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Abstract 

The special problem we try to get at with these lectures is to maintain the interest of the very 

enthusiastic and rather smart people trying to understand physics. They have heard a lot about how 

interesting and exciting physics is—the theory of relativity, quantum mechanics, and other modern 

ideas—and spend many years studying textbooks or following online courses. Many are discouraged 

because there are really very few grand, new, modern ideas presented to them. Also, when they ask too 

many questions in the course, they are usually told to just shut up and calculate. Hence, we were 

wondering whether or not we can make a course which would save them by maintaining their 

enthusiasm. This paper is a draft of the fifth chapter of such course. It offers a comprehensive overview 

of the complementarity of wave- and particle-like perspectives on electromagnetic (EM) waves and 

radiation. We finish with a few remarks on relativity. 
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Lectures on Physics Chapter V :  
Moving charges, electromagnetic waves, 

radiation, and near and far fields 
Jean Louis Van Belle, Drs, MAEc, BAEc, BPhil 

1. The measurement of the position of a charge 
A charge – to make matters more specific, we will be talking an electron (e), but it might also be a 

proton or any other charged particle – moves along a trajectory which we describe in a three-

dimensional Cartesian space (an empty mathematical space) by measuring its position in terms of its 

distance from a chosen point of origin to the moving charge at successive points in time t. The observer 

will use an atomic clock or stopwatch to measure and mark the exact time at each position. We assume 

this measurement does not affect the observer, the charge that is being observed, or the space 

inbetween them. In other words, we assume there is no exchange or conversion of energy while 

measuring time. 

We have our clock and, therefore, a time unit. Now, we should think about how to measure distance. If 

you are a DIYer, you will think of a household distance measurement laser measuring the distance to 

your wall by (1) sending regular bursts of photons (the laser beam) to the wall and (2) receiving some of 

them back in the receiver. The clock of the device then calculates the distance back and forth by 

multiplying the time between the sent and receive moment to give you a distance expressed in meter 

instead of light-seconds: c: λ = c·t. Consider it done, right? Yes, but such reasoning assumes the 

photon(s) will travel back and forth in a straight line to the charge and then back to the detector(s).1 The 

reasoning also involves the assumption of an elastic or instantaneous collision between the charge and 

the photon(s)2, and the charge will, therefore, acquire some extra kinetic energy or momentum which, 

measured from the zero point (KEe = 0 and pe = 0) is just the kinetic energy and momentum of the 

electron after the collision (KEe’ > 0 and pe’  0). So how does that work, then?  

The concept of an elastic collision 
We can calculate the extra momentum from the momentum conservation principle while noting we 

should write the momenta as vectors so as to take the direction of the momentum into account. We 

can, unfortunately, not predict the angle between the incoming and outgoing velocity vector for the 

photon (v and v’, respectively). What we do know, however, is that all of the momentum of the 

incoming photon (p) is being transferred to the outgoing photon (p’) and the electron (pe’). Because 

 
1 A straight line of sight assumes the absence of gravitational lensing. Arthur Eddington, Frank Watson Dyson, and 
their collaborators effectively observed that electromagnetic radiation (light) follows a curved path near a massive 
object during the total solar eclipse on May 29, 1919 (Dyson, F. W., Eddington, A. S., Davidson C. (1920), A 
determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse 
of 29 May 1919, Philosophical Transactions of the Royal Society 220A (571–581): 291–333. 
2 If there is photon-electron interaction, such interaction will take some time which should, therefore, be 
subtracted from the total travel time to calculate the exact travel time (excluding interaction time). 
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(linear) momentum is conserved simultaneously in the x-, y- as well as the z-direction, we should write 

this as a vector equation: 

pe’ = p − p’ 

The situation is depicted below (Figure 1). As for the precision of the measurement, we agree with the 

interpretation of the Compton wavelength as the relevant “distance scale within which we can localize 

the electron in a particle-like sense.”3 All of this, of course, assumes the electron is travelling freely: it is 

not bound to an atomic or molecular orbital, in other words. 

 

Figure 1: The scattering of a photon from an electron (Compton scattering) 

Now, the linear momentum of a photon is equal to p = mc = E/c = h·f/c = h/c·T = h/λ. Hence, if the 

electron momentum changes, then the wavelength, cycle time, and frequency of the incoming and 

outgoing photon cannot be the same. Hence, if our household laser distance sensor would also be able 

to measure this wavelength or frequency change, we would be able to tell how the collision has changed 

the state of motion of the charge – not approximately, but exactly. We would, in effect, be able to 

calculate the velocity change (direction as well as magnitude) of the electron by using the ve’ = pe’/me’ 

formula.4  

We have come to the conclusion that a fully elastic interaction between an electron and a photon (1) 

transfers momentum and kinetic energy and (2) causes a wavelength shift between the outgoing and 

incoming photon. Let us quickly model this before we turn back to our distance measurement problem.  

Compton scattering  
Electron-photon interaction is modelled by the equation for Compton scattering of photons by 

electrons: 

Δλ = λ′ − λ =
ℎ

me𝑐
(1 − cosθ) = λ𝐶(1 − cosθ) 

The λC = h/mec in this equation is referred to as the Compton wavelength of the electron and is, a 

distance: about 2.426 picometer (10−12 m). The 1 − cosθ factor goes from 0 to 2 as θ goes from 0 to π. 

Hence, the maximum difference between the two wavelengths is about 4.85 pm. This corresponds, 

unsurprisingly, to half the (relativistic) energy of an electron.5 Hence, a highly energetic photon could 

lose up to 255 keV while the electron could, potentially, gain as much.6 That sounds enormous, but 

 
3 See our analysis of Compton scattering in our paper on the difference between a theory, a calculation, and an 
explanation, April 2020. 
4 We have no need for the Uncertainty Principle here! 
5 The energy is inversely proportional to the wavelength: E = h·f = hc/λ. 
6 The electron’s rest energy is about 511 keV. 

https://www.researchgate.net/publication/341178139_The_difference_between_a_theory_a_calculation_and_an_explanation
https://www.researchgate.net/publication/341178139_The_difference_between_a_theory_a_calculation_and_an_explanation
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Compton scattering is usually done with highly energetic X- or gamma-rays. 

When the photon does not interact with the electron, there is no scattering angle (we may enter it as 0 

in the equation) and the wavelength shift between the incoming and outgoing photon – which is 

actually just traveling through – will, therefore, vanish (1 – cos0 = 1 – 1 = 0). In contrast, when the 

photon bounces straight back, the scattering angle  will be equal to  π (see Figure 1) and the 

wavelength shift between the incoming and outgoing photon will, therefore, attain its maximum value, 

which is equal to λC(1 – cosπ) = λC(1 + 1) = 2λC.7 This is, as mentioned, a rather formidable result. Two 

more things should be noted here: 

1. The wavelength shift ∆λ = 2λC is independent of the energy of the incoming photon. 

2. The outgoing photon will have longer wavelength and, therefore, lower energy, and the kinetic 

energy of the electron must change so as to explain the energy difference between the 

incoming and outgoing photon: 

Ee’ + E’ = Ee + E  E = Ee’ – Ee = E – E’   

Bref (French for ‘in short’), if the electron is moving in free space, then the probing of an electron by 

photons – i.e. the measurement of a position – will result in a change of its trajectory.  

