider a system consisting of particles and antiparticles then
the energy sign of both, particles and antiparticles should be the same. Indeed,
consider, for example a system of two particles with the same mass m and let the
momenta p1 and p2 be such that the total momentum p1 + p2 equals zero. Then,
if the energy of particle 1 is positive, and the energy of particle 2 is negative then
the total four-momentum of the system would be zero what contradicts experimental
data. By convention, the energy sign of all particles and antiparticles in question
is chosen to be positive. For this purpose, the procedure of second quantization is
defined such that after the second quantization the energies of antiparticles become
positive. Then the mass of any particle is the minimum value of its energy in the case
when the momentum equals zero.

One of the key principles of quantum theory is the superposition principle:
if ψ1 and ψ2 are possible states of a system then aψ1 + bψ2, where a and b are
some coefficients, also is a possible state. However, this principle is not universal
because superselection rules prohibit certain types of superpositions. For example,
superpositions of states with different electric charges are prohibited, and a wave
function ψ of a system cannot be a superposition ψ = aψ1 + bψ2 where ψ1 refers to a
particle and ψ2 refers to an antiparticle.

Suppose now that we have two particles such that particle 1 has the mass
m1, spin s1 and is characterized by some additional quantum numbers (e.g., electric
charge, baryon quantum number etc.), and particle 2 has the mass m2, spin s2 = s1
and all additional quantum numbers characterizing particle 2 equal the corresponding
additional quantum numbers for particle 1 with the opposite sign. A question arises
when particle 2 can be treated as an antiparticle for particle 1. Is it necessary that
m1 should be exactly equal to m2 or m1 and m2 can slightly differ each other? In
particular, can we guarantee that the mass of the positron exactly equals the mass of
the electron, the mass of the proton exactly equals the mass of the antiproton etc.?

If particle 2 (for some reasons) is treated as an antiparticle for particle 1,
and the particles are considered only on the level of IRs, then the relation between
m1 and m2 is fully arbitrary. However, in local quantum field theory (QFT), IRs for a
particle and its antiparticle are combined together in the framework of a local field. A
non-quantized quantum field ψ(x), where x is a point in Minkowski space, combines
together two IRs with positive and negative energies. The IR with the positive energy
is associated with a particle and the IR with the negative energy is associated with
the corresponding antiparticle. From mathematical point of view, a local quantum
field is described by a reducible representation induced not from the little algebra IRs
are induced from but from the Lorenz algebra. The local fields depend on x because
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the factor space of the Poincare group over the Lorentz group is Minkowski space.
However, there is no physical operator corresponding to x, i.e., x is not measurable.
Since the fields describe nonunitary representations, their probabilistic interpretation
is problematic. As shown by Pauli [7], in the case of fields with an integer spin there
is no invariant subspace where the spectrum of the charge operator has a definite
sign while in the case of fields with a half-integer spin there is no invariant subspace
where the spectrum of the energy operator has a definite sign. It is also known that
the description of the electron in the external field by the Dirac spinor is not accurate
(e.g. it does not take into account the Lamb shift).

A secondly quantized field ψ(x) is an operator in the Fock space and
therefore the contribution of each particle is explicitly taken into account. Each
particle in the field can be described by its own coordinates (in the approximation
when the position operator exists - see e.g., Ref. [2]). In view of this fact, the following
natural question arises: why do we need an extra coordinate x which does not belong
to any particle? This coordinate does not have a physical meaning and is simply a
parameter arising from the second quantization of the non-quantized field ψ(x).

In QFT the Lagrangian density depends on local quantized fields and the
four-vector x in them is associated with a point in Minkowski space. However, x does
not have a physical meaning and is only the formal integration parameter which is
used in the intermediate stage. The goal of the theory is to construct the S-matrix
and, when the theory is already constructed, one can forget about Minkowski space
because no physical quantity depends on x. This is in the spirit of the Heisenberg
S-matrix program according to which in relativistic quantum theory it is possible to
describe only transitions of states from the infinite past when t→ −∞ to the distant
future when t → +∞. The fact that the S-matrix is the operator in momentum
space does not exclude a possibility that in some situations it is possible to have a
space-time description with some accuracy but not with absolute accuracy [2].

