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Abstract 

This paper is a trial to prove Riemann hypothesis which says“All non-trivial 

zero points of Riemann zeta function ζ(s) exist on the line of Re(s)=1/2.” 

according to the following process. 

1 We create the infinite number of infinite series from the following (1) that 

gives ζ(s) analytic continuation to Re(s)＞0 and the following (2) and (3) 

that show non-trivial zero point of ζ(s). 

1-2-s+3-s-4-s+5-s-6-s+ ----- = (1-21-s) ζ(s)                   (1) 

S0 = 1/2+a+bi                                    (2) 

    S1 = 1-S0 = 1/2-a-bi                                   (3) 

2 We find that the value of the following F(a) must be zero from the above 

infinite number of infinite series.  

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                                 (15) 

  f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≧ 0             (n=2,3,4,5,6, ------)                                                  (8) 

3 We find that F(a)=0 has only one solution of a=0. Therefore zero point of  

ζ(s) must be 1/2±bi and other zero point does not exist. 

 

 

1  Introduction 

The following (1) gives Riemann zeta function ζ(s) analytic continuation to   

Re(s)＞0.“+ -----” means a series with infinite terms in all equations in this 

paper. 
1-2-s+3-s-4-s+5-s-6-s+ ----- = (1-21-s)ζ(s)                   (1) 

The following (2) shows non-trivial zero point of ζ(s). S0 is the zero points of 

the left side of (1) and also zero points of ζ(s). 

S0 = 1/2+a+bi                                 (2) 

The range of a is 0≦a＜1/2 by the critical strip of ζ(s). The range of b is    

b＞0 due to the following reasons. And i is √-1  . 
1.1  There is no zero point on the real axis of the critical strip.  

1.2  [Conjugate complex number of S0] = 1/2+a-bi is also zero point of ζ(s). 

Therefore b＞0 is necessary and sufficient range for investigation. 
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The following (3) shows also zero points of ζ(s) by the functional equation of  

ζ(s). 

      S1 = 1-S0 = 1/2-a-bi                               (3) 

We have the following (4) and (5) by substituting S0 for s in the left side of 

(1) and putting both the real part and the imaginary part of the left side of (1) 

at zero respectively. 

1 = 
cos(blog2)

2
1/2+a

-
cos(blog3)

3
1/2+a

+
cos(blog4)

4
1/2+a

-
cos(blog5)

5
1/2+a

+
cos(blog6)

6
1/2+a

- -----            (4) 

 0 = 
sin(blog2)

2
1/2+a

-
sin(blog3)

3
1/2+a

+
sin(blog4)

4
1/2+a

-
sin(blog5)

5
1/2+a

+
sin(blog6)

6
1/2+a

- -----           (5) 

We also have the following (6) and (7) by substituting S1 for s in the left side 

of (1) and putting both the real part and the imaginary part of the left side of (1) 

at zero respectively. 

1 = 
cos(blog2)

2
1/2−a

-
cos(blog3)

3
1/2-a

+
cos(blog4)

4
1/2-a

-
cos(blog5)

5
1/2-a

+
cos(blog6)

6
1/2-a

-  -----           (6) 

0 = 
sin(blog2)

2
1/2−a

-
sin(blog3)

3
1/2-a

+
sin(blog4)

4
1/2-a

-
sin(blog5)

5
1/2-a

+
sin(blog6)

6
1/2-a

- -----         (7) 

 

2  Infinite number of infinite series  

We define f(n) as follows.                                                                       

         f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≧ 0             (n=2,3,4,5,6, ------)                                           (8) 

We have the following (9) from (4) and (6) with the method shown in item 1 of 

[Appendix 1: Equation construction]. 
  0 = f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ -----     (9) 

We have also the following (10) from (5) and (7) with the method shown in item 2 

of [Appendix 1: Equation construction]. 
0 = f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ -----    (10) 

We can have the following (11) (which is the function of real number x) from the 

above (9) and (10) with the method shown in item 3 of [Appendix 1: Equation 

construction]. And the value of (11) is always zero at any value of x.  

 0 ≡ cosx{right side of (9)}+sinx{right side of (10)}  

= cosx{f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ -----} 

     + sinx{f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ -----} 

    = f(2)cos(blog2-x)-f(3)cos(blog3-x)+f(4)cos(blog4-x)-f(5)cos(blog5-x)+ ----   (11) 
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We have (12-1) by substituting blog1 for x in (11). 

0 = f(2)cos(blog2-blog1)-f(3)cos(blog3-blog1)+f(4)cos(blog4-blog1) 

-f(5)cos(blog5-blog1)+f(6)cos(blog6-blog1)+ -----            (12-1) 

We have (12-2) by substituting blog2 for x in (11). 

0 = f(2)cos(blog2-blog2)-f(3)cos(blog3-blog2)+f(4)cos(blog4-blog2) 

-f(5)cos(blog5-blog2)+f(6)cos(blog6-blog2)+ -----            (12-2) 

We have (12-3) by substituting blog3 for x in (11). 

0 = f(2)cos(blog2-blog3)-f(3)cos(blog3-blog3)+f(4)cos(blog4-blog3) 

-f(5)cos(blog5-blog3)+f(6)cos(blog6-blog3)+ -----            (12-3) 

In the same way as above we can have (12-n) by substituting blogn for x in 

(11). (n = 4,5,6,7,8,-----) 

0 = f(2)cos(blog2-blogn)-f(3)cos(blog3-blogn)+ f(4)cos(blog4-blogn) 

-f(5)cos(blog5-blogn)+ -----                       (12-n) 

 

3  Verification of F(a)=0 

We define g(k) as follows. ( k = 2,3,4,5,6 -----) 

g(k) = cos(blogk-blog1)+cos(blogk-blog2)+cos(blogk-blog3)+cos(blogk-blog4)+ ---- 

         = cos(blog1-blogk)+cos(blog2-blogk)+cos(blog3-blogk)+cos(blog4-blogk)+ ---- 

  = cos(blog1/k)+cos(blog2/k)+cos(blog3/k)+cos(blog4/k)+cos(blog5/k)+ ----        (13) 

We can have the following (14) from infinite equations of (12-1),(12-2),(12-3), 

----------,(12-n),------------ with the method shown in item 4 of [Appendix 1: 

Equation construction]. 

 0 = f(2){cos(blog2-blog1)+cos(blog2-blog2)+cos(blog2-blog3)+cos(blog2-blog4)+ ---} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)+cos(blog3-blog3)+cos(blog3-blog4)+ ---} 

 +f(4){cos(blog4-blog1)+cos(blog4-blog2)+cos(blog4-blog3)+cos(blog4-blog4)+ ---} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)+cos(blog5-blog3)+cos(blog5-blog4)+ ---} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)+cos(blog6-blog3)+cos(blog6-blog4)+ ---} 

- ---------- 

      = f(2)g(2)-f(3)g(3)+f(4)g(4)-f(5)g(5)+f(6)g(6)-f(7)g(7)+ -----      (14) 

g(2)≠0 and g(k)/g(2)=1  (k=3,4,5,6,7 ----)  are true as shown in [Appendix 2: 

Proof of g(2)≠0] and [Appendix 3: Proof of g(k)/g(2)=1]. 