Of course, one may argue the electron may not be in a free but in a bound state: such bound state may 

be an atomic or molecular orbital in a crystal lattice.8 In such case, the photon will be temporarily 

absorbed as the electron first absorbs and then emits a photon with exactly the same wavelength. 

However, because such absorption and emission of a photon with linear momentum should also respect 

the conservation of (linear) momentum, the electron should first absorb the incoming momentum of 

the incoming photon and then return it to the outgoing photon. In such case, we will observe what is 

referred to as reflection. Such reflection may be specular or diffuse. In the case of specular reflection, 

the outgoing photon – which we may now refer to as a reflected photon – will emerge from the 

reflecting surface at the same angle to the surface normal as the incident ray, but on the opposing side 

of the surface normal in the plane formed by the incident and reflected rays, as illustrated below. 

 
7 See the exposé of Prof. Dr. Patrick R. LeClair on Compton scattering. Prof. LeClair’s treatment is precise and offers 

plenty of other interesting formulas, including the formula for the scattering angle of the electron  which, as 

mentioned above, is fully determined from the wavelength shift and the scattering angle . We offer a concise 
discussion of his derivation and arguments in our paper on the difference between a theory, an explanation and a 
calculation. 
8 The Rutherford-Bohr model of an atom gives us the following formula for the energy level:  

E𝑛 = −
1

2

α2

𝑛2
m𝑐2 = −

1

𝑛2
E𝑅  

We, therefore, get the following formula for the energy difference between two states with principal quantum 
number n2 and n1 respectively: 

E𝑛2 − E𝑛1 = −
1

𝑛2
2
E𝑅 +

1

𝑛1
2
E𝑅 = (

1

𝑛1
2
−

1

𝑛2
2
) ∙ E𝑅 = (

1

𝑛1
2
−

1

𝑛2
2
) ∙

α2m𝑐2

2
 

http://pleclair.ua.edu/PH253/Notes/compton.pdf
https://www.researchgate.net/publication/341178139_The_difference_between_a_theory_a_calculation_and_an_explanation
https://www.researchgate.net/publication/341178139_The_difference_between_a_theory_a_calculation_and_an_explanation
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Figure 2: Specular reflection of light photons 

Most materials will reflect the light diffusely: just like specular reflection, diffuse reflection depends both 

on the properties of the surface as well as of the properties of the crystal lattice.9 Before returning to 

the problem of distance measurement, we should add one final remark on specular reflection: photon 

interference experiments reveal a phase shift between the incoming and outgoing photons upon 

reflection which is equal to π, and we must assume such phase shift is relevant in the context of 

Compton scattering too.10 A phase shift effectively suggest the electron will effectively take some time 

to absorb and re-emit the photon. The time which corresponds to a phase shift equal to 180° (π) can be 

calculated from the representation of a photon as the vector sum of a sine and a cosine oscillation: 

𝑎 ∙ 𝑒𝑖θ = 𝑎 ∙ 𝑒𝑖ωt = 𝑎 ∙ 𝑒
𝑖
Eγ
ℏ
t
= 𝑎 ∙ cos (

Eγ

ℏ
t) + 𝑖 ∙ 𝑎 ∙ sin(

Eγ

ℏ
t) 

One may think of these two oscillations as representing the electric and magnetic field respectively 

when measured using natural time and distance units (c = 1), in which case the (maximum) amplitude of 

the magnetic field B = E/c will be measured as being identical. The multiplication by i then represents 

the orthogonality of the E and B vectors and the phase difference between the cosine and sine accounts 

for the phase shift between them, which we know to be equal to 90° (π/2): sin(  π/2) = cos(π/2). Any 

case, if the phase shift is equal to  = (·t) = ·t = (E/ħ)·t = π, then we can calculate t as being 

equal to t = πħ/E= (1/2)/f = T/2. Unsurprisingly, this is half the cycle time of the photon. 

Photon and electron spin 
So far, we have been discussing spin-zero photons and electrons. Both photons and electrons have spin. 

To be precise, besides linear momentum, a photon will also have an angular momentum, which is either 

+1 or −1 and which is expressed in units of ħ: hence, this amount of (angular) momentum should be 

conserved as well throughout the process.11 In contrast, an electron has spin  ħ/2 only. The absorption 

 
9 We refer the interested reader to the rather instructive Wikipedia article on diffuse reflection (from which we 
also borrowed the illustration) for more details. 
10 See, for example, K.P. Zetie, S.F. Adams, and R.M. Tocknell, How does a Mach-Zehnder interferometer work?, 
Phys. Educ. 35(1), January 2000.  
11 We find the fact that photons are spin-one particles without a zero-spin state rather striking, especially because 
it is usually not mentioned very explicitly in (most) physics textbooks. Richard Feynman, for example, hides this 
fact in a footnote (see: Feynman’s Lectures, III-11, footnote 1), and the context of this footnote is rather particular. 
To explain the interference of a photon with itself in the one-photon Mach-Zehnder interference experiment, we 
actually do assume a beam splitter will actually split in two linearly polarized photons which each have spin-1/2 
only. Each of these two linearly polarized photons then has the same frequency but carries only half of the total 

https://en.wikipedia.org/wiki/Diffuse_reflection
https://www.cs.princeton.edu/courses/archive/fall06/cos576/papers/zetie_et_al_mach_zehnder00.pdf
https://www.feynmanlectures.caltech.edu/III_11.html#footnote_1
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of the full angular momentum of a photon must, therefore, involve a spin flip of the electron, going from 

+ ħ/2 to − ħ/2 and then back again so as to return the full amount of spin to the outgoing photon. In 

fact, one may speculate the temporary spin flip of the electron explains why the electron – in a 

configuration where all sub-shells (which are identified using not only the principal quantum number n 

but also the orbital angular momentum number l) have been filled by a pair of electrons with opposite 

spin – has to go from one orbital to the next: the line-up of its spin violates the Pauli exclusion principle, 

according to which two electrons in the same subshell must have opposite spin.12 

By now, it should be sufficiently clear that the probing of a free electron using radiation (photons) is 

perturbative. We may, therefore, try to find another way to observe the charge’s state of motion. 

Is non-perturbative measurement of the position of a charge possible at all? 
One potentially non-destructive observation might be the use of potential meters: as we will see in a 

moment, a moving charge will change the electric and magnetic field all over space and, hence, by 

measuring how the electric and magnetic field changes at one or various positions. 