In QFT the fact that m1 = m2 follows from the CPT theorem which is a
consequence of locality since we construct local covariant fields from a particle and its
antiparticle with equal masses. A question arises what happens if locality is only an
approximation: in that case the equality of masses is exact or approximate? Consider
a simple model when electromagnetic and weak interactions are absent. Then the fact
that the proton and the neutron have equal masses has nothing to do with locality;
it is only a consequence of the fact that the proton and the neutron belong to the
same isotopic multiplet. In other words, they are simply different states of the same
object—the nucleon.

Since the concept of locality is not formulated in terms of selfadjoint op-
erators, this concept does not have a clear physical meaning, and this fact has been
pointed out even in known textbooks (see e.g. Ref. [8]). Therefore, without addi-
tional assumptions (e.g., locality), such theories cannot conclude whether the masses
of particles and corresponding antiparticles must be exactly equal to each other. Note
also that in Poincare invariant quantum theories there can exist elementary particles
for which all additional quantum numbers are zero. Such particles are called neutral
because they coincide with their antiparticles.
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3.2 Particles and antiparticles in dS invariant theories

The descriptions of elementary particles in the dS and AdS cases are considerably
different. In the former case all the operators M0a (a = 1, 2, 3, 4) are on equal
footing. Therefore, M04 can be treated as the Poincare analog of the energy only in
the approximation when R is rather large. In the general case, the sign of M04 cannot
be used for the classification of IRs.

In his book [10] Mensky describes the implementation of dS IRs when
the representation space is the three-dimensional unit sphere in the four-dimensional
space. In this implementation, there exists one-to-one relation between the north-
ern hemisphere and the upper Lorentz hyperboloid with positive Poincare energies,
and one-to-one relation between the southern hemisphere and the lower Lorentz hy-
perboloid with negative Poincare energies, while points on the equator correspond
to infinite Poincare energies. However, the operators of IRs are not singular in the
vicinity of the equator and, since the equator has measure zero, the properties of wave
functions on the equator are not important.

Since the number of states in dS IRs is twice as big as the number of
states in IRs of the Poincare algebras, one might think that each IR of the dS algebra
describes a particle and its antiparticle simultaneously. However, a detailed analysis
in Refs. [2, 4, 9] shows that states described by dS IRs cannot be characterized as
particles or antiparticles in the usual meaning.

For example, let us call states with the support of their wave functions
on the northern hemisphere as particles and states with the support on the southern
hemisphere as their antiparticles. Then states which are superpositions of a particle
and its antiparticle obviously belong to the representation space under consideration,
i.e., they are not prohibited. However, as noted in the preceding subsection, this con-
tradicts the superselection rule that the wave function cannot be a superposition of
states with opposite electric charges, baryon and lepton quantum numbers etc. There-
fore, in the dS case there are no superselection rules which prohibit superpositions of
states with opposite electric charges, baryon quantum numbers etc. In addition, in
this case it is not possible to define the notion of neutral particles.

As noted in Sec. 2, dS symmetry is more general than Poincare one, and
the latter can be treated as a special degenerate case of the former in the formal limit
R → ∞. This means that, with any desired accuracy, any phenomenon described
in the framework of Poincare symmetry can be also described in the framework of
dS symmetry if R is chosen to be sufficiently large, but there also exist phenomena
for explanation of which it is important that R is finite and not infinitely large (see
Subsec. 3.4).

As shown in Refs. [2, 9], dS symmetry is broken in the formal limit
R→∞ because one IR of the dS algebra splits into two IRs of the Poincare algebra
with positive and negative energies and with equal masses. Therefore, the fact that
experimentally the masses of particles and their corresponding antiparticles are equal
to each other, can be explained as a consequence of the fact that observable properties
of elementary particles can be described not by exact Poincare symmetry but by dS
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symmetry with a very large (but finite) value of R. In contrast to QFT, for combining
a particle and its antiparticle into one object, there in no need to assume locality and
involve local field functions because a particle and its antiparticle already belong to
the same IR of the dS algebra (compare with the above remark about the isotopic
symmetry in the proton-neutron system).