Here we define F(a) as follows. 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                                   (15) 

From (14), g(2)≠0, g(k)/g(2)=1 (k=3,4,5,6,7 ----) and (15) we have the following 

(16). 
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    0 = g(2){f(2)-
f(3)g(3)

g(2)
+
f(4)g(4)

g(2)
-
f(5)g(5)

g(2)
+
f(6)g(6)

g(2)
-
f(7)g(7)

g(2)
+ ------} 

      = g(2){f(2)-f(3)+f(4)-f(5)+f(6)- ------}  

= g(2)F(a)                                             (16) 

In (16) F(a)=0 must be true because of g(2)≠0. 

 

4  Riemann hypothesis shown from F(a)=0  

F(a)=0 has the only one solution of a=0 as shown in [Appendix 4: Solution for 

F(a)=0  (1)] or [Appendix 5: Solution for F(a)=0  (2)]. a has the range of 0≦a＜

1/2 by the critical strip of ζ(s). But a cannot have any value but zero because a 

is the solution for F(a)=0. 

S0 = 1/2+a+bi                            (2) 

      S1 = 1-S0 = 1/2-a-bi                         (3) 

Due to a=0 non-trivial zero point of Riemann zeta function ζ(s) shown by the 

above 2 equations must be 1/2±bi and other zero point does not exist. Therefore 

Riemann hypothesis which says“All non-trivial zero points of Riemann zeta function 

ζ(s) exist on the line of Re(s)=1/2.”is true.  

 

In (16) F(a)=0 must be true and F(a) is a monotonically increasing function as 

shown in [Appendix 5: Solution for F(a)=0 (2)]. So F(a)=0 has the only one solution. 

If the solution were not a=0, there would not be any zero points on the line of 

Re(s)=1/2. This assumption is contrary to the following (Fact 1) or (Fact 2).     

Therefore the only one solution for F(a)=0 must be a=0 and Riemann hypothesis must 

be true. 
    Fact 1: In 1914 Ｇ.Ｈ.Hardy proved that there are infinite zero points on the 

line of Re(s)=1/2. 

Fact 2: All zero points found until now exist on the line of Re(s)=1/2. 
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Appendix 1: Equation construction 

 

We can construct (9),(10),(11) and (14) by applying the following existing theorem 

1(*). 

Theorem 1:   On condition that the following (Series 1) and (Series 2) converge, 

the following (Series 3) and (Series 4) are true.  

(Series 1) = a1+a2+a3+a4+a5+ ----- = A 

(Series 2) = b1+b2+b3+b4+b5+ ----- = B 

(Series 3) = (a1+b1)+(a2+b2)+(a3+b3)+(a4+b4)+(a5+b5)+ ----- = A+B 

(Series 4) = (a1-b1)+(a2-b2)+(a3-b3)+(a4-b4)+(a5-b5)+ ----- = A-B 

 

1 Construction of (9)  

     We can have the following (9) as (Series 4) by regarding (6) and (4) as (Series 

1) and (Series 2) respectively. 

 (Series 1)= 
cos(blog2)

2
1/2−a

-
cos(blog3)

3
1/2-a

+
cos(blog4)

4
1/2-a

-
cos(blog5)

5
1/2-a

+
cos(blog6)

6
1/2-a

- ----- = 1       (6) 

   (Series 2)= 
cos(blog2)

2
1/2+a

-
cos(blog3)

3
1/2+a

+
cos(blog4)

4
1/2+a

-
cos(blog5)

5
1/2+a

+
cos(blog6)

6
1/2+a

- ----- =1       (4) 

(Series 4)= f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ ----- 

                           = 1-1 = 0                                                               (9) 

         Here       f(n) = 
1

n1/2-a
-

1

n1/2+a
  ≧ 0             (n=2,3,4,5,6, ------)                                 (8) 

 

2 Construction of (10) 

We can have the following (10) as (Series 4) by regarding (7) and (5) as 

(Series 1) and (Series 2) respectively. 

 (Series 1) = 
sin(blog2)

2
1/2−a

-
sin(blog3)

3
1/2-a

+
sin(blog4)

4
1/2-a

-
sin(blog5)

5
1/2-a

+
sin(blog6)

6
1/2-a

- ----- = 0    (7) 

 (Series 2) = 
sin(blog2)

2
1/2+a

-
sin(blog3)

3
1/2+a

+
sin(blog4)

4
1/2+a

-
sin(blog5)

5
1/2+a

+
sin(blog6)

6
1/2+a

- ----- = 0  (5) 

(Series 4) = f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ ----- 

                         = 0-0 = 0                                                              (10) 

 

---------------------------------------------------------------------------------- 

(*)： Please refer to page 22 in “Introduction to infinite series” by Yukio 

Kusunoki, published in 2004,(written in Japanese) 
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3 Construction of (11) 

We can have the following (11) as (Series 3) by regarding the following 

equations as (Series 1) and (Series 2). 

(Series 1) = cosx{right side of (9)}  

= cosx{f(2)cos(blog2)-f(3)cos(blog3)+f(4)cos(blog4)-f(5)cos(blog5)+ -----} = 0 

(Series 2) = sinx{right side of (10)} 

= sinx{f(2)sin(blog2)-f(3)sin(blog3)+f(4)sin(blog4)-f(5)sin(blog5)+ -----} = 0 

(Series 3) = f(2)cos(blog2-x)-f(3)cos(blog3-x)+f(4)cos(blog4-x)-f(5)cos(blog5-x)+ 

 ---- = 0+0                            (11) 

 

4   Construction of (14) 

4.1     We can have the following (12-1*2) as (Series 3) by regarding (12-1) and 

(12-2) as (Series 1) and (Series 2) respectively. 

(Series 1) = f(2)cos(blog2-blog1)-f(3)cos(blog3-blog1)+f(4)cos(blog4-blog1) 

-f(5)cos(blog5-blog1)+f(6)cos(blog6-blog1)+ ----- = 0     (12-1) 

(Series 2) = f(2)cos(blog2-blog2)-f(3)cos(blog3-blog2)+f(4)cos(blog4-blog2) 

-f(5)cos(blog5-blog2)+f(6)cos(blog6-blog2)+ ----- = 0     (12-2) 

(Series 3) = f(2){cos(blog2-blog1)+cos(blog2-blog2)} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)} 

                     +f(4){cos(blog4-blog1)+cos(blog4-blog2)} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)}- ----- = 0+0    (12-1*2) 

4.2     We can have the following (12-1*3) as (Series 3) by regarding (12-1*2) 

and (12-3) as (Series 1) and (Series 2) respectively.  

(Series 2) = f(2)cos(blog2-blog3)-f(3)cos(blog3-blog3)+f(4)cos(blog4-blog3) 

-f(5)cos(blog5-blog3)+f(6)cos(blog6-blog3)+ ----- = 0      (12-3) 

(Series 3) = f(2){cos(blog2-blog1)+cos(blog2-blog2)+cos(blog2-blog3)} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)+cos(blog3-blog3)} 

        +f(4){cos(blog4-blog1)+cos(blog4-blog2)+cos(blog4-blog3)} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)+cos(blog5-blog3)} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)+cos(blog6-blog3)} 

- ------ = 0+0                                             (12-1*3) 

4.3     We can have the following (12-1*4) as (Series 3) by regarding (12-1*3) 

and (12-4) as (Series 1) and (Series 2) respectively.  