However, the measurement of a change in the electric and/or magnetic field will inevitably involve a 

charge as well because we must observe be able to observe the force on a charge in order to measure 

the change in potential. A change in electric potential, for example, will result in a simple Coulomb 

force: 

FC = −
dV

d𝑟
= −

d(−
qe
2

4πε0

1
𝑟
)

d𝑟
=

qe
2

4πε0

d (
1
𝑟)

d𝑟
= −

qe
2

4πε0

1

𝑟2
 

We note that the magnitude of the force falls off following the inverse square law (F  1/r2) while the 

(electric) potential (V) diminishes linearly (V  1/r). This makes sense because the energy flux is inversely 

proportional to the square of the distance as well. What about the magnetic force? The calculation of 

the magnetic field and force is more complicated because it depends on the (relative) motion of both 

charges and because it will not only act on the (moving) charge but also on its magnetic moment. We 

will let the reader review the relevant equations here, but it should be clear that any force acting on a 

charge will change its state of motion.  

To be precise, a force acting on a charge will cause it to accelerate. The acceleration vector is given by 

Newton’s force law (a = F/me) and the total energy expended will be equal to the (line) integral E = 

LF(r)·dr.13 At this point, we should invoke the principle of least action as used in both classical as well as 

in quantum mechanics.14 This principle states that, in free space, the charge will lower its total energy 

(kinetic and potential) by moving along a path which minimizes the (physical) action 𝑆 =

 

energy of the incoming photon: 
Eγ

2
=

ℏ

2
∙ ωγ. We work out this hypothesis in our realistic or classical explanation of 

one-photon Mach-Zehnder interference.  
12 The electron subshells define the fine structure of the atomic or molecular spectrum. The fine spectral line can 
be further split into two hyperfine levels because of the coupling between electron spin and nuclear spin. See our 
paper on a classical explanation of the Lamb shift. 
13 The reader should note that we have a line integral here and, therefore, we are integrating a vector dot product 
(F·dr) over a curve or a (non-linear) line. 
14 See: Feynman’s Lectures, The Least Action Principle (Vol. II, Chapter 19). 

https://vixra.org/abs/1812.0455
https://vixra.org/abs/1812.0455
https://vixra.org/abs/2003.0644
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∫ (KE − PE)d𝑡
𝑡2
𝑡1

. To be precise, potential energy must be converted to kinetic energy and vice versa: the 

total energy of the charge (the sum of KE and its PE) does, therefore, not change: only its components KE 

and PE, which depend on its velocity and its position respectively, will change. However, in free space, 

they will add up to a constant. In other words, the situation which we have been considering up to this 

point, is that of a charge whose energy state does not change. 

This now changes because we will want to use a change in the energy state of the electron to measure a 

change in the electric and magnetic fields or, if one prefers a more elegant representation perhaps, the 

scalar as well as vector potential.15 

Quantum-mechanically, this implies the electron we use to measure the change must following another 

trajectory. This trajectory will differ from its geodesic – its trajectory in free space, that is – by an 

amount of physical action equaling one or more units of physical action h. Now, this amount of physical 

action – the product of (1) a force, (2) a distance and (3) some time – must be extracted from the fields, 

somehow. We refer the reader to Feynman’s treatment of the topic for a complete analysis of how a 

field loses energy to matter or, in the reverse case, how it gains energy, which is just a negative loss.16 As 

Feynman puts it, we now need to change the energy conservation law and restate it as follows:  

“Only the total energy in the world – which includes the energy of both matter and fields – is 

conserved. The field energy will change if there is some work done by matter on the field or, 

conversely, by the field on matter.” (Feynman, Vol. II, page 27-8). 

The reader may think this conversion from potential into kinetic energy – field energy goes down while 

the energy of the electron which we use to measure the change in potential goes up – should not affect 

the state of motion of the electron which we are trying to observe. However, this would imply that, 

sooner or later, all potential energy in the world gets converted to kinetic energy or vice versa: in other 

words, all of the charges would deplete all potentials and we would be left with kinetic energy and a 

matter-world only: no fields.  

We, therefore, add an additional conservation law⎯and it will be the final one: in addition to the 

conservation of total energy as well as (linear and circular) momentum in the world, the total amount of 

physical action in the world must be conserved. If we, therefore, extract a unit of h from the fields, the 

fields will, somewhere, extract a unit of h from matter. If we only have two charges in the world – the 

one we want to observe and the other one which we want to use to measure any change in potential 

which the first charge is causing – then the fields will have to extract one unit of h from the charge for 

every unit of h they are transferring to the charge we use to measure the changing potential(s). 

 
15 We have reasoned in terms of electric and magnetic fields so far, but we may rewrite Maxwell’s equations in 
terms of the scalar and vector potential. This may or may not simplify the math: the electric and magnetic field 
vectors E(x, t) and B(x, t) effectively have three spatial coordinates each (Ex, Ey, Ez, Bx, By and Bz respectively), while 

a description in terms of the scalar and vector potential (x, t) and A(x, t) involves four numbers only (φ, Ax, Ay, and 
Az). 
16 See: Feynman’s Lectures, Field Energy and Momentum (Vol. II, Chapter 27) 

https://www.feynmanlectures.caltech.edu/II_27.html
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Can we prove this? No, but we think Feynman’s derivation of the equation of continuity for probabilities 

comes (very) close to proving this and we, therefore, like to interpret this equation as the conservation 

law for physical action.17  

We, therefore, think the extraction of an equivalent energy E = h·f from the fields must not only involve 

the absorption of a photon – this photon will, of course, have the same energy E = h·f – by the charge we 

use to measure the changing fields: it must also involve the emission of a photon by the charge we are 

trying to observe. Hence, this will, once again, result in a change of the state of motion of the charge we 

are trying to observe. We may, therefore, say that the two charges will be interconnected or – to use 

more formidable language – that the two charges will be coupled or entangled both classically as well as 

quantum-mechanically.  

Should Einstein worry about ‘spooky action at a distance’ (spukhafte Fernwirkung) here? Not 

necessarily, because this spooky action should still respect the principle that nothing can travel faster 

than the speed of light: the total effect will push both electrons away from each other and may, 

therefore, be said to involve the exchange of a photon. In order to distinguish such photon from the 

photons we first wanted to use to observe the charge directly, we will refer to such photons as virtual 

photons. We will, however, assume such virtual photons cannot travel any faster than any other 

electromagnetic wave. In fact, we will assume such virtual photons are – just like real photons – nothing 

but a pointlike electromagnetic oscillation which propagates at the speed of light⎯not approximately, 

but exactly. 