The fact that dS symmetry is higher than Poincare one is clear even from
the fact that, in the framework of the latter symmetry, it is not possible to describe
states which are superpositions of states on the upper and lower hemispheres. There-
fore, breaking the IR into two independent IRs defined on the northern and southern
hemispheres obviously breaks the initial symmetry of the problem. This fact is in
agreement with the Dyson observation (mentioned above) that dS group is more
symmetric than Poincare one.

When R → ∞, standard concepts of particle-antiparticle, electric charge
and baryon and lepton quantum numbers are restored, i.e., in this limit superposi-
tions of particle and antiparticle states and states with positive and negative additive
quantum numbers become prohibited according to the superselection rules. Therefore,
those concepts arise as a result of symmetry breaking, i.e., they are not universal.

3.3 Particles and antiparticles in AdS invariant theories

In theories where the symmetry algebra is the AdS algebra, the structure of IRs is
known (see e.g. Refs. [2, 11]). The operator M04 is the AdS analog of the energy
operator. Let W be the Casimir operator W = 1

2

∑
MabMab where a sum over

repeated indices is assumed. As follows from the Schur lemma, the operator W has
only one eigenvalue in every IR. By analogy with Poincare invariant theory, we will
not consider AdS tachyons and then one can define the AdS mass µ such that µ ≥ 0
and µ2 is the eigenvalue of the operator W .

As noted in Sec. 2, the procedure of contraction from the AdS algebra to
the Poincare one is defined such that if R is a parameter with the dimension length
then Mν4 = RP ν . This procedure has a physical meaning only if R is rather large. In
that case the AdS mass µ and the Poincare mass m are related as µ = Rm, and the
relation between the AdS and Poincare energies is analogous. Since AdS symmetry is
more general (fundamental) then Poincare one then µ is more general (fundamental)
than m. In contrast to the Poincare masses and energies, the AdS masses and energies
are dimensionless. From cosmological considerations (see Subsec. 3.4), the value of
R is usually accepted to be of the order of 1026m. Then the AdS masses of the
electron, the Earth and the Sun are of the order of 1039, 1093 and 1099, respectively.
The fact that even the AdS mass of the electron is so large might be an indication
that the electron is not a true elementary particle. In addition, the present accepted
upper level for the photon mass is 10−17ev. This value seems to be an extremely tiny
quantity. However, the corresponding AdS mass is of the order of 1016, and so, even
the mass which is treated as extremely small in Poincare invariant theory might be
very large in AdS invariant theory.

In the AdS case there are IRs with positive and negative energies, and
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they belong to the discrete series [2, 11]. Therefore, one can define particles and
antiparticles. If µ1 is the AdS mass for a positive energy IR, then the energy spectrum
contains the eigenvalues µ1, µ1+1, µ1+2, ...∞, and, if µ2 is the AdS mass for a negative
energy IR, then the energy spectrum contains the eigenvalues −∞, ...−µ2−2,−µ2−
1,−µ2. Therefore, the situation is pretty much analogous to that in Poincare invariant
theories, and there is no way to conclude whether the mass of a particle equals the
mass of the corresponding antiparticle.

As noted in Sec. 2, FQT is more general (fundamental) than SQT, and in
FQT it is also possible to define the concepts of dS and AdS symmetries. As discussed
in Ref. [2], in FQT the dS and AdS cases are physically equivalent. The description
of the energy spectrum in standard IRs of the AdS algebra has been given above. We
will now explain why in FQT the spectrum is different, and in FQT the situation is
similar to that in standard dS case but not standard AdS one because IRs in FQT
contain both, positive and negative energies. Let us note first that, while in SQT the
quantity µ can be an arbitrary real number, in FQT µ is an element of Rp. As noted
above, if p is odd then Rp contains the elements −(p − 1)/2, ... − 1, 0, 1, ...(p − 1)/2
and the case when p is even is analogous. For definiteness, we consider the case when
p is odd.