(Series 2) = f(2)cos(blog2-blog4)-f(3)cos(blog3-blog4)+f(4)cos(blog4-blog4) 

-f(5)cos(blog5-blog4)+f(6)cos(blog6-blog4)+ ----- = 0      (12-4) 
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(Series 3) = f(2){cos(blog2-blog1)+cos(blog2-blog2)+cos(blog2- blog3)+cos(blog2-blog4)} 

-f(3){cos(blog3-blog1)+cos(blog3-blog2)+cos(blog3-blog3)+cos(blog3-blog4)} 

 +f(4){cos(blog4-blog1)+cos(blog4-blog2)+cos(blog4-blog3)+cos(blog4-blog4)} 

-f(5){cos(blog5-blog1)+cos(blog5-blog2)+cos(blog5-blog3)+cos(blog5-blog4)} 

+f(6){cos(blog6-blog1)+cos(blog6-blog2)+cos(blog6-blog3)+cos(blog6-blog4)} 

- ------ = 0+0                                              (12-1*4) 

4.4     In the same way as above we can have (12-1*n) as (Series 3) by regarding 

(12-1*n-1) and (12-n) as (Series 1) and (Series 2) respectively. If we 

repeat this operation infinitely i.e. we do n→∞, we can have  

(12-1*∞)=(14). 
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Appendix 2: Proof of g(2)≠0 

 

1 Proof (1) 

1.1 Investigation of g(2) 

We define g(2,N) as the partial sum from the first term of g(2) to the N-th 

term of g(2). (N=1,2,3,4,5,-----)   From (15) g(2,N) is as follows. lim
N→∞

g(2,N) 

means g(2). 

g(2,N) = cos(blog1/2)+cos(blog2/2)+cos(blog3/2)+cos(blog4/2)+cos(blog5/2) 

+ ---- +cos(blogN/2) 

  = N(
1

N
) [ cos{ blog(

1

N
) (

N

2
) }+ cos{blog(

2

N
) (

N

2
) }+ cos{ blog(

3

N
) (

N

2
) }+ cos{ blog(

4

N
) (

N

2
) } 

            +cos{ blog(
5

N
) (

N

2
) }+ ----- +cos{ blog(

N

N
) (

N

2
) }] 

= N(1/N){cos(blog1/N+blogN/2)+cos(blog2/N+blogN/2)+cos(blog3/N+blogN/2) 

+cos(blog4/N+blogN/2)+cos(blog5/N+blogN/2)+ ---- +cos(blogN/N+blogN/2)} 

= N(1/N){cos(blogN/2)}{cos(blog1/N)+cos(blog2/N)+cos(blog3/N)+ ---- +cos(blogN/N)} 

- N(1/N){sin(blogN/2)}{sin(blog1/N)+sin(blog2/N)+sin(blog3/N)+ ---- +sin(blogN/N)} 

 

Here we do N→∞ as follows. 

   lim
N→∞

g(2,N)= g(2) 

= lim
N→∞

{Ncos(blogN/2)} lim
N→∞

(1/N){cos(blog1/N)+cos(blog2/N)+cos(blog3/N)+ ---- +cos(blogN/N)} 

  - lim
N→∞

{Nsin(blogN/2)} lim
N→∞

(1/N){sin(blog1/N)+sin(blog2/N)+sin(blog3/N)+ ---- +sin(blogN/N)} 

    = lim
N→∞

{Ncos(blogN/2)} ∫ cos(blogx)dx - lim
N→∞

{Nsin(blogN/2)}∫ sin(blogx)dx       (21
1

0

1

0

) 

       We define A and B as follows. 

                                           A = ∫ cos(blogx)dx      B = ∫ sin(blogx)dx  
1

0

1

0

 

    We calculate A and B. 

A = [xcos(blogx)]   + bB = 1 + bB 

 

                   B = [xsin(blogx)]   - bA = -bA 

Then we can have the values of A and B from the above equations as follows. 

A = 1/(1+b2)     B = -b/(1+b2)   

       We have the following (22) by substituting the above values of A and B for 

∫ cos(blogx)dx
1

0
 and ∫ sin(blogx)dx 

1

0
in (21). 

0 

 

1 

 

0 

 

1 
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g(2) = lim
N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}- lim

N→∞
{Nsin(blogN/2)}{-b/(1+b

2
)}  

        = 
lim
N→∞

N{cos(blogN/2)+bsin(blogN/2)}

1+b
2

 = 
lim
N→∞

Nsin{blogN/2+tan-1(1/b)}

√1+b
2

              (22) 

 

(Graph 1) shows the value of [Nsin{blogN/2+tan-1(1/b)}/√1+b
2
  at b=1]. The 

scale of horizontal axis is log10N and the scale of vertical axis is  

±log10|Nsin(logN/2+π/4)/√2|. ± is subject to the sign of sin(logN/2+π/4). 

 

 

 

 

 

 

1.2  Verification of sin{blogN/2+tan-1 (1/b)}≠0 

       If we assume sin{blogN/2+ tan-1 (1/b)}=0   (N=3,4,5,6,7,-----),the following 

(23) is supposed to be true.  

 blogN/2+tan-1 (1/b)= kπ     (k=1,2,3,4,-----)      (23) 

In (23) k is natural number because of 0＜{left side of (23)} that is due to 

0＜b, 0＜logN/2 and 0＜tan-1(1/b)＜π/2 as shown in item 1.2.1. 

 

1.2.1    tan-1(1/b) has the value of Lπ as shown in (Table 1) and the range of 

L is 0＜L＜1/2. 
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Table 1：Value of tan-1(1/b) 

       

 

 

1.2.2     From (23) 

             blogN/2 + Lπ = kπ 

logN/2 = 
(k-L)π

b
 = Mπ 

k-L＞1/2 due to 1≦k and 0＜L＜1/2. (k-L)π/b=M＞0 due to 0＜b and k-L＞1/2. 

                         N/2 = eMπ 

                                          N = 2eMπ                                                                          (24) 

1.2.3   N is natural number. (24) has impossible formation like 

(natural number) = (irrational number). Therefore (24) is false and (23) 

(which is the original formula of (24) ) is also false. Now we can have 

the following (25). 

         sin{blogN/2+tan-1(1/b)} ≠ 0    (N=3,4,5,6,7,-----)                         (25) 

 

1.3 Verification of g(2)≠0  

                       g(2) =
lim
N→∞

Nsin{blogN/2+ tan-1(1/b)}

√1+b
2

≠ 0                                                                       

     The above inequality is true due to the following reasons. 

1.3.1        lim
N→∞

sin{blogN/2+ tan-1(1/b) }   fluctuates between -1 and 1 during N→∞.  

So lim
N→∞

Nsin{blogN/2+tan-1 (1/b) } diverges to ±∞ as shown in (Graph 1) in 

the previous page. Therefore g(2) does not converge to zero. 

1.3.2    g(2) cannot be zero during N→∞ due to the above (25) as verified in 

item 1.2. 

 

2 Proof（2） 

If we assume g(2)=0,the following (26) is supposed to be true from (22).  

g(2) = lim
N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}- lim

N→∞
{Nsin(blogN/2)}{-b/(1+b

2
)} = 0   (26) 

The following (27) and (28) are true because of the following reasons. 