2. Charges in motion 
From the extremely discussion above, the reader should just note the crux of the argument: any 

measurement of a position will inevitably involve a delay except if the charge and the observer happen 

to be at the same position, of course). One must, therefore, distinguish between the actual position of a 

charge and its retarded position. This is illustrated in Figure 3. Assuming the observer is positioned at 

point (1), he can ascertain the position of the charge x by measuring its distance (denoted as distance r’ 

which, just like the position is a retarded rather than an actual (right now) distance. This concept is 

illustrated below (Figure 3).     

 

Figure 3: The concepts of retarded time, position, and distance (Feynman, II-21, Fig. 21-1) 

 
17 See: Feynman’s Lectures, The equation of continuity for probabilities (Vol. III, Chapter 21, section 2). This 
equation is closely related to the distinction between kinematic momentum and dynamical momentum 
(Feynman’s Lectures, II-21-3). 

https://www.feynmanlectures.caltech.edu/III_21.html#Ch21-S2
https://www.feynmanlectures.caltech.edu/III_21.html#Ch21-S3
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The retarded position is written as x and should be written as a function of the retarded time t – r’/c: 

x = x(t – r’/c) 

The actual position x(t) can only be measured in the future but can be extrapolated by making 

continuous measurements of the position right now. Such measurements then allow to associate a 

velocity vector v = dx/dt with the charge. Just like position, the velocity function will (or should) have the 

retarded time as its argument: v = v(t – r’/c). A first-order approximation of the actual position x(t) is 

then given by the expression: 

𝒙(𝑡)𝒙(𝑡–
𝑟’

𝑐
) +

𝑟’

𝑐
∙ 𝒗(𝑡–

𝑟’

𝑐
) 

This first-order approximation may, of course, be complemented by adding second- and higher-order 

terms by measuring acceleration and using higher-order time derivatives of the position variable. 

However, let us first stick to the use of the velocity vector. The continuous measurement of the position 

assumes the measurement of the infinitesimal distance:  

∆𝒙𝒙 (𝑡–
𝑟’

𝑐
+ ∆𝑡) − 𝒙(𝑡–

𝑟’

𝑐
) 

We may, therefore, write the velocity vector as: 

𝒗(𝑡–
𝑟’

𝑐
) =

∆𝒙

∆𝑡
=
𝒙(𝑡–

𝑟’
𝑐
+ ∆𝑡) − 𝒙(𝑡–

𝑟’
𝑐
)

∆𝑡
 

Figure 3 shows a unit vector er’ from the retarded position (2’) directed towards the observer (1). One 

might also draw a unit vector from (1) to (2’), which makes it easier to appreciate that the vector r’ can 

be written as r’ = r’· er’ and, more importantly, that x  r’· er’. The retarded velocity vector can, 

therefore, also be approximated by: 

𝒗(𝑡–
𝑟’

𝑐
) =

∆𝒙

∆𝑡
= 𝑟’ ·

𝒆𝒓’
∆𝑡

 

Moving to differential notation, one can, therefore, write the retarded velocity vector function as: 

𝒗(𝑡–
𝑟’

𝑐
) =

d𝒙

d𝑡
= 𝑟′

d𝒆𝒓′
d𝑡

 

Position, time and, therefore, motion is relative. However, charge is not relative and different observers 

should, therefore, also agree on a measurement unit for charge, which we may equate to the 

elementary charge e. This is the charge of a proton or the (negative) charge of the electron. A charge fills 

empty spacetime (all of it) with a potential which depends on position and evolves in time. This 

potential is, therefore, also a function of x, y, z, and t.18 Two equivalent descriptions are possible: 

⎯ A description in terms of the electric and magnetic field vectors E(x, t) and B(x, t); and 

⎯ A description in terms of the scalar and vector potential (x, t) and A(x, t) respectively. 

 
18 We will no longer be worried about the relativity of the reference frame and assume the reader will understand 
what is relative and absolute in our description. 
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The field vectors E and B have three components19 and we, therefore, have six dependent variables Ex(x, 

t), Ey(x, t), Ez(x, t), Bx(x, t), By(x, t), and Bz(x, t). In contrast, the combined scalar and vector potential give 

us four dependent variables (x, t), Ax(x, t), Ay(x, t), and Az(x, t) only, which may appear to be simpler.20 

However, in this paper, we will stick to a description of the fields in terms of the E and B fields.  

3. Charges, energy states, potentials, fields, and radiation 
We are now ready to analyze Feynman’s rather particular formulas for the E and B field vectors at point 

(1): 

𝑬(1, 𝑡) =
q

4πϵ0
[
𝒆𝒓′
𝑟′2

+
𝑟′

𝑐

d

d𝑡
(
𝒆𝒓′
𝑟′2

) +
1

𝑐2
d2

d𝑡2
𝒆𝒓′] 

𝑐𝑩(1, 𝑡) = 𝒆𝒓′ × 𝑬(1, 𝑡) 

We refer to Feynman’s Lectures21 for a clear and complete derivation of these functions out from 

Maxwell’s equations for a single charge q moving along any arbitrary trajectory, as illustrated in Figure 3. 

The point to note is that the electric and magnetic field at point (1) now will be written as a function of 

the position and motion of the charge at the retarded time t – r’/c. The relevant distance is, therefore, 

also the retarded distance r’, which is the distance between (1) and (2’) – which is not the charge’s 

position at time. The latter position is point (2): it is separated from position (2’) by a time interval equal 

to t – (t – t’/c) and a distance interval which depends on the velocity v of the charge q which will be 

generally much less than c.    

The second and third term in the expression for E(1, t) are, obviously, equal to zero if the charge is not 

moving, in which case the charge comes with a static (i.e. non-varying in time) Coulomb field only: in this 

case, the retarded field is just the Coulomb field tout court. The scalar product which defines the 

magnetic field is equal to the product: 

(1) the magnitude of the unit vector er’, whose origin is (2’) and which points to (1) and whose 

magnitude is equal to 1; 

(2) the magnitude of  the electric field vector at point (1) at time t; 

(3) the cosine of the angle between er’ and E(1, t). 

The latter factor – the cosine of the angle between er’ and E(1, t) – is, obviously, zero if the second and 

third term are zero, which is just a confirmation of the fact that static electric fields do not come with a 

magnetic field. However, our charge is moving, and the first- and second-order derivative of the er’ will, 

 
19 Boldface symbols denote vector quantities, which have both a magnitude and a direction. Scalar quantities only 
have a magnitude. However, depending on the reference point for zero potential energy, the potential energy of a 
charge in a potential field may be negative. Potential energy is – just like a distance – measured as a difference. The 
plus or minus sign of the potential energy, therefore, depends on the direction in which we would be moving the 
charge.  
20 Feynman makes extensive use of the scalar and vector potential for formulas, and they also appear in most 
quantum-mechanical equations. One, therefore, needs to become intimately familiar with them: the scalar and 
vector potential are, in many ways, more real than the electric and magnetic field vectors. 
21 Richard Feynman, II-26, Solutions of Maxwell’s equations with currents and charges. 

https://www.feynmanlectures.caltech.edu/II_21.html
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therefore, not be equal to zero, which modifies the electric field E at point (1) at time t, and which also 

gives us a non-zero magnetic field B: 

(i) The second term corresponds to what Feynman refers to as a compensation for the retardation 

delay, as it is the product of (a) the rate of change of the retarded Coulomb field multiplied by 

(b) the retardation delay (the time needed to travel the distance r’ at the speed of light c). In 

other words, the first two terms correspond to computing the retarded Coulomb field and then 

extrapolating it (linearly) toward the future by the amount r’/c – which is right up to time t.22 It 

should be noted that one might think this second term is (also) inversely proportional to the 

squared distance r’2, but the r’ and r’2 in the numerator and denominator respectively leaves us 

with an 1/r’ factor only. 

