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Magnetic Activity of Solar-Type Stars

Sylwester Kornowski

Abstract: Here we described the origin of the magnetic-activity cycles of solar-like cool 
stars. On the basis of the atom-like structure of baryons, we calculated the ratios of the activity-
cycle period to rotation period for the Sun and for the active and inactive branches. We also 
solved the coronal heating problem.

1. Introduction
Here we calculated how the magnetic-activity-cycle period depends on the rotation period of 

the solar-like stars defined as cool main-sequence dwarfs with the following effective 
temperatures

5,000 < Teff [K] < 7,000.

On the assumption that just above the photosphere of the Sun are created two perpendicular 
vortices with rotating spins, one composed of electrons and the second of protons, we can 
calculate the 10.7-year sunspot cycle [1]. Most important is the relation which relates a 
characteristic/mean energy/mass in an interaction, MCharact.,i, with period of rotation of a star 
on its equator, PRot, and with activity-cycle period, PCyc,

PCyc = PRot MCharact.,i / [2 (e+e–)bare] , (1)

where (e+e–)bare = 1.020814 MeV is the bare mass of the virtual electron-positron pair [2] 
which is the characteristic mass in the electromagnetic interactions of the vortex of electrons. It 
means that activity-cycle period depends directly proportional on rotation period of star and 
characteristic mass in the nuclear strong interactions in the cores of stars. For the Sun is 
PRot,Sun = 25 days and MCharact.,X+ = X+ = 318.2955 MeV is the mass of the electric charge 
inside the core of baryons [2].

The Sun at its maximum activity is presented in Figure 1.
Both vortices rotate. Responsible for the sunspot cycle is the rotation of the vortex of 

electrons. We must distinguish the period of spinning/rotation of the vortices or a star, PRot, 
from the period of rotation of the spin of the vortices, P*Rot-spin

P*Rot-spin = 2 PCyc .            (3)
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The rotation of the vortex of protons is responsible for the changes in the solar polar 
magnetic field strength.

The vortex of electrons rises, then its magnetic axis turns 180 degrees, and next it vanishes,
and so on – it rebirths each 10.7 years like a Phoenix from the ashes. When the spin of the 
vortex of electrons is antiparallel to the spin of the Sun, it is destroyed for very short time and 
until it is reborn with a spin parallel to the spin of the Sun, we have magnetic silence on the 
Sun.

Of course, the forces trying to rotate the perpendicular vortices act on both of them.
There is the maximum solar activity when the vortex of electrons has spin perpendicular to 

the sun’s axis of rotation.
Probably the Maunder Minimum and other grand minima are the result of greater turbulence 

in the sun’s photosphere which limited the separation of protons and electrons in the vortices. 
Thus, the minima are related to the greater nuclear activity of the Sun.

2. Activity-cycle period versus rotation period
How we should understand the term “characteristic energy/mass”?
The mean energy/mass of interactions depends on composition and temperature of the 

nuclear plasma in cores of stars.

When a mean energy/mass of interactions is equal to one, two or three characteristic 
energies/masses for the atom-like structure of baryons then we should observe a 
resonance – it should increase number density of stars. It is the reason that in Figure 2 we 
should observe the branches. Rotation period of stars strongly depends on the 
mean/characteristic energy/mass of interactions. The characteristic energy/mass of 
interactions must be electrically charged because only then are created the virtual 
electron-positron pairs which define the magnetic activity of stars.

Applying formula (1) to the characteristic masses for the atom-like structure of baryons, we 
can calculate the ratios NCyc/Rot = PCyc / PRot

NCyc/Rot = PCyc / PRot = MCharact.,i / [2 (e+e–)bare] (4)

for the solar-like cool stars.
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There are many characteristic energies/masses MCharact.,i for the nuclear-plasma in the cores 
of stars: the helium nucleus 4He+ = 3755.6 MeV, deuteron D+ = 1877.8 MeV, proton p+

= 938.27 MeV, charged core of baryons H+ = 727.44 MeV, electric charge in the core of 
baryons X+ = 318.30 MeV, the charged remainder R+

d=4 = 187.57 MeV from the decay     
S+,–

d=0  4πo + R+,–
d=4, relativistic charged pion W+

d=1 = 215.76 MeV, relativistic 
charged pion in the ground state above the Schwarzschild surface for the nuclear strong 
interactions W+

d=2 = 181.70 MeV, charged pion π+ = 139.57 MeV, muon μ+ = 105.66 
MeV, charge of muon μ+/2 = 52.8 MeV, the electrically charged gluon loops with 
energy/mass S+,–

d=0 = 727.44 MeV, S+,–
d=2 = 298.24 MeV, S+,–

d=4 = 187.57 MeV, and 
so on [2].