2.1    lim
N→∞

{Ncos(blogN/2)} and lim
N→∞

{Nsin(blogN/2)} diverge to ±∞ and does 

not converge to zero. 

b 0 1/√3 1 √3 ∞ 

tan-1(1/b) π/2 π/3 π/4 π/6 0 
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2.2  In (N=3,4,5,6,7,-----) we can confirm  sin(blogN/2)≠0 by putting L=0 

in item 1.2. Hence lim
N→∞

{Nsin(blogN/2)} cannot be zero during N→∞. 

In (N=3,4,5,6,7,-----) we can confirm  

cos(blogN/2) = sin(blogN/2+π/2)≠0 

by putting L=1/2 in item 1.2. Hence lim
N→∞

{Ncos(blogN/2)} cannot be zero 

during N→∞.  

 

        (N=3,4,5,6,7,-----)         lim
                                                  N→∞

{Ncos(blogN/2)}{1/(1+b
2
)} ≠ 0                                              (27) 

                                                                 lim
N→∞

{Nsin(blogN/2)}{-b/(1+b
2
)} ≠ 0                                 (28) 

From (26),(27) and (28) we have the following (29). 

lim
N→∞

{Nsin(blogN/2)}{-b/(1+b
2
)}

lim
N→∞

{Ncos(blogN/2)}{1/(1+b
2
)}

= 1             (29) 

From (29) we have the following (30). 

lim
N→∞

{Nsin(blogN/2)}

lim
N→∞

{Ncos(blogN/2)}
 = 

lim
N→∞

{sin(blogN/2)}

lim
N→∞

{cos(blogN/2)}
 = lim

N→∞
tan(blogN/2) = 

-1

b
      (30) 

But tangent function fluctuates between -∞ and +∞ during N→∞ and does not 

converge to the fixed value. So (30) is false and (26) (which is the original 

formula of (30) ) is also false. Therefore we can confirm g(2)≠0. 
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Appendix 3: Proof of g(k)/g(2)=1 

 

1. Introduction 

We can have the following equation for g(k) by calculating in the same way as 

that for g(2) in item 1.1 of Appendix 2. 

   g(k) = 

lim
N→∞

N sin {blogN/k+ tan-1(1/b) }

√1+b
2

   (k=3,4,5,6,7 ----)                                       (31)  

     We define h(2,N) and h(k,N) as follows. 

              h(2,N) = blogN/2 + tan-1(1/b)                    

               h(k,N) = blogN/k + tan-1(1/b)       

    We have the following 2 equations from the above definition.           

          lim
N→∞

h(2,N)

h(k,N)
 = lim

N→∞

blogN/2 + tan-1 (1/b)

blogN/k + tan-1 (1/b)
 = lim

N→∞

1-log2/logN+tan-1 (1/b) /blogN 

1-logk/logN+tan-1 (1/b) /blogN
 = 1       

     lim
N→∞

lim
n→∞

{
h(2,N)

h(k,N)
}

2n-1

= lim
N→∞

{
h(2,N)

h(k,N)
}

∞

= 1∞ = 1                                     

We have the following (32) from the above equation. 

       lim
N→∞

lim
n→∞

{
h(2,N)

h(k,N)
}

2n-1

=  lim
N→∞

lim
n→∞

{
1 h(k,N)⁄

1 h(2,N)⁄
}

2n-1

= 
lim
N→∞

lim{
n→∞

1 h(k,N)
2n-1

}⁄

lim
N→∞

lim
n→∞

{1 h(2,N)
2n-1

}⁄
 = 1                  (32) 

                                   

     From (22),(31) and (32) g(k)/g(2) is calculated as follows. 

g(k)

g(2)
 = 

lim
N→∞

Nsin{blogN/k+ tan-1 (1/b)}

lim
N→∞

Nsin{blogN/2+ tan-1 (1/b)}
 = 

lim
N→∞

sin{blogN/k+ tan-1 (1/b)}

lim
N→∞

sin{blogN/2+ tan-1 (1/b)}
                                                         

   = 
lim
N→∞

sin{h(k,N)}

lim
N→∞

sin{h(2,N) }
 = 

lim
N→∞

lim
n→∞

{1 h(k,N)
2n-1

}⁄ lim
N→∞

sin{h(k,N)}

lim
N→∞

lim
n→∞

{1 h(2,N)
2n-1

}⁄ lim
N→∞

sin{h(2,N) }
 

  = 
lim
N→∞

[sin{h(k,N)}/lim
n→∞

h(k,N)
2n-1

]

lim
N→∞

[sin{h(2,N) }/lim
n→∞

h(2,N)
2n-1

]
                                            (33) 

 

2  verification of lim
N→∞

sin{h(2,N)}

lim
n→∞

h(2,N)
2n-1 =limn→∞

(-1)
n-1

(2n-1)!
   (1) 

The denominator of (33) is calculated by performing Mclaughlin expansion for 

sin{h(2,N)} as follows. 
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  lim
N→∞

sin{h(2,N)}

lim
n→∞

h(2,N)
2n-1

   

= lim
N→∞

lim
n→∞

{h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ -------- +

(-1)
n-2

h(2,N)
2n-3

(2n-3)!
+
(-1)

n-1
h(2,N)

2n-1

(2n-1)!
}

lim
n→∞

h(2,N)
2n-1

 

= lim
N→∞

lim
n→∞

h(2,N)-
h(2,N)

3

3!
+
h(2,N)

5

5!
-
h(2,N)

7

7!
+ --------- +

(-1)n-2h(2,N)
2n-3

(2n-3)!
+

(-1)n-1h(2,N)
2n-1

(2n-1)!

h(2,N)2n-1
 

= lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
+ ----- +

(-1)n-2h(2,N)
-2

(2n-3)!
+

(-1)n-1

(2n-1)!
}(*) 

= lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
+ -------- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
}  

    + lim
N→∞

lim
n→∞

(-1)
n-1

(2n-1)!
 

= lim
N→∞

{h(2,N)
-∞

-
h(2,N)

-∞

3!
+
h(2,N)

-∞

5!
-
h(2,N)

-∞

7!
+ --------}+ lim

N→∞
lim
n→∞

(-1)
n-1

(2n-1)!
 

= lim
N→∞

lim
n→∞

(-1)
n-1

(2n-1)!
 

=lim
n→∞

(-1)
n-1

(2n-1)!
                                                                                                                                                          (34)  

       The 6th equal sine (=) of (34) is true due to lim
N→∞

h(2,N) = ∞ . 

 

3  verification of lim
N→∞

sin{h(2,N)}

lim
n→∞

h(2,N)
2n-1 =limn→∞

(-1)
n-1

(2n-1)!
   (2) 

    From the 3rd formula(*) of (34) we have the following (35). 

 lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
- ----- +

(-1)n-2h(2,N)
-2

(2n-3)!
+

(-1)n-1

(2n-1)!
}(*) 

= lim
N→∞

{h(2,N)
-∞

-
h(2,N)

-∞

3!
+
h(2,N)

-∞

5!
-
h(2,N)

-∞

7!
+ --------}                                  

=0                                                                                (35) 

Here we exchange lim
N→∞

 with lim
n→∞

 each other in the 3rd formula(*) of (34) as 

follows. 

lim
n→∞

lim
N→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
+ -------- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
} 

  = lim
n→∞

(-1)
n-1

(2n-1)!
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= 0                                                                              (36) 

The 1st equal sign (=) of (36) is true due to lim
N→∞

h(2,N) = ∞ .  