By analogy with the construction of positive energy IRs in SQT, in FQT
we start the construction from the rest state, where the AdS energy is positive and
equals µ. Then we act on this state by raising operators and gradually get states with
higher and higher energies, i.e., µ+ 1, µ+ 2, .... However, in contrast to the situation
in SQT, we cannot obtain infinitely large numbers. When we reach the state with
the energy (p − 1)/2, the next state has the energy (p − 1)/2 + 1 = (p + 1)/2 and,
since the operations are modulo p, this value also can be denoted as −(p− 1)/2 i.e.,
it may be called negative. When this procedure is continued, one gets the energies
−(p− 1)/2 + 1 = −(p− 3)/2,−(p− 3)/2 + 1 = −(p− 5)/2, ... and, as shown in Ref.
[2], the procedure finishes when the energy −µ is reached.

Therefore, in contrast to the situation in SQT, in FQT, IRs are finite-
dimensional (and even finite since the ring Rp and its complex extension Rp+ iRp are
finite). By analogy with the dS case in SQT, one can call the states with the energies
µ, µ+ 1, µ+ 2, ...∞ particles and states with the energies −∞, ...− µ− 2,−µ− 1,−µ
antiparticles. Therefore, in FQT the mass of a particle automatically equals the mass
of the corresponding antiparticle. This is an example when FQT can solve a problem
which standard quantum AdS theory cannot. By analogy with the situation in the
dS case, for combining a particle and its antiparticle together, there is no need to
involve additional coordinate fields because a particle and its antiparticle are already
combined in the same IR.

Then, since states which are superpositions of particles and antiparticles
belong to the representation space, we conclude by analogy with the situation in Sub-
sec. 3.2, that in FQT there are no superselection rules which prohibit superpositions
of states with opposite electric charges, baryon quantum numbers etc. Moreover,
the representation operators of the enveloping algebra can perform transformations
particle↔ antiparticle.
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As shown in Ref. [2], in the formal limit p→∞, one IR in FQT splits into
two standard IRs of the AdS algebra with positive and negative energies. Therefore,
in this limit the concept of particle-antiparticle and the superselection rules have the
usual meaning. In turn, in situations when one can define the quantity R such that
the contraction to the Poincare algebra works with a high accuracy, one can describe
particles and antiparticles in the framework of Poincare symmetry.

Even from the fact that in standard quantum theory, there are no superpo-
sitions of states belonging to a particle and its antiparticle, it is clear that symmetry
described by one IR in FQT is higher than symmetry described by two IRs obtained
from one IR in FQT in the formal limit p → ∞. Therefore standard concepts of
particle-antiparticle and superselection rules arise as a result of symmetry breaking,
i.e., they are not universal.

3.4 Applications

The above discussion indicates that FQT will be based on principles which in several
important aspects considerably differ from the principles of SQT. Therefore, probably,
the construction of FQT will be very difficult. In this situation it is important to find
phenomena which can be treated in favor of principles of the new quantum theory.
In Ref. [2] we discussed such phenomena, and some of them are mentioned in this
subsection.

Consider first the problem of cosmological acceleration. This effect is usu-
ally interpreted as a manifestation of dark energy because it is assumed that quan-
tum theory describing this phenomenon is based on Poincare symmetry. However, as
shown in Refs. [2, 3, 4, 9], the quantity R in semiclassical approximation coincides
with the radius of dS space. In General Relativity (GR), Λ is a formal parameter
called the cosmological constant. However, in the formula for the cosmological accel-
eration given by GR, Λ is the standard curvature of the dS space given by Λ = 3/R2,
and this quantity is extracted from the data on cosmological acceleration. The effect
of the universe expansion clearly shows that the radius of the world is increasing over
time. Therefore, Λ cannot be a time-independent constant. The assumption that it
is can be only a good approximation when we consider periods of times which are
much less than cosmological times. The comparison of the formula for the cosmolog-
ical acceleration with experimental data gives that now R is of the order of 1026m.
Since this value is very large then, at present, the cosmological constant is small, and
Poincare symmetry works with a very high accuracy.

The formula for the cosmological acceleration derived in our approach
coincides with the formula obtained in GR. However, in contrast to the result of GR,
our result has been obtained without using geometry of dS space (its metric and
connection) but only by considering quantum mechanics of the two-body system in
quantum dS theory. We believe that our result is more important that the result
of GR because GR is a pure classical theory, and any classical result should be a
consequence of quantum theory in semiclassical approximation. Our explanation
does not need dark energy or other artificial notions (see the discussion in Ref. [2] for
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more details). As a consequence, the fact that Λ > 0 can be treated as an indication
that, on quantum level, dS symmetry is more pertinent than AdS one.