(ii) The third term – the second-order derivative d2(er’)/dt2 – is an acceleration vector which – 

because of the origin of the unit vector er’ is fixed at point (2’) – can and should be analyzed as 

the sum of a transverse component and a radial component.23 Needless to say, this second-

order derivative of d2(er’)/dt2 will be zero if the charge moves in a straight line with constant 

velocity v. In other words, the third term will vanish (be zero) if there is no acceleration.  

In the chapters where Feynman first introduces and uses these equations (Vol. I, Chapters 28 and 29 as 

well as Vol. II, Chapter 21), the assumption is that the transverse piece of the acceleration vector is far 

more important than the radial piece, but such statement crucially depends on the assumption that the 

charge is moving at a more or less right angle to the line of sight, which is not necessarily the case. 

Feynman corrects for this assumption in Chapter 34 of Vol. I, in which he gives the reader a full 

treatment of all ‘relativistic effects’ of the motion of a charge. 

Feynman also associates the third term with radiation which, as we now know, consists of a stream of 

photons carrying energy. We must, effectively, assume the charge does not only generate a potential 

but moves in a potential field itself. Its energy, therefore, must also continually change. To be specific, in 

free space, we must assume the charge will lower its total energy (kinetic and potential) by moving along 

a path which minimizes the (physical) action 𝑆 = ∫ (KE − PE)d𝑡
𝑡2
𝑡1

. This is just an application of the 

(classical) least action principle.24  

Of course, in classical physics, potential energy must be converted to kinetic energy and vice versa: the 

total energy of the charge (the sum of KE and PE) does, therefore, not change: only its components KE 

and PE, which depend on its velocity and its position respectively, but they add up to a constant. In 

other words, the situation which we have been considering up to this point, is that of a charge whose 

energy state does not change. 

Such energy state may be the energy state of a free electron or of an electron in a bound state, i.e. an 

electron in an atomic or molecular orbital. If and when an electron moves from one energy state to 

 
22 We apologize for quoting quite literally from Feynman’s exposé here, but we could not find better language. 
23 In the chapters where Feynman uses these equations (Vol. I, Chapters 28 and 29 as well as Vol. II, Chapter 21), 
he assumes the transverse piece is far more important than the radial piece, but such statement crucially depends 
on the assumption that the charge is moving at a more or less right angle to the line of sight, which is not 
necessarily the case. Feynman corrects for this assumption in Chapter 34 of Vol. I, in which he gives the reader a 
fuller treatment of the ‘relativistic effects in radiation’. 
24 See: Feynman’s Lectures, The Least Action Principle (Vol. II, Chapter 19). 
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another, as it does when hopping from one atomic or molecular orbital to another. Indeed, as the 

electron moves as a proper current in a conductor25 – whose direction is from high to low potential – it  

should emit photons which will be packing a discrete amount of energy which is given by the Planck-

Einstein relation:  

E = h·f = h/T 

The frequency f of the photon is, obviously, the inverse of the cycle time T, and the Planck-Einstein 

relation may, therefore, also be written as h = E·T. Because the drop in potential from one atomic or 

molecular orbital in a crystal structure – i.e. along the conductor – is extremely small, power lines – 

whether they be high-voltage DC or low-voltage AC lines – emit only extremely low frequency (ELF) 

radiation. Such low-frequency radiation is associated with heat radiation at very low temperature: a 

photon frequency of 300 Hz, for example, is associated with a wavelength that is equal to λ = c/f  

(3108 m/s)/(300 s−1) = 1106 m = 1000 km.26  

Hence, yes, we finally dropped the word: radiation. Electrons who stay in the same energy state – in a 

bound atomic or molecular state, for example – do not emit radiation and, hence, do not lose energy. 

Likewise, the orbital motion (spin) of the charge inside a stationary charge does not cause any radiation 

and, therefore, the energy does not leak out. 

This, then, combines Maxwell’s equations with the Planck-Einstein relation which tells us energy comes 

in quantized packets whose integrity is given by Planck’s quantum of action (h). We now have the trio of 

physical constants in electromagnetic theory (classical as well as quantum physics): c, e, and h. 

4. Photons and fields 
1. In 1995, W.E. Lamb Jr. wrote the following on the nature of the photon: 

“There is no such thing as a photon. Only a comedy of errors and historical accidents led to its popularity 

among physicists and optical scientists. I admit that the word is short and convenient. Its use is also habit 

forming. Similarly, one might find it convenient to speak of the “aether” or “vacuum” to stand for empty 

space, even if no such thing existed. There are very good substitute words for “photon”, (e.g., “radiation” 

or “light”), and for “photonics” (e.g., “optics” or “quantum optics”). Similar objections are possible to use 

of the word “phonon”, which dates from 1932. Objects like electrons, neutrinos of finite rest mass, or 

helium atoms can, under suitable conditions, be considered to be particles, since their theories then have 

viable non-relativistic and non-quantum limits.”27 

The opinion of a Nobel Prize laureate carries some weight, of course, but we think the concept of a 

photon makes sense. As the electron moves from one (potential) energy state to another – from one 

 
25 For a distinction between the concepts of current, electrical signal, and (probability) amplitudes, see our paper 
on electron propagation in a (crystal) lattice (November 2020). 
26 ELF radiation is usually defined as radiation with a (photon) frequency below 300 Hz. Typical field strength near a 

high-voltage power is typically 2-5 kV/m (1 V/m = 1 J/C·m = 1 N/C) for the electric field strength and up to 40 T (1 
T = 1 (N/C)·(s/m), with the latter factor reflecting the 1/c scaling factor and the orthogonality of the E and B 
vectors) for the magnetic field but – as the equations show – diminish rapidly with distance. The typical range for 
low-voltage lines is 100-400 V/m and 0.5-3 µT, respectively. See, for example: 

https://ec.europa.eu/health/scientific_committees/opinions_layman/en/electromagnetic-fields07/l-2/7-power-lines-
elf.htm  
27 W.E. Lamb Jr., Anti-photon, in: Applied Physics B volume 60, pages 77–84 (1995). 

https://www.researchgate.net/publication/345178987_Lectures_on_Physics_Chapter_IV_Electron_Propagation_in_a_Lattice
https://ec.europa.eu/health/scientific_committees/opinions_layman/en/electromagnetic-fields07/l-2/7-power-lines-elf.htm
https://ec.europa.eu/health/scientific_committees/opinions_layman/en/electromagnetic-fields07/l-2/7-power-lines-elf.htm
https://link.springer.com/article/10.1007/BF01135846
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atomic or molecular orbital to another – it builds an oscillating electromagnetic field which has an 

integrity of its own and, therefore, is not only wave-like but also particle-like. 