We can have the following (37) from (35) and (36) as follows.  

lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
- ----- +

(-1)n-2h(2,N)
-2

(2n-3)!
+

(-1)n-1

(2n-1)!
}(*) 

= lim
n→∞

lim
N→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
-
h(2,N)

8-2n

7!
+ -------- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
} 

= 0                                                                              (37) 

 

       We can have the following (38) from (34),(36) and (37). 

lim
N→∞

sin{h(2,N)}

lim
n→∞

h(2,N)
2n-1

  

= lim
N→∞

lim
n→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- -------- +

(-1)n-2h(2,N)
-2

(2n-3)!
 +

(-1)n-1

(2n-1)!
}(*) 

= lim
n→∞

lim
N→∞

{h(2,N)
2-2n

-
h(2,N)

4-2n

3!
+
h(2,N)

6-2n

5!
- ---------- +

(-1)
n-2

h(2,N)
-2

(2n-3)!
+
(-1)

n-1

(2n-1)!
} 

= lim
n→∞

(-1)
n-1

(2n-1)!
                                                                                                                                                             (38) 

 

3  Conclusion 

       From (34) or (38) we can have the following (39). 

lim
N→∞

sin{h(2,N)}

lim
n→∞

h(2,N)
2n-1

 = lim
n→∞

(-1)
n-1

(2n-1)!
            

                                               (39) 

The numerator of (33) is calculated in the same way as that for the denominator 

of (33). The result is the following (40). 

                   lim
N→∞

sin{h(k,N)}

lim
n→∞

h(k,N)
2n-1

 = lim
n→∞

(-1)
n-1

(2n-1)!
                                                           (40) 

From (33),(39) and (40) we can have g(k)/g(2)=1 as follows. 

g(k)

g(2)
 = 

lim
N→∞

[sin{h(k,N)}/lim
n→∞

h(k,N)
2n-1

]

lim
N→∞

[ sin{h(2,N) }/lim
n→∞

h(2,N)
2n-1

]
 = 

lim
n→∞

(-1)
n-1

(2n-1)!
 

lim
n→∞

(-1)
n-1

(2n-1)!

 = lim
n→∞

(-1)
n-1

(2n-1)!

(-1)
n-1

(2n-1)!

 = lim
n→∞

1 = 1 
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Appendix 4 : Solution for F(a)=0   (1) 

  

1 Preparation for verification of F(a)＞0  

1.1  Investigation of f(n) 

      f(n) = 
1

n1/2-a
 - 

1

n1/2+a
  ≧ 0           (n=2,3,4,5,-------)                 (8) 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                                   (15) 

a=0 is the solution for F(a)=0 due to f(n)≡0 at a=0. Hereafter we define 

the range of a as 0＜a＜1/2 to verify F(a)＞0. The alternating series F(a) 

converges due to lim
n→∞

f(n)=0 .  

We have the following equation by differentiating f(n) regarding n. 

                
df(n)

dn
 = 

1/2+a

na+3/2
 - 

1/2-a

n3/2-a
 = 

1/2+a

na+3/2
{1 - (

1/2-a

1/2+a
) n2a} 

The value of f(n) increases with the increase of n and reaches the maximum 

value f(nmax) at n=nmax .  Afterward f(n) decreases to zero through n→∞. 

nmax is  the nearest natural number to (
1/2+a

1/2-a
)
1/2a

.  

(Graph 1) shows f(n) in various value of a. At a=1/2 f(n) does not have f(nmax) 

and increases to 1 through n→∞ due to nmax =∞.  

 

 
 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

2 5 8 11 14 17 20 23 26 29 32 35 38 41 44 47 50 53 56 59 62 65 68 71 74 77 80 83 86 89 92

Graph 1: f(n) in various a

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5



16 

 

1.2  Verification method for F(a)＞0    

We define F(a,N) as the partial sum from the first term of F(a) to the N-th 

term of F(a).(N=1,2,3,4,5,-----)  F(a,N) repeats increase and decrease by f(n) 

with increase of N as shown in (Graph 2), because F(a) is the alternating series. 

In (Graph 2) upper points mean F(a,2N-1) and lower points mean F(a,2N). F(a,2N-

1) decreases and converges to F(a). F(a,2N) increases and also converges to F(a) 

due to lim
n→∞

f(n)=0 . 

 

 

F1(a,2N) which is the partial sum from the first term of the following F1(a) 

to the 2N-th term of F1(a) is equal to F(a,2N).  

     F1(a) = {f(2)-f(3)}+{f(4)-f(5)}+{f(6)-f(7)}+{f(8)-f(9)}+ ----- 

Therefore lim
N→∞

F1(a,2N) also converges to F(a). That means F(a)=F1(a). We use 

F1(a) instead of F(a) for verifying F(a)＞0. 

 

On the condition of nmax=k or nmax=k+1（k:odd number）,after enclosing 2 terms 

of F(a) each from the first term with { } as follows, the inside sum of { } 

from f(2) to f(k) is negative value and the inside sum of { } after f(k+1) is 

positive value. 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)-f(7)+ ------            

={f(2)-f(3)}+{f(4)-f(5)}+ --- +{f(k-1)-f(k)}+{f(k+1)-f(k+2)} + ---- 

(inside sum of { })＜0 ←❘→ (inside sum of { })＞0 

(total sum of { }) = -B ←❘→ (total sum of { }) = A  

We define as follows. 

      [the partial sum from f(2) to f(k)] = -B ＜0  

[the partial sum from f(k+1) to f(∞)] = A ＞0 

 F(a) = A-B  

So we can verify F(a)＞0 by verifying A＞B.  
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Graph 2：F(0.1,N) from 1st to 100th term F(a,2N-1) 
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1.3 Investigation of f(n)-f(n+1)  

We have the following equation by differentiating [f(n)-f(n+1)] regarding n. 

       
df(n)

dn
 - 

df(n+1)

dn
 = 

1/2+a

n3/2+a
{1 - (

n

n+1
)
3/2+a

}  - 
1/2-a

n3/2-a
{1 - (

n

n+1
)
3/2-a

} 

      = C(n) - D(n) 

“Convergence velocity to zero”of n-a-3/2 is larger than that of na-3/2 . When n 

is small number the value of [f(n)-f(n+1)] increases due to [C(n)＞D(n)]. As n 

increases the value reaches the maximum value {kmax} at C(n)≒D(n). (n is natural 

number. The situation cannot be C(n)=D(n).)  After that the situation changes to 

C(n)＜D(n) and the value decreases to zero through n→∞. (Graph 3) shows the 

value of [f(n)-f(n+1)] in various value of a. (Graph 4) shows the value of [f(n)-

f(n+1)] at a=0.1.  
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Graph 3: [f(n)-f(n+1)] in various  a

a=0.05 a=0.1 a=0.2 a=0.3 a=0.4 a=0.45 a=0.5
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We can find the following from (Graph 3) and (Graph 4). 

1.3.1  The maximum value of |f(n)-f(n+1)| is f(3)-f(2) at same value of a. 

1.3.2  In increasing of n the sign of [f(n)-f(n+1)] changes minus to plus at n=nmax 

(n=nmax+1) when nmax is even(odd) number.  