The big number of the characteristic energies/masses cause that in general, the stars in the 
diagram describing the dependence of magnetic activity on the star’s rotation are scattered. But 
there are four masses that form two pairs, each composed of a gluon loop and a particle, with 
the same energies/masses of the components

A) S+,–
d=0 = 727.44 MeV and H+ = 727.44 MeV, – it leads to the boson-fermion 

resonance for the active branch – it is for the first Titius-Bode orbit for the nuclear strong 
interactions [2],

B) S+,–
d=4 = 187.57 MeV and R+

d=4 = 187.57 MeV – it leads to the boson-boson 
resonance for the inactive branch – it is for the last Titius-Bode orbit for the nuclear 
strong interactions [2].                      (5)

We should observe some increases in number densities of stars for the two resonant 
branches. Applying formula (4) we can calculate the distinguished ratios: NCyc/Rot = 356 and 
92.
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Notice that the mass W+
d=2 = 181.70 MeV (NCyc/Rot = 89) is very close to R+

d=4 and the 
d = 2 is the ground state above the Schwarzschild surface for the nuclear strong interactions.

The distinguished ratios NCyc/Rot for the solar-like stars are collected in Figure 2 – we 
present the activity-cycle periods in years versus rotation periods in days.

In Figure 2, as the effective temperature of stars drops, they migrate vertically downward.
Today the samples of the cool solar-like stars contain too few stars to conclusively confirm 

the existence of an active and inactive region, especially the active branch [3], [4], [5].
Emphasize also that higher characteristic mass means that also central temperature of star is 

higher.

3. The maximum solar magnetic field strengths for the polar direction and sunspots
The Biot-Savart law relates magnetic fields to the currents. The magnetic field (magnetic 

flux density), B, at centre of a current loop with a radius R is

B = μo Q / (2 R PRot) , (6)

where μo ≈ 1.26·10–6 H/m is the magnetic constant (the vacuum permeability), and Q is the 
total charge of the loop/vortex.

There are two cases in the Scale-Symmetric Theory (SST) when number of entangled 
neutrinos with lowest mass and non-rotating spin (mNeutrino = 3.3349306·10–67 kg) is equal 
to K4, where K = 0.78967·1010 [2]: it is for the charged core of baryons [2] and the 
predicted dark-matter particle [6] both with the masses equal to 727.4 MeV. In SST, the 
single or entangled neutrino-antineutrino pairs are the carriers of photons and gluons and 100% 
of the proton spin is from the entangled carriers of gluons [2]. Assume that the loop/vortex of 
electrons consists of Z = K4 entangled electrons and that both vortices appear just above the 
photosphere of the Sun so their radii are equal to the photospheric radius of the Sun RSun = 
6.96340·108 m. The period of spinning of the vortex is equal to the PRot = 25.0 days = 
2.16·106 s.

The maximum magnetic field produced by the vortex of electrons (it is for sunspots) is 
defined by formula

Be,max = μo K4 e / (2 RSun PRot) = 0.261 T = 2610 G , (7)

where e = 1.602·10–19 C is the elementary electric charge. This value is the maximum 
magnetic field for the sunspots and is consistent with the observational data [7]

2,000 < Be,max,observational [G] < 3,000 . (8)

On the assumption that spins of both vortices must be the same

Zproton mp (2 π RSun / PRot) RSun = Z me (2 π RSun / PRot) RSun , (9)

we obtain

Zproton = Z me / mp . (10)



5

From (7) and (10) we obtain that the maximum magnetic field in centre of the vortex of 
protons, Bp,max, is N = 1836 times lower than of the vortex of electrons

Bp,max = Be,max / N = 1.42 G . (11)

This value is very close to the observed maximum solar magnetic field strengths for the 
polar direction (~1.5 G) [8].

We can calculate the mean value for Bp,max. There is the sine function so the mean value is

Mass of the vortices is M = Z me = 3.54·109 kg so density is very low and their detection 
is difficult.

4. Coronal heating problem
This problem relates to the fact that the temperature of the sun’s corona is too hot – it is 

about 2 million K, i.e. it is much hotter than the surface of the Sun.
Presented here mechanism is as follows.
Around the two perpendicular vortices/loops/currents produced on the surface between the 

convection zone and the photosphere (one is composed of electrons and the second of protons) 
are produced magnetic loops with different radii and they are composed of the entangled 
Einstein-spacetime components, i.e. of the non-rotating-spin neutrino-antineutrino pairs [2]. 
Such loops behave and interact similar to the dark-matter (DM) loops [9] but, contrary to the 
DM loops (they interact weakly), spins of the pairs in the magnetic loops are perpendicular to 
the loops so they can also interact electromagnetically.