The photon carries no charge but carries energy. We should probably assume its kinetic energy is the 

same at start and stop of the transition. In other words, at point t1 and t2, (KE)1 and (KE)2 are assumed to 

identical in the (physical) action equation which we introduced above: 

𝑆 = ℎ = ∫ (KE − PE)d𝑡 =
𝑡2

𝑡1

∫ (KE)d𝑡
𝑡2

𝑡1

−∫ (PE)d𝑡
𝑡2

𝑡1

 

This, of course, does not mean that the ∫ (KE)d𝑡
𝑡2
𝑡1

 integral vanishes: it only does so when assuming the 

velocity in the KE = mev2/2 formula28 is zero everywhere, which cannot be the case because – when 

everything is said and done – the electron does move from one cell in the crystal lattice to another. 

However, we will leave it to the reader to draw possible KE, PE and total energy graphs over the electron 

transition from one crystal cell to another. Such graphs should probably be informed by a profound 

analysis of the nature of the photon.  

We mentioned a photon carries energy, but no charge. While carrying electromagnetic energy, a photon 

will only exert a force when it meets a charge, in which case its energy will be absorbed as kinetic energy 

by the charge. In-between the emission and absorption of the photon, we should effectively think of the 

photon as an oscillating electromagnetic field and, hence, such field can usefully be represented by the 

electric and a magnetic field vectors E and B. The magnitudes should not confuse us: field vectors do not 

take up any space, although we may want to think of them as a force without a charge to act on. Indeed, 

a non-zero field at some point in space and time – which we describe using the (x, y, x, t) coordinates – 

tell us what the force would be if we would happen to have a unit charge at the same point in space and 

in time. This is reflected in the electromagnetic force formula: the Lorentz force equals F = q·(E + vB). 

Hence, the electromagnetic force is the sum of two (orthogonal) component vectors: q·E and q·vB.  

The velocity vector v in the equation shows both of these two component force vectors depend on our 

frame of reference. Hence, we should think of the separation of the electromagnetic force into an 

‘electric’ (or electrostatic) and a ‘magnetic’ force component as being somewhat artificial: the 

electromagnetic force is (very) real – because it determines the motion of the charge – but our cutting-

up of it in two separate components depends on our frame of reference and is, therefore, (very) 

relative. We should refer to our remarks on the relative strength of the electric and magnetic field, 

however: the reader should not think in terms of the electric or magnetic force being more or less 

important in the analysis and always analyze both as aspects of one and the same reality.  

Let us get back to our photon: we think the photon is pointlike because the E and B vectors that describe 

it will be zero at each and every point in time and in space except if our photon happens to be at the (x, 

y, z) location at time t.  

[…] Please read the above again: our photon is pointlike because the electric and magnetic field 

 
28 We use the non-relativistic kinetic energy formula here because the drift velocity of the electron is very low. 
Also, the rather low energy levels involves ensure a particle with rest mass of about 0.51 MeV/c2 should not reach 
relativistic velocity levels. The non-relativistic formula simply defines the kinetic energy as the difference between 
the total energy and the potential energy.   
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vectors that describe it are zero everywhere except where our photon happens to be.  

2. At the same time, we know a photon is defined by its wavelength. So how does that work? What is 

the physical meaning of the wavelength? It is, quite simply, the distance over which the electric and 

magnetic field vectors will go through a full cycle of their oscillation. That is all there is to it: nothing 

more, nothing less.  

That distance is, of course, a linear distance: to be precise, it is the distance s between two points (x1, 

y1, z1) and (x2, y2, z2) where the E and B vectors have the same value. The photon will need some time t 

to travel between these two points, and these intervals in time and space are related through the 

(constant) velocity of the wave, which is also the velocity of the pointlike photon. That velocity is, of 

course, the speed of light, and the time interval is the cycle time T = 1/f. We, therefore, get the equation 

that will be familiar to you: 

𝑐 =
∆𝑠

∆𝑡
=
λ

T
 

We can now relate this to the Planck-Einstein relation. Any (regular) oscillation has a frequency and a 

cycle time T = 1/f = 2π/ω. The Planck-Einstein relation relates f and T to the energy (E) through Planck’s 

constant (h):   

E = ℎ ∙ 𝑓 = ℏ ∙ ω ⟺ E ∙ T = ℎ 

The Planck-Einstein relation does not only apply to matter-particles but also to a photon. In fact, it was 

first applied to a photon.29 Think of the photon as packing not only the energy E but also an amount of 

physical action that is equal to h. 

3. We have not talked much about the meaning of h so far, so let us do that now. Physical action is a 

concept that is not used all that often in physics: physicists will talk about energy or momentum rather 

than about physical action.30 However, we find the concept as least as useful. Physical action can express 

itself in two ways: as some energy over some time (E·T) or – alternatively – as some momentum over 

some distance (p·). For example, we know the (pushing) momentum of a photon31 will be equal to p = 

E/c. We can, therefore, write the Planck-Einstein relation for the photon in two equivalent ways: 

E ∙ T =
𝐸

𝑐
∙ 𝑐T = ℎ ⟺ p ∙ λ = ℎ 

We could jot down many more relations, but we should not be too long here.32  

 
29 The application of the Planck-Einstein relation to matter-particles is implicit in the de Broglie relation. 
Unfortunately, Louis de Broglie imagined the matter-wave as a linear instead of a circular or orbital oscillation. He 
also made the mistake of thinking of a particle as a wave packet, rather than as a single wave! The latter mistake 
then led Bohr and Heisenberg to promote uncertainty to a metaphysical principle. See our paper on the meaning 
of the de Broglie wavelength and/or the interpretation of the Uncertainty Principle. 
30 We think the German term for physical action – Wirkung – describes the concept much better than English. 
31 For an easily accessible treatment and calculation of the formula, see: Feynman’s Lectures, Vol. I, Chapter 34, 
section 9. 
32 We may refer the reader to our manuscript, our paper on the meaning of the fine-structure constant, or various 
others papers in which we explore the nature of light. We just like to point out one thing that is quite particular for 