1.3.3  After that the value reaches the maximum value {kmax} and the value decreases 

to zero through n→∞. 

 

2  Verification of A＞B (f(nmax) is even-numbered term.) 

Hereafter a is fixed within 0＜a＜1/2 to find the condition of A＞B. f(nmax) 

is even-numbered term as follows.  

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- ------           

= {f(2)-f(3)}+{f(4)-f(5)}+ --- +{f(nmax-3)-f(nmax-2)}+{f(nmax-1)-f(nmax)} 

+{f(nmax+1)-f(nmax+2)}+{f(nmax+3)-f(nmax+4)}+{f(nmax+5)-f(nmax+6)}+ ----- 

We can have A and B as follows. 

B = {f(3)-f(2)}+{f(5)-f(4)}+{f(7)-f(6)}+ --- +{f(nmax-2)-f(nmax-3)}+{f(nmax)-f(nmax-1)} 

A = {f(nmax+1)-f(nmax+2)}+{f(nmax+3)-f(nmax+4)}+{f(nmax+5)-f(nmax+6)}+ ----- 

 

2.1  Condition of B 

We define as follows. 

{ } is included within B.  

{ } is not included within B. 

       We have the following equation. 

-0.035
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Graph 4:  [f(n)-f(n+1)] at a=0.1 nmax {kmax} 
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f(nmax)-f(2) = {f(nmax)-f(nmax-1)}+{f(nmax-1)-f(nmax-2)}+{f(nmax-2)-f(nmax-3)}+ ---  

+{f(7)-f(6)}+{f(6)-f(5)}+{f(5)-f(4)}+{f(4)-f(3)}+{f(3)-f(2)} 

And we have the following inequalities from (graph 3) and (graph 4). 

{f(3)-f(2)}＞{f(4)-f(3)}＞{f(5)-f(4)}＞{f(6)-f(5)}＞{f(7)-f(6)}＞----- 

＞{f(nmax-2)-f(nmax-3)}＞{f(nmax-1)-f(nmax-2)}＞{f(nmax)-f(nmax-1)}＞0 

Then 

f(nmax)-f(2)+{f(3)-f(2)}  

= {f(3)-f(2)}+{f(5)-f(4)}+{f(7)-f(6)}+ --- +{f(nmax-2)-f(nmax-3)}+{f(nmax)-f(nmax-1)} 

  ‖     ∧     ∧             ∧              ∧     ←Value comparison 

+ {f(3)-f(2)}+{f(4)-f(3)}+{f(6)-f(5)}+ --- +{f(nmax-3)-f(nmax-4)}+{f(nmax-1)-f(nmax-2)} 

＞2B                                                                       (41) 

Due to [Total sum of upper row of (41) = B ＜ Total sum of lower row of (41)], 

we have the following inequality. 

  f(nmax)-f(2)+{f(3)-f(2)} ＞2B                               (42) 

 

2.2  Condition of A ({kmax} is included within A.) 

We abbreviate {f(nmax+k)-f(nmax+k+1)} to {k} for easy description.(k=0,1,2,3--

---) All {k} is positive as shown in item 1.2. 

We define as follows. 

{ } is included within A.  

{ } is not included within A. 

{kmax} is the maximum value in all {k}. 

{kmax} is included within A. Then value comparison of {k} is as follows. 

{1}＜{2}＜{3}＜-----＜{kmax-3}＜{kmax-2}＜{kmax-1}＜{kmax}＞{kmax+1}＞{kmax+2}＞{kmax+3}＞---- 

       We have the following equation. 

f(nmax+1) = {f(nmax+1)-f(nmax+2)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+3)-f(nmax+4)} 

+{f(nmax+4)-f(nmax+5)}+ ----- 

 = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

From the above equation 

f(nmax+1)-{kmax-1} 

    = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

←------------ Range 1 -----------→｜←------------- Range 2 -------------- 

(Range 1) and (Range 2) are determined as above. 

 

In (Range 1) value comparison is as follows. 

{1}＜{2}＜{3}＜{4}-----{kmax-4}＜{kmax-3}＜{kmax-2} 
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And 

Total sum of { } = {1} + {3} + {5} + {7}+ --------- +{kmax-4}+{kmax-2} 

∨    ∨   ∨                ∨      ∨ ←value comparison 

Total sum of { } =       {2} + {4} + {6} + -------- +{kmax-5}+{kmax-3} 

Therefore    Total sum of { } ＞ Total sum of { } 

 

In (Range 2) value comparison is as follows. 

{kmax}＞{kmax+1}＞{kmax+2}＞{kmax+3}＞{kmax+4}＞{kmax+5}----- 

And 

Total sum of { } =  {kmax} + {kmax+2} + {kmax+4} + {kmax+6}+ ---------  

∨      ∨        ∨        ∨     ←value comparison 

Total sum of { } = {kmax+1} + {kmax+3} + {kmax+5} + {kmax+7}+ -------- 

Therefore  Total sum of { } ＞ Total sum of { } 

 

In (Range 1)+(Range 2) we have  [A=Total sum of { } ＞Total sum of { }]. 

We have the following inequality. 

f(nmax+1) - {kmax-1}＜2A                               (43) 

 

2.3  Condition of A ({kmax} is not included within A.) 

       We have the following equations. {kmax} is not included within A. 

f(nmax+1) = {f(nmax+1)-f(nmax+2)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+3)-f(nmax+4)} 

+{f(nmax+4)-f(nmax+5)} + ----- 

   = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

f(nmax+1)- {kmax} 

 = {1}+{2}+{3}+{4}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax+1}+{kmax+2}+{kmax+3}+{kmax+4}+ ----- 

←---------------- Range 1 ---------------→｜←------------ Range 2 ------------- 

(Range 1) and (Range 2) are determined as above. 

 

In (Range 1) value comparison is as follows. 

{1}＜{2}＜{3}＜{4}＜-----＜{kmax-3}＜{kmax-2}＜{kmax-1} 

And 

Total sum of { } = {1} + {3} + {5} + {7}+ --------- +{kmax-3}+{kmax-1} 

∨    ∨   ∨                ∨      ∨ ←value comparison 

Total sum of { } =       {2} + {4} + {6} + -------- +{kmax-4}+{kmax-2} 

Therefore  Total sum of { } ＞ Total sum of { } 
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In (Range 2) value comparison is as follows. 

{kmax+1}＞{kmax+2}＞{kmax+3}＞{kmax+4}＞{kmax+5}＞{kmax+6}----- 

Total sum of { } =  {kmax+1} + {kmax+3} + {kmax+5} + {kmax+7}+ ---------  

∨       ∨        ∨        ∨      ←value comparison 

Total sum of { } =  {kmax+2} + {kmax+4} + {kmax+6} + {kmax+8}+ -------- 

Therefore  Total sum of { } ＞ Total sum of { } 

 

In (Range 1)+(Range 2) we have  [A=total sum of { } ＞Total sum of { }]. 