The perpendicular vortices cause that the planes of the magnetic loops are perpendicular to 
the photosphere in such a way that a half or so of each of them is above the photosphere. 
Moreover, the vortices are orthogonal and the Sun rotates so the magnetic loops can be twisted.

Initially, each magnetic loop, due to the weak interactions, traps K4 electrons – the electrons 
also are entangled so the magneto-electrical loops are the very stable structures. On the other 
hand, the magneto-electrical loops attract the positively charged chromospheric plasma. Such 
complex loops we call the coronal loops.

Range of the coronal loops is about 2460 km (see the calculations below) and next on the 
surface between the Transition Region and corona such coronal loops decay. During such 
decays, there is the transition from the cool laminar motions in the loops into the hot turbulent 
motions so there should appear the transverse motions as well [10]. The turbulent motions heat 
the plasma in corona to about 2 million K (see the calculations below).

The magnetic loops have the spin speed equal to the speed of light in “vacuum” c. The weak 
interactions of electrons with such magnetic loops can increase their spin speed (so also of the 
positively charged plasma along them) up to [9]

vSpin,plasma = c (2 αw(electron-muon))1/2 ≈ 414 km/s , (12)
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where αw(electron-muon) = 0.951108·10–6 is the coupling constant for the weak interactions of 
electrons [2], and the factor 2 is for the electron-positron pairs that carry the interactions [9]. 
Such spin speed is consistent with observational data [10] – they detected cool plasma flowing 
in the coronal loops with speeds in the range 74 – 123 km/s.

There are the different results for thickness of photosphere and chromosphere so we assume 
that they are as follows:

* the photosphere is about 300 km thick [11],
* the chromosphere is about 2000 km thick [11],
* the Transition Region is about 100 km thick.

We can see that from the outer surface of the convection zone to the corona is about 2400 
km which is consistent with the calculated below range of the magnetic loop interacting 
weakly with the K4 electrons, i.e. with the range of the mass equal to

MLoop = K4 me = Z me = 3.54·109 kg = const . (13)

The equatorial radius of the baryons is A = 0.6974425 fm so range of loops created on 
such equator is LS = 2πA. Assume that such a range relates to the mass of the Sun MS = 
1.9885·1030 kg. We know that range is inversely proportional to mass so range, LLoop, of the 
mass MLoop is

LLoop = LS MS / MLoop = 2460 km . (14)

Orbital speed, vOrbital, is defined as follows

vOrbital
2 = Gi M / Ri , (15)

where Gi is a constant of interactions (it can be, for example, the gravitational constant G), M
is the mass of source of interaction, and Ri is the radius of the orbit.

Orbital angular momentum is defined as follows

m vOrbital Ri = const. , (16)

where m is the mass of a carrier of interactions.
Coupling constants, αi , are defined as follows [2]

αi = Gi M m / (c h) , (17)

where h is the reduced Planck constant. For example, m in the nuclear strong interactions 
decreases with increasing energy so the coupling “constant” for the nuclear strong interactions 
is the running coupling [2]. In the weak interactions, mass of a source is equal to mass of 
carrier of the interactions, M = m, so the weak coupling constant is directly proportional to 
squared mass [2].

The Wien’s displacement law looks as follows

Ti λi = const. , (18)
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where Ti is the absolute temperature, and λi = 2πRi is the wavelength peak.
From formulae (15) – (18), on the assumption that m is invariant (the MLoop is invariant), 

results that temperature Ti of plasma is directly proportional to coupling constant αi

Ti ~ αi . (19)

The radius of the fundamental gluon loop (FGL) which relates to the neutral pion 
(previously I called such a loop the gluon large loop but such term is not appropriate) [2] is

Ri = RFGL = 2A/3 = 0.465 fm . (20)

From the Wien’s law results that temperature of the FGL inside the core of baryons, which is 
responsible for the nuclear strong interactions at low energy (αs = 1 [2]), is TS = 9.92·1011

K. Since in the coronal loops dominate the weak interactions of electrons so the characteristic 
temperature of the corona, TCorona, should be

TCorona = TS (2 αw(electron-muon)) / αs = 1.89 million K .                        (21)

Both results, i.e. 2460 km and ~2 million K, are consistent with observational data.