https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
https://www.researchgate.net/publication/344821557_The_Meaning_of_Uncertainty_and_the_Geometry_of_the_Wavefunction
https://www.feynmanlectures.caltech.edu/I_34.html#Ch34-S9
https://www.feynmanlectures.caltech.edu/I_34.html#Ch34-S9
https://vixra.org/abs/1901.0105
https://vixra.org/abs/1812.0273
https://vixra.org/abs/2001.0345
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5. The near- and far-fields 
The picture above is quite clear and consistent: a conductor – or a crystal lattice – emits electromagnetic 

waves as photons, who should be thought of as self-perpetuating through the interplay of the electric 

and magnetic field vector.33 The direction of propagation equals the line of sight (more or less34) and a 

crystal lattice (conductor) acts as a series of point sources or oscillators. By modulating the voltage (AC 

or DC), frequency and – and taking into account the spacing and properties of the crystal lattice – one 

gets photon beams in all directions, whose intensity and energy depends on the above-mentioned 

factors and – important – can carry a signal through frequency or amplitude modulation (AM or FM). We 

take, once again, an illustration from Feynman to show how this works (Figure 4). It should be noted 

that the interference pattern that emerges does not result from random indeterminism but from an 

interplay of regular and statistically determined photon emissions from each of the crystals in the 

conducting lattice. As such, the addition or superposition of photons, electromagnetic waves and 

probabilities amounts to the same – with the usual caveat for the photon picture, of course, which – as 

particles – do not engage in constructive or destructive interference. The complementarity of the 

different viewpoints, perspectives or representations of the same reality is, therefore, clear.  

 

Figure 4: The intensity pattern of a continuous line of oscillators (Feynman, I-30, Fig. 30-5) 

However, by way of conclusion, we must probably say something about the oft-used distinction 

between near- and far-fields. In order to do so, we ask the reader to, once again, carefully look at the 

relevant equation(s) for the E and B field vectors: 

 
the photon: the reader should note that the E = mc2 mass-energy equivalence relation and the p = mc = E/c can be 
very easily related when discussing photons. There is an easy mathematical equivalence here. That is not the case 
for matter-particles: the de Broglie wavelength can be interpreted geometrically but the analysis is somewhat 

more complicated⎯not impossible (not at all, actually) but just a bit more convoluted because of its circular (as 
opposed to linear) nature. 
33 We skipped a discussion on photon spin: we think of photon spin as angular momentum, and it is always plus or 
minus one unit of h. Photons do not have a zero-spin state. 
34 Because the lattice consists of several layers, one may think an electron may not always move to the crystal cell 
right next to it. This is true, it may deviate to left, right, up, or down while moving through the lattice. On the other 
hand, the conducting electrons will repel each other and will, therefore, tend to travel on the surface of the crystal, 
which is in agreement with standard theory. 
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𝑬(1, 𝑡) =
q

4πϵ0
[
𝒆𝒓′
𝑟′2

+
𝑟′

𝑐

d

d𝑡
(
𝒆𝒓′
𝑟′2

) +
1

𝑐2
d2

d𝑡2
𝒆𝒓′] 

𝑐𝑩(1, 𝑡) = 𝒆𝒓′ × 𝑬(1, 𝑡) 

The reader will note the magnitude of the (retarded) Coulomb effect (the first term) diminishes with 

distance following the inverse square law ( 1/r’2) while the second term involves only inverse 

proportionality ( 1/r2).35 Finally, the third term does not fall off with distance at all! It is this what gives 

rise to the very different shape of the near-field versus the far-field waves, with a transition zone in-

between. 

In terms of the shape of the electromagnetic waves, one should probably think of the first effect 

(retarded Coulomb effect) as a spherical wavefront, whose energy density effectively diminishes as per 

the inverse square law, while the second effect is a plane wavefront36 

6. Complicated trajectories 
It is important to note that the trajectory of a charge will usually not appear as a straight line in the 

reference frame of the observer: we think of an electron in an atomic or molecular orbital as following a 

non-linear trajectory. Such non-linear trajectory may be repetitive or cyclical. An example of such 

cyclical trajectory is the motion of an electron in a Penning or ion trap, in which a quadrupole electric 

field confines the electron while an axial magnetic field causes orbital motion. In addition, when thinking 

of an electron as a ring current itself, two frequencies of cyclical motion corresponding to two modes 

must be defined, as illustrated below.37 

 

In addition, the magnetic moment of his ring current will cause precession in the magnetic field. Such 

precessional motion will cause the axis of rotation to rotate itself.38 One should, therefore, appreciate 

 
35 The coefficient r’/c and the 1/r’2 in the argument of the first-order derivative combine to give us a rather 
straightforward 1/r’ factor. 
36 The direction of the field vector(s) may be parallel or orthogonal to the direction of propagation, which gives rise 
to the distinction between longitudinal and transverse waves. The reader may also remember lenses can change 
plane waves into spherical waves and vice versa but such fact is not very relevant for the discussion here. 
37 The illustration was taken from the Wikipedia article on the Penning or ion trap, but we do not expect the reader 
to review this in depth. 
38 Such precessional motion will be described by a precession frequency and an angle of precession. For more 
detail, we may refer the reader to course F47 – Cylotron frequency in a Penning trap, Heidelberg University, Blaum 
Group, 28 September 2015. 

https://en.wikipedia.org/wiki/Penning_trap
https://www.physi.uni-heidelberg.de/Einrichtungen/FP/anleitungen/F47.pdf
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that a description of motion x = x(t – r’/c) will usually be quite complicated not only involving the 

velocity, acceleration and jolt or jerk vectors v = dx/dt, a = dx2/dt2, j = dx3/dt3, but, possibly, even higher-

order derivatives. The use of spherical coordinates to describe the position using radial distance from 

the origin (r) and a polar and azimuthal angle (usually denoted by  and  respectively) may or may not 

make calculations generally easier.39 

The distance from the (0, 0, 0) origin to the x = (x, y, z) position is the norm of x and is given by the 

Pythagorean Theorem: 

|𝒙| = +√𝒙2 = +√𝑥2 + 𝑦2+𝑧2 

The same expression is, obviously, valid in the moving reference frame: 

|𝒙′| = +√𝒙′2 = +√𝑥′2 + 𝑦′2+𝑧′2 

Distances may be measured in light-seconds (299,792,458 m) instead of meter by dividing all distances 

by c. This amounts to measuring the distance in the time that is needed for light to travel from the origin 

to the position x = (x, y, z) and, therefore, gives a distance measurement in seconds.  

|𝒙|

𝑐
= 

+√𝒙2

𝑐
= +√

𝑥2

𝑐2
+
𝑦2

𝑐2
+
𝑧2

𝑐2
 

It is tempting to think of the c2t2 = x2 + y2 + z2 expression as an expression of the Pythagorean Theorem 

but this can only be done if t is effectively defined as the time that is needed to travel from the origin to 

x, in which case the expression above can effectively be written as: 

𝑡 =
|𝒙|

𝑐
= +√

𝑥2

𝑐2
+
𝑦2

𝑐2
+
𝑧2

𝑐2
⟺ 𝑐𝑡 = +√𝑥2 + 𝑦2+𝑧2 ⟺ 𝑐2𝑡2 = 𝑥2 + 𝑦2+𝑧2 

However, we are modeling motion and, hence, the time variable is the time which we associate with an 

object in motion (usually a charge) and we are, therefore, concerned with the equation of motion only: 

x = x(t) = (x(t), y(t), z(t)) 

By way of conclusion – and to warn the reader against using relativity theory without much appreciation 

of what might actually be going on, we make a few remarks on relativity theory. 

