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Abstract

In this short note, I prove the abc conjecture. It is time to do it, we need some joy already.
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The abc conjecture (also known as the Oesterlé-Masser conjecture) is a conjecture in

number theory, first proposed by Joseph Oesterlé (1988) and David Masser (1985). Many

famous conjectures and theorems in number theory would follow immediately from the abc

conjecture or its versions. Dr. Goldfeld described the abc conjecture as “the most important

unsolved problem in Diophantine analysis” [2]. Various attempts to prove the abc conjec-

ture have been made. But none are currently accepted by the mainstream mathematical

community. As of 2020, the conjecture is still largely regarded as unproven [3].

Let us denote r = rad(a b c). The known operator rad() is defined in such a way that,

e.g., rad(22 ∗ 3 ∗ 53) = 2 ∗ 3 ∗ 5 = 30.

The abc-conjecture says the following. For every positive real number ε, and triplets

(a, b, c) of pairwise coprime positive integers, with a + b = c, holds c < K(ε) r1+ε. Then

k < K(ε) <∞, with k = c/r1+ε.

The abc conjecture demands that in the limit c → ∞ one has r = ∞. Otherwise, for

every single ε > 0 one has K(ε) =∞. Here and in the following the expression “conjecture

demands the X” means that if the conjecture is true, then holds statement X.

For arbitrary m > 0 one has
c

r1+m
= U W ,

where

U =
c

rε r
, W =

rε

rm

and ε > 0 is arbitrary. For ε > m, in the limit r → ∞ the abc conjecture demands to

have U = 0, as W = ∞; because the abc conjecture demands finiteness of c/r1+m < ∞ as

well. One concludes that in the limit r →∞ the abc conjecture implies k = c/r1+ε = 0. If

for some triplet happens U 6= 0 in the limit r → ∞, the abc conjecture is wrong, because

then c/r1+m =∞. Therefore, the limit exists. Accordingly, in this limit there is an infinite

number of triplets (a, b, c) with k arbitrarily close to 0. In other words,

the abc conjecture is true if for an arbitrary constant δ > 0 there is an infinite number of

co-prime triplets (a, b, c = a+ b) satisfying c/r1+ε < δ.

In the following I prove the abc conjecture by showing that the amount of such triplets is

indeed infinite.

First of all, (rad(ab))1+ε ≥ 1. Secondly, because a, b, c have no common factors, one

has r = rad(ab) rad(c). Accordingly, the amount of such triplets with c < δ r1+ε is larger
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than the amount of triplets with c < δ rad(c) (rad(c))ε. Here and in the following δ is a

fixed parameter. Let us study such numbers c which are multiplications of the n first prime

numbers, namely cn = p1 p2 p3 ...pn−1 pn, where p1 ≡ 2, p2 ≡ 3, p3 ≡ 5, etc. Every single one

of these cn satisfies the conditions of the abc conjecture, namely can be presented as the

sum of two co-prime numbers an and bn, e.g. cn = an + 1. Then cn = rad(cn). Therefore

1 < δ (rad(cn))ε. As by increasing the n the rad(cn) tends to infinity, and as there is a infinite

amount of triplets with different n, the infinite amount of triplets satisfies 1 < δ (rad(cn))ε.

An alternative formulation of the abc conjecture is the following [1]. For every positive

real number ε there exist only finitely many triplets (a, b, c) of pairwise coprime positive

integers with a+ b = c, such that c ≥ r1+ε, the latter is k ≥ 1. On the other hand, the abc

conjecture demands that the amount of triplets with ∆ ≤ k < 1, where ∆ 6= 0, is finite; this

is seen from the existence and value of the limit

lim
r→∞

k = 0 .

Let us select e.g. ∆ = 0.5. In this case, there are validity conditions with 0.5 ≤ k < ∞

and 1 ≤ k <∞. But it is enough to check for k ≥ 1. Conclusion: within 0.5 ≤ k < 1 there

is a finite number of triplets. Thus, it is true that in the limit r →∞ one has k = 0.

Fermat’s Last Theorem has a famously difficult proof by Andrew Wiles. However, Fer-

mat’s Last Theorem follows easily from the abc conjecture [4]. The same holds for the Beal

conjecture, for which prize money is promised [4].

Commentary on the proof

Comment A.

For r → ∞ the limit k = 0 exists. Thus, there is a finite number of triplets with k ≥ ψ,

where ψ 6= 0, e.g. ψ = 1. But this proves the abc conjecture.

Comment B.

For r → ∞ the limit k = 0 exists. Thus, k does not unlimitely grow. Therefore, there is a

constant K(ε), such what k < K(ε) <∞. This again proves the abc conjecture.

Comment C.

In the above analysis, ε can be seen as a free parameter. Thus, for any of the k ≥ 1 triplets
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(a, b, c) such a constant ε = β exists so that k̂ = c/r1+β belongs to the 0.5 ≤ k̂ < 1 strip.

This is because in the limit β →∞ one has k̂ = 0.

However, as we have shown that within 0.5 ≤ k̂ < 1 a finite number of triplets exist,

there is a finite number of triplets with k ≥ 1. Again, this proves the abc conjecture.

Comment D.

Elementary logic tells us that during the increase of r, k either has a limiting value or has

not. It is proven that there are infinitely many triplets at k = 0. Therefore, there is a limit

value, and it is zero.

Comment E.

From my paper, the reader may conclude that if the abc conjecture holds at least for one

ε = ε0, then it holds for every single ε > 0.

In the limit ε→∞ there are no triplets with k ≥ 1, because k = 0 for any finite r. Then

the abc conjecture holds for ε → ∞, but because there is no infinite value ε = ∞, there

must be a finite number X, and abc conjecture holds if ε > X. According to the Comment

E, one can assign X = 0.
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