Now we consider effects where it is important that the characteristic p
in FQT is finite, and therefore they cannot be described in the framework of SQT.
One of such effects is the famous Dirac vacuum energy problem. The vacuum energy
should be zero, but in SQT the sum for this energy diverges. In Sec. 8.8 of Ref. [2],
we take the standard expression for this sum, explicitly calculate this sum in finite
mathematics without any assumptions, and, since all the calculations are modulo p,
we get zero as it should be.

Another example is as follows. SQT cannot describe gravity because the
theory is nonrenormalizable. But in our approach, the universal law of gravitation
can be derived as a consequence of FQT in semiclassical approximation [2]. In this
case the gravitational constant G depends on p as 1/ln(p). By comparing the result
with the experimental value, one gets that ln(p) is of the order of 1080 or more, and
therefore p is a huge number of the order of exp(1080) or more. One might think that
since p is so huge then in practice p can be treated as an infinite number. However,
since G depends on p as 1/ln(p), and ln(p) is ”only” of the order of 1080, gravity
is observable. In the formal limit p → ∞, G becomes zero and gravity disappears.
Therefore, in our approach, gravity is a consequence of finiteness of nature.

4 Explanation of baryon asymmetry of the uni-

verse

The problem of the baryon asymmetry of the universe (BAU) is a long-standing prob-
lem of particle theory and quantum cosmology described in a vast literature (see e.g.,
Ref. [12] and references therein). According to modern quantum theories, the baryon
number is a conserved quantum number, and, according to modern cosmological the-
ories, the universe has been created with equal numbers of baryons and antibaryons.
Then a problem arises why there is an imbalance in baryonic matter and antibaryonic
matter in the observable universe.

As noted by Sakharov in 1967, one of his three necessary ”Sakharov con-
ditions” for the asymmetry is baryon number non-conservation. This condition was
investigated in Grand Unified Theories, and extensive experiments on the search of
the proton decay have been performed. However, the result of all those experiments
was negative, i.e., no proton instability has been found.

As noted in Subsec. 3.4, the usual choice for R is R ≈ 1026m. The fact
that this value is very large shows that currently Poincare symmetry is satisfied with
a very high accuracy. Therefore, the above concepts work with a very high accuracy.
However, in early stages of the universe the value of R was much less than now.
As explained in the preceding sections, at such conditions the meaning of the above
concepts differs from standard meaning. In particular, conservation of electric charge
and baryon quantum number does not take place. Therefore, the BAU problem does
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not arise because the statement that the universe has been created with equal numbers
of baryons and antibaryons does not have a physical meaning.

The BAU problem can also be explained proceeding from the fact that,
as proved in Ref. [2] and explained above, FQT is the most general quantum theory.
Then the fact that currently the above concepts work with a very high accuracy
indicates that the value of p is very large. As noted in Subsec. 3.4, currently p is at
least of the order of exp(1080).

As noted in Ref. [2] the fact that finite mathematics is more general (fun-
damental) than standard one is clear even from the philosophy of verificationism and
the philosophy of quantum theory. Every computing device can perform mathemati-
cal operations only modulo some number p which are defined by the number of bits
this device can operate with. It is reasonable to believe that finite mathematics de-
scribing physics in our universe is characterized by a characteristic p which depends
on the current state of the universe, i.e., the universe can be treated as a computer.
Therefore, it is reasonable to believe that the number p is different at different stages
of the universe.

At the present stage of the universe the number p is huge but, as argued
in Ref. [2], in earlier stages this number was much less than now. However, when
p increases then for a greater and greater number of particles, standard concepts
of particle-antiparticle, electric charge and the baryon number work with a greater
and greater accuracy. Finally, at the present stage of the universe standard concepts
work with an extremely high accuracy. Since the particle theory in FQT is not yet
developed, the existing theory cannot predict what the relation between the numbers
of baryons and antibaryons should be at present. However, there are no reasons to
think that those numbers should be the same.