7. Relativity 
Because there is no preferred origin, the coordinate values (x, y, z, t) and (x’, y’, z’, t’) have no essential 

meaning: we are always concerned with differences of spatial or temporal coordinate values belonging 

to two events, which we will label by the subscript 1 and 2. This difference is referred to as the 

spacetime interval s, whose squared value is given by: 

 
39 For an overview of how the Lorentz transformation of the position and time variables used to describe motion 
works for spherical coordinate frames, see: Mukul Chandra Das and Rampada Misra, Some studies on Lorentz 
transformation matrix in non-cartesian co-ordinate system, Journal of Physics and Its Applications, 1(2) 2019, pages 
58-61.   

https://www.researchgate.net/publication/335020684_Some_studies_on_Lorentz_transformation_matrix_in_non-cartesian_co-ordinate_system
https://www.researchgate.net/publication/335020684_Some_studies_on_Lorentz_transformation_matrix_in_non-cartesian_co-ordinate_system
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(s)2 = (x)2 + (y)2 + (z)2 – (ct)2  

= (x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2 – c2(t2 – t1)2     

In the context of this expression, c should be thought of as an invariable mathematical constant which 

allows us to express the time interval t = (t2 – t1) in equivalent distance units (meter). The same 

spacetime interval in the moving reference frame is measured as: 

(s’)2 = (x’)2 + (y’)2 + (z’)2 – (ct’)2  

= (x’2 – x’1)2 + (y’2 – y’1)2 + (z’2 – z’1)2 – c2(t’2 – t’1)2     

The spacetime interval is invariant and (s)2 is, therefore, equal to (s’)2. We can, therefore, combine 

both expressions above and write: 

(x)2 + (y)2 + (z)2 – (ct)2 = (x’)2 + (y’)2 + (z’)2 – (ct’)2 

 [(x)2 – (x’)2]+ [(y)2 – (y’)2] + [(z)2 – (z’)2] = c2[(ct)2 – (ct’)2] 

This equation shows two observers – in relative motion one to another – can only meaningfully talk 

about the spacetime interval between two events if they agree on (1) the reality of the events40, (2) a 

common understanding of the measurement units for time and distance as well as a conversion factor 

between the two units so as to establish equivalence. 

Because the speed of light is an invariant constant – the only measured velocity which does not depend 

on the reference frame41 – it will be convenient to measure distance in light-seconds (the distance 

travelled by light in one second, i.e. 299,792,458 meter exactly42). This, of course, assumes a common 

definition of the second which, since last year’s revision of the international system of units (SI) only, can 

be defined with reference to a standard frequency only. This standard frequency was defined to be 

equal to 9,192,631,770 Hz (s–1), exactly43, which is the frequency of the light emitted by a caesium-133 

atom when oscillating between the two energy states that are associated with its ground state at a 

temperature of 0 K.44  

 
40 Both observers need to agree on measuring time along either the positive or negative direction of the time scale 
because the order of the events (in time) cannot be established in an absolute sense. Even if one reference frame 
assigns precisely the same time to two events that happen at different points in space, a reference frame that is 
moving relative to the first will generally assign different times to the two events (the only exception being when 
motion is exactly perpendicular to the line connecting the locations of both events). 
41 The velocity of light does not depend on the motion of the source. 
42 It was only in 1983 – about 120 years after the publication of Maxwell’s wave equations, which showed that the 
velocity of propagation of electromagnetic waves is always measured as c – that the meter was redefined in the 
International System of Units (SI) as the distance travelled by light in vacuum in 1/299,792,458 of a second.  
43 This value was chosen because the caesium ‘second’ equaled the limit of human measuring ability around 1960, 
when the caesium atomic clock as built by Louis Essen in 1955 was adopted by various national and international 
agencies and bodies (e.g. USNO) for measuring time.  
44 These two energy states are associated with the hyperfine splitting resulting from the two possible states of spin 
in the presence of both nuclear as well as electron spin. Spin is measured in units of h: the nuclear spin of the 
caesium-atom is 7/6 units of h, while the total electron spin is (because of the pairing of electrons and the 
presence of one unpaired electron) is equal to h/2. Depending on the energy, nuclear and electron spin will either 
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The rather long introduction on relativity illustrates that two observers need to agree on (1) the use of a 

(physical) clock to count time and (2) the invariance of the speed of light. The reality of light effectively 

corresponds to a succession of events – a photon travels the distance x over a time interval t – which 

are separated by invariant spacetime intervals 

∆𝑠 = ∆𝑠′ = √(∆𝒙)2 − 𝑐2(∆𝑡)2 = √(∆𝒙′)2 − 𝑐2(∆𝑡′)2. 

It should be noted that the expression under the square root sign cannot be negative because the 

photon does not travel at superluminal velocity. In fact, for a photon traveling from point A to B the 

expression above can be multiplied by t and t’ respectively so as to yield the following: 

𝑠

𝑡
=
√(∆𝒙)2 − 𝑐2(∆𝑡)2

𝑡
= √

(∆𝒙)2

(∆𝑡)2
−
𝑐2(∆𝑡)2

(∆𝑡)2
= √𝑐2 − 𝑐2 = 0 

𝑠′

𝑡′
=
√(∆𝒙′)2 − 𝑐2(∆𝑡′)2

𝑡′
= √

(∆𝒙′)2

(∆𝑡′)2
−
𝑐2(∆𝑡′)2

(∆𝑡′)2
= √𝑐2 − 𝑐2 = 0 

This establishes the light cone separating time- and spacelike intervals for both observers. We will now 

no longer be worried about the relativity of the reference frame: we hope the reader got a sufficient 

understanding of what is relative and absolute in the description of (physical) reality, which consists of 

matter (charged particles) and light (fields and electromagnetic waves causing changes in those fields).45 

Jean Louis Van Belle, 23 December 2020 

 
have opposite or equal sign. Hence, the two energy states are associated with total spin value (nuclear and 
electron) F = 7/6 – 1/2 = 3 or F = 7/6 + 1/2 = 4.  
45 For a short (15 minutes) brief, we refer the reader to our YouTube video on reality, philosophy, and physics. 

https://www.youtube.com/watch?v=sJxAh_uCNjs