5. The other experimental data consistent with the model presented here
All of presented here results follow from the Scale-Symmetric Theory [2]. The key roles in 

the SST plays the number K (see formula (7)) which leads to the phase transitions of the 
inflation field, and the Titius-Bode (TB) law for the nuclear strong interactions

Ri = A + d B, (22)

where B = 0.5018395 fm, and d = 0, 1, 2 and 4 [2].
The phase transitions lead to the sizes characteristic for the core of baryons, i.e. to the radius 

of the FGL (it is responsible for the nuclear strong interactions inside baryons): RFGL = 2A/3 
= 0.465 fm (see formula (20)) and to the equatorial radius A of the core. The centre of the 
virtual or real FGL overlaps with the centre of baryons and its spin is parallel or antiparallel to 
the spin of baryons. On the other hand, formula (22) leads to the TB radii of the orbits for the 
nuclear strong interactions: Rd=0 = A ≈ 0.7 fm, Rd=1 = A + B ≈ 1.2 fm, Rd=2 = A + 2B ≈ 
1.7 fm and Rd=4 = A + 4B = 2.7048 fm – it and the phase transitions lead to the other gluon 
loops and to the other characteristic masses mentioned in Section 2. The range of the nuclear 
strong interactions is LStrong = 2.9582 fm [2].

There are experimental results that are equal or very close to the listed above sizes!

Notice that the arithmetic mean of the radius of the last TB orbit and the range of the nuclear 
strong interactions is

LStrong-d=4 = (Rd=4 + LStrong) / 2 = 2.8315 fm , (23)

so we can write down the two results as follows
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LTheory,SST = 2.8315 ± 0.1267 fm . (24)

On the other hand, the result fitted to the STAR experimental data gives the following value 
of the source size [12]

ro,experiment,STAR = 2.83 ± 0.12 fm . (25)

We can see that our result is perfect!
So-called “hard core of nucleons” of an infinite strength was first introduced 

phenomenologically by Jastrow in 1950 [13]. We assume that it concerns the FGL.
When a beam is flowing in direction of the spin of a target (i.e. the spins of the target 

components are polarized) then we should obtain the radius of FGL – it is at the zero-
temperature limit and it is the upper limit for the radius of the hard core of nucleons in our 
model

RHard-core,upper = RFGL = 2A/3 = 0.465 fm . (26)

On the other hand, for thermal nucleons (i.e. their spins are not polarized) we obtain the 
lower limit for radius of the hard core of nucleons. Along the x-axis and y-axis, the radius is 
RFGL while along the z-axis the radius is zero so an approximate mean value that is the lower 
limit is

RHard-core,lower = (2 RFGL + 0) / 3 = 0.31 fm . (27)

In paper [14], there are calculated the properties of a neutron star (NS) at zero-temperature 
limit (so spins of neutrons are polarized). They found the hard core radius for the baryons

0.425 fm < RHard-core,NS,[14] < 0.476 fm . (28)

This result is consistent with our result – see formula (26).
In paper [15], authors claim that a comparison with the phenomenology of neutron stars 

implies that the hard-core radius of nucleons has to be temperature and density dependent. 
Their result for the hard-core radius of nucleons is

0.3 fm < RHard-core,NS,[15] < 0.36 fm .                                      (29)

This result is consistent with our result – see formula (27).
In the spin-triplet state, the effective range for the neutron-proton scattering is [16]

rot = 1.7606(35) fm . (30)

It relates to the Rd=2 ≈ 1.7 fm in our model.
In the spin-singlet state, the effective range for the neutron-proton scattering is [16]

ros = 2.706(67) fm . (31)

It relates to the Rd=4 = 2.7048 fm in our model.
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Notice also that the experimental muon radius of proton [17] and its electron radius [18] 
indirectly lead to the radius Rd=1 = A + B ≈ 1.2 fm [19].

6. Summary
On the basis of the atom-like structure of baryons, we calculated the ratios of the activity-

cycle period to rotation period for the Sun and for the active and inactive branches.
To see some increases in number density of stars on the branches in Figure 2, we need a 

sample of sun-like stars of about tens of thousands of them.
Since there is a big number of the characteristic energies/masses that follow from the atom-

like structure of baryons so, generally, stars in Figure 2 are scattered. But there are four masses 
that form two pairs each composed of a gluon loop and a particle both with the same 
energies/masses so we should observe some increases in number densities of stars along two
branches – it is for NCyc/Rot = 356 and 92.

On the assumption that on the surface of the Sun are created two perpendicular currents, we 
calculated the maximum solar magnetic field strengths for the polar direction and for the 
sunspots. Mass of the vortex/loop/current of electrons follows from mass of the core of 
baryons.

On the basis of the Scale-Symmetric Theory, we also solved the coronal heating problem.
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