We have the following inequality. 

f(nmax+1)- {kmax}＜2A                                     (44) 

 

2.4  Condition of A＞B 

From (43) and (44) we have the following inequality. 

f(nmax+1)- [{kmax} or {kmax-1}]＜2A                

As shown in item 1.3.1 {f(3)-f(2)} is the maximum in all { }. Then 

{f(3)-f(2)}＞[{kmax} or {kmax-1}]  

{f(3)-f(2)}＞f(nmax) - f(nmax+1)  

We have the following inequality from the above conditions. 

2A＞f(nmax+1)-[{kmax} or {kmax-1}]＞f(nmax+1)-{f(3)-f(2)} 

         ＞f(nmax)-{f(3)-f(2)}-{f(3)-f(2)} = f(nmax)-2{f(3)-f(2)}                (45) 

We have the following condition for A＞B from (42) and (45). 

2A＞f(nmax)-2{f(3)-f(2)}＞f(nmax)-f(2)+{f(3)-f(2)}＞2B                   (46) 

From (46) we can have the final condition as follows. 

(4/3)f(2)＞f(3)                                 (47) 
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(Graph 6) shows (4/3)f(2)-f(3) = (4/3)(2a-1/2-2-a-1/2)-(3a-1/2-3-a-1/2). 

 
Table 1：The values of (4/3)f(2)-f(3) 

 

 (Graph 7) shows [differentiated (4/3)f(2)-f(3) regarding a] i.e. 

(4/3)f`(2)-f`(3) = (4/3){log2(2a-1/2+2-a-1/2)}-{log3(3a-1/2+3-a-1/2)}. 

 

Table 2：The values of (4/3)f`(2)-f`(3) 

 

From (Graph 6) and (Graph 7) we can find [(4/3)f(2)-f(3)＞0  in 0＜a＜1/2] 

that means A＞B i.e. F(a)＞0 in 0＜a＜1/2. 

0
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0.006

0.007

0.008

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Graph 6：(4/3)f(2)-f(3)

a= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(4/3)f(2)-f(3) 0 0.001903 0.003694 0.005257 0.00648 0.007246 0.007437 0.006933 0.005611 0.003343 0

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Graph 7：(4/3)f`(2)-f`(3)

a= 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

(4/3)f'(2)-f'(3) 0.038443 0.037313 0.033921 0.02825 0.020277 0.009967 -0.00272 -0.01785 -0.03547 -0.05567 -0.07852



23 

 

3  Verification of A＞B (f(nmax) is odd-numbered term.) 

f(nmax) is odd-numbered term as follows. 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- ------           

= {f(2)-f(3)}+{f(4)-f(5)}+ --- +{f(nmax-4)-f(nmax-3)}+{f(nmax-2)-f(nmax-1)} 

+{f(nmax)-f(nmax+1)}+{f(nmax+2)-f(nmax+3)} + ----- 

And 

B = {f(3)-f(2)}+{f(5)-f(4)}+ --- +{f(nmax-3)-f(nmax-4)}+{f(nmax-1)-f(nmax-2)} 

A = {f(nmax)-f(nmax+1)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+4)-f(nmax+5)}+ ----- 

f(nmax) = {f(nmax)-f(nmax+1)}+{f(nmax+1)-f(nmax+2)}+{f(nmax+2)-f(nmax+3)}+{f(nmax+3)-f(nmax+4)} + 

----- 

  = {0}+{1}+{2}+{3}+ --- +{kmax-3}+{kmax-2}+{kmax-1}+{kmax}+{kmax+1}+{kmax+2}+{kmax+3}+ ----- 

 

After the same process as in item 2 we can have the following condition. 

 f(nmax-1)-f(2)+{f(3)-f(2)} ＞2B                               (48) 

As shown in item 1.3.1 {f(3)-f(2)} is the maximum in all { }. Then 

{f(3)-f(2)}＞[{kmax} or {kmax-1}]  

f(nmax)＞f(nmax-1)  

We have the following inequality from the same process as in item 2 and the 

above conditions. 

2A＞f(nmax) - [{kmax} or {kmax-1}]＞f(nmax) - {f(3)-f(2)} ＞f(nmax-1) - {f(3)-f(2)}        (49) 

We have the following condition for A＞B from (48) and (49). 

2A＞f(nmax-1)-{f(3)-f(2)}＞f(nmax-1)-f(2)+{f(3)-f(2)}＞2B               (50) 

From (50) we can have the final condition as follows. 

(3/2)f(2)＞f(3)                                   (51) 

In the inequality of (3/2)f(2)＞(4/3)f(2)＞f(3)＞0, (3/2)f(2)＞(4/3)f(2) is 

true self-evidently and in item 2.4 we already confirmed that the following (47) 

is true in 0＜a＜1/2.  

(4/3)f(2)＞f(3)                                         (47)  

Therefore (51) is true in 0＜a＜1/2. 

 

4  Conclusion 

F(a)=0 has the only one solution of a=0 due to 

[0≦a＜1/2], [F(0)=0]  and  [F(a)＞0 in 0＜a＜1/2]. 
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Appendix 5 : Solution for F(a)=0   (2) 

 

1  Investigation of F(a)N 

               f(n) = 
1

n1/2-a
 - 

1

n1/2+a
  ≧ 0           (n=2,3,4,5,-------)                (8) 

F(a) = f(2)-f(3)+f(4)-f(5)+f(6)- -----                             (15) 

F(a,N): the partial sum from the first term of F(a) to the N-th term of F(a) 

 

a=0 is the solution for F(a)=0 because of f(n)≡0 at a=0.  F(a) is the 

alternating series. So F(a,N) repeats increase and decrease by f(n) with increase 

of N. lim
N→∞

F(a,N) converges to F(a) due to lim
n→∞

f(n)=0 .  

(Graph 1) shows F(0.1,N) from N=1 to N=5,000. The upper edge of blue area 

shows F(0.1,2N-1) and lower edge of blue area shows F(0.1,2N).  

((Graph 1) is line graph. Graph has so many data points that the area 

surrounded by data points becomes blue.) 

 

 

 

Upper-right point of blue area, F(0.1,4999) decreases to F(a) through N→∞ 

and lower-right point of blue area, F(0.1,5000) increases to F(a) through N→∞.   

F(0.1) can be approximated with {F(0.1,4999)+ F(0.1,5000)}/2. 

But {F(a,N-1)+F(a,N)}/2 is also the partial sum of alternating series. It 

repeats increase(decrease) of {f(n)-f(n-1)}/2 and decrease(increase) of {f(n+1)-

f(n)}/2 when n is even(odd) number. So we approximate F(a) with the average of  
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Graph 1：F(0.1,N) from N=1 to N=5,000

F(0.1,2N-1)  

 

F(0.1,2N) 

F(0.1,4999) 

 

F(0.1) 

 

F(0.1,5000) 

 

Blue area 
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{F(a,N-1)+F(a,N)}/2 i.e. F(a)N for better accuracy according to the following 

(61). 

               
F(a,N)+F(a,N-1)

2
 + 

F(a,N+1)+F(a,N)

2

2
  = F(a)N                          (61) 

 Left side of (61) converges to F(a) through N→∞. We can have the accurate 

F(a)N  from F(a,N) of large N. (Graph 2) shows F(a)N  calculated at 3 cases of 

N=500, 1000, 5000.  

 

 

Table 1：The values of F(a)N 

 

3 line graphs overlapped. Because F(a)N calculated at 3 cases of N=500, 1000, 

5000 are equal to 4 digits after the decimal point.  