For example, suppose that those numbers have arisen as a result of pure
random circumstances. Then, the probabilities of different numbers can be described
by the Poisson distribution. For illustration, consider the case when one throws a
coin N times and calculates the numbers of tails and heads. The probability of each
event is 1/2, and therefore, when N is very large, one can expect that approximately
N/2 events will be heads and approximately N/2 events will be tails. However,
it is extremely improbable that the corresponding numbers will be exactly N/2 and
N/2. Indeed, the root-mean-square-deviation is proportional to N1/2. If, for example,
N = 1000 then the most probable number of the deviation is approximately 32, and
therefore the most probable difference between the numbers of heads and tails is 64.
The real difference can considerably differ from 64 but it is extremely improbable
that there will be exactly 500 heads and 500 tails.

Since we do not know what happens when p is not anomalously large, we
cannot exclude a possibility that the numbers of baryons and antibaryons depend not
only on pure random circumstances. For example, if something analogous to sponta-
neous symmetry breaking happens then the numbers of baryons and antibaryons at
the present stage of the universe can be considerably different. Probably the future
development of FQT will make it possible to estimate realistic differences between the
numbers. However, let us stress again that even for a scenario when the numbers of
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baryons and antibaryons in the universe are fully random, it is extremely improbable
that those numbers will be the same.

5 Discussion

It has been noted in Subsec. 3.2 that in quantum theory based on classical mathe-
matics, standard concepts of particle-antiparticle, the electric charge and the baryon
quantum number arise as a result of symmetry breaking at R →∞ when dS invari-
ant quantum theory is replaced by Poincare invariant quantum theory. It has been
also noted in Subsec. 3.3 that those standard concepts arise as a result of symmetry
breaking at p → ∞ when FQT is replaced by standard quantum theory. Therefore
those standard concepts are not universal.

The present fundamental particle theories are based on Poincare invariant
QFT, and, as noted in Subsec. 3.1, for solving the problem why a particle and
its antiparticle have equal masses, those theories involve local quantized field ψ(x)
where x does not belong to any particle and is simply a parameter arising from the
second quantization of a non-quantized field. So, the physical meaning of x is not
clear. Although QFT has many successes, it also has problems because, as noted, for
example, in the textbook [8], ψ(x) is an operatorial distribution, and the product of
distributions at the same point is not a well defined mathematical operation.

As explained in Subsecs. 3.2 and 3.3, in standard quantum theory based on
dS symmetry and in FQT, the masses of a particle and the corresponding antiparticle
are automatically equal, and this is achieved without introducing local quantized
fields. However, in those theories the concepts of particle-antiparticle and additive
quantum numbers differ from standard ones because one IR combines together a
particle and its antiparticle. The construction of such theories is one of the most
fundamental (if not the most fundamental) problems of quantum theory.

At present this construction has not been yet developed and therefore at
the present stage of quantum theory it is not possible to describe physics in earlier
stages of the universe when the values of R and p were much less than now. In
particular, this implies that existing cosmological theories describing very early stages
of the universe are not reliable. We can only say that, because at these stages stan-
dard concepts of particle-antiparticle, the electric charge and the baryon quantum
number do not have standard meaning, the statement that the numbers of baryons
and antibaryons at those stages are the same is not substantiated. Therefore, the
BAU problem does not arise because there is no reason to expect that the numbers of
baryons and antibaryons at the present stage of the universe are the same.

Let us now discuss the following point. As noted above, standard concept
of electric charge also arises as a result of symmetry breaking when, either as a result
of taking the limit R→∞ in dS SQT, this theory becomes Poincare invariant SQT,
or, as a result of taking the limit p → ∞ in FQT, this theory becomes SQT based
on AdS symmetry. Therefore, standard concept of the electric charge also cannot be
universal, as well as the concept of the baryon number. Therefore, the problem of the

14



electric charge can be discussed in full analogy with the above consideration of the
BAU problem. According to the present cosmological models, the universe has been
created as electrically neutral, and then, in view of the electric charge conservation,
it should be electrically neutral at the present stage. However, in full analogy with
the above consideration, one can conclude that the present state of the universe is not
electrically neutral. The usual statement is that the total electrical charge of stars is
typically positive because electrons can escape from thermonuclear reactions inside
stars, but the total electric charge of the universe is zero.
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