The range of a is 0≦a＜1/2. a=1/2 is not included in the range. But we added 

F(1/2)N to calculation according to the following reason.  

[f(n) at a=1/2] is (1-1/n) and lim
n→∞

(1-1/n) does not converge to zero. Therefore 

F(1/2) fluctuates due to lim
n→∞

f(n)=1 .   But {F(a,N)+F(a,N-1)}/2 is partial sum of 

alternating series with the term of {f(n+1)-f(n)}/2 and it can converge to the 

fixed value on the condition of lim
n→∞

{f(n+1)-f(n)}=0 . lim
n→∞

{f(n+1)-f(n)} converges 

to zero due to f(n+1)-f(n)=1/(n+n2). 

0

0.05

0.1

0.15

0.2

0.25

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Graph 2： F(a)N  at 3 cases

N=500 N=1,000 N=5,000

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N=500 0 0.01932876 0.03865677 0.05798326 0.0773074 0.09662832 0.11594507 0.13525658 0.15456168 0.17385904 0.19314718
N=1,000 0 0.01932681 0.03865282 0.05797725 0.0772993 0.09661821 0.11593325 0.13524382 0.15454955 0.17385049 0.19314743
N=5,000 0 0.01932876 0.03865676 0.05798324 0.07730738 0.09662829 0.11594504 0.13525655 0.15456165 0.17385902 0.19314718
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2  Investigation of F`(a)Ｎ 

We define as follows. 

f`(n) = df(n)/da = na-1/2logn + n-a-1/2logn = na-1/2logn (1 + n-2a) ＞ 0 

F`(a) = f`(2)-f`(3)+f`(4)-f`(5) + ----- 

F`(a,N): the partial sum from the first term of F`(a) to the N-th term of F`(a) 

 

F`(a) converges due to lim
n→∞

f`(n)=0 . F`(a) is alternating series. We can 

calculate approximation of F`(a) i.e. F`(a)N according to the following (62). 

lim
N→∞

F`(a)N converges to F`(a). 

               
F`(a,N)+F`(a,N-1)

2
 + 

F`(a,N+1)+F`(a,N)

2

2
  = F`(a)N                      (62) 

    (Graph 3) shows F`(a)N  calculated by (62) at 5 cases of N=500, 1000, 2000, 

5000, 10000. 5 line graphs overlapped. Because F`(a)N  of 5 cases are equal to 6 

digits after the decimal point.  

 

  
Table 2：The values of F`(a)N 

 

0.3852

0.3854

0.3856

0.3858

0.386

0.3862

0.3864

0.3866

0.3868

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Graph 3 : F`(a)N  at 5 cases

N=500 N=1,000 N=2,000 N=5,000 N=10,000

a 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

N=500 0.38657754 0.38657004 0.38654734 0.38650882 0.38645348 0.3863799 0.38628625 0.38617032 0.3860295 0.38586078 0.38566075
N=1,000 0.38657764 0.38657014 0.38654743 0.38650891 0.38645355 0.38637995 0.38628627 0.3861703 0.3860294 0.38586057 0.38566038
N=2,000 0.38657766 0.38657016 0.38654745 0.38650893 0.38645357 0.38637996 0.38628628 0.3861703 0.38602938 0.38586052 0.38566029
N=5,000 0.38657766 0.38657016 0.38654745 0.38650893 0.38645358 0.38637997 0.38628628 0.3861703 0.38602938 0.38586051 0.38566026
N=10,000 0.38657766 0.38657016 0.38654745 0.38650893 0.38645358 0.38637997 0.38628629 0.3861703 0.38602938 0.3858605 0.38566026
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The range of a is 0≦a＜1/2. a=1/2 is not included in the range. But we 

added F`(1/2)N to calculation according to the following reason.  

[f`(n) at a=1/2 ] is (1+1/n)logn and lim
n→∞

(1+1/n)logn does not converge to zero. 

F(1/2) diverges to ±∞ due to lim
n→∞

f`(n)=∞ .  

But {F`(a,N)+F`(a,N-1)}/2 is partial sum of alternating series with the 

term of {f`(n+1)-f`(n)}/2 and it can converge to the fixed value on the 

condition of  lim
n→∞

{f`(n+1)-f`(n)}=0 .   lim
n→∞

{f`(n+1)- f`(n)}=0 is true as follows. 

      f`(n) is the increasing function regarding n due to [ 
df`(n)

dn
=
1+n-logn

n2
＞ 0  ] . 

It means  [0 ＜ f`(n+1)-f`(n)]. 

0 ＜ f`(n+1)-f`(n) = {1+1/(n+1)}log(n+1) - (1+1/n)logn  

＜ (1+1/n)log(n+1) - (1+1/n)logn = (1+1/n)log(1+1/n) 

      From the above inequality we can have lim
n→∞

{f`(n+1)-f`(n)}=0 due to 

 lim
n→∞

{(1+1/n)log(1+1/n)}=0 . 

 

3  Approximation of F`(a) 

F`(a)N calculated by (62) converges to F`(a) through N→∞. To confirm how 

large N we need to approximate F`(a) accurately, we calculated  F`(a)N  with N 

from N=500 to  N=100,000. (Graph 4) shows F`(a)N/F`(a)500 from N=500 to N=100,000 

in various a.  

 

 

 

0.999998

0.9999985

0.999999

0.9999995

1

1.0000005

N=500 1,000 2,000 5,000 10,000 50,000 100,000

Graph 4：F`(a)N/F`(a)500 in various a

a=0 a=0.1 a=0.2 a=0.3 a=0.4 a=0.5
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Table 3：The values of F`(a)N/F`(a)500 

 

 

We can find the following from (Graph 4) and (Table 3). 

3.1  F`(a)50,000/F`(a)500 and F`(a)100,000/F`(a)500 have the same values. When N is 

larger than N=50,000 the values are as same as at N=50,000. So we can 

consider F`(a)50,000 = F`(a). 

3.2  The differences between F`(a)500 and F`(a)50,000 have the maximum value at 

a=1/2. The maximum difference is [1-0.999998731 = 0.00013%] as shown in 

(Table 3). Therefore F`(a)500 is almost equal to  F`(a)50,000 i.e. F`(a). 

N=500 is enough to obtain the accurate F`(a). 

From item 3.2 we can consider that (Graph 3) shows F`(a) accurately. (Graph 

3) illustrates [0.3866 ＞ F`(a) ＞ 0.3856 in 0≦a＜1/2]. Therefore F(a) is the 

monotonically increasing function in 0≦a＜1/2. 

 

4  Conclusion 

F(a)=0 has the only one solution of a=0 due to  

[0≦a＜1/2], [F(0)=0]  and   

[ F(a) is the monotonically increasing function in 0≦a＜1/2.]. 

 

 

a 0 0.1 0.2 0.3 0.4 0.5

N=500 1 1 1 1 1 1
1,000 1.000000242 1.000000232 1.000000189 1.000000061 0.999999745 0.999999051
2,000 1.000000294 1.000000284 1.000000234 1.000000082 0.999999692 0.999998811
5,000 1.000000306 1.000000296 1.000000246 1.000000089 0.999999681 0.999998743

10,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998734
50,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731

100,000 1.000000307 1.000000297 1.000000248 1.000000091 0.999999679 0.999998731


