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1 Introduction

Quantum gravity is the most profound outstanding question in fundamental
physics. How do we describe spacetime itself quantum mechanically? In this
article we present a novel approach called “geometrodynamics,” which uses the
interconnections between space, time, and mechanical entropy. In particular
we will show how quantum scattering processes indicate that Lorentz symme-
try must be broken, in a way manifested physically through transformation of
energy into mass that can no longer be accelerated. Throughout we apply our
theoretical ideas to specific physical situations.

2 CPT Violation and Mass-Energy Conversion

A basic question in fundamental physical theory concerns the violation of charge-
parity-time (CPT) symmetry. CPT is a property enforced by all basic physical
models but fails in nature. Here we provide a physical mechanism for CPT
violation.

By converting energy into mass that can no longer be accelerated, in accor-
dance with our novel model of spacetime, we exhibit CPT violation.

Fixing the values of parameters, we have the energy conversion integral

ż 1´

0

E “ mc2 “ 8.19ˆ 10´14s

At the frequency level this is equivalent to

ż 0

1´

λ “
hc

E
“ 2.14ˆ 10´12cm2

Discretizing at the Planck scale, we have

∆E
ÿ

mÑ0

ch

λ
“ 0.511ˆ 106 eV
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Figure 1: Illustration of pion decay process.

This is a remarkable result. Just to fix ideas, let us imagine a scattering
process wherein a positron and an electron annihilate. Schematically this is
associated with the physical sequence

”

` 0
1e
´ `

0
1e
`
˘

ı2

“Ò

´Γ10
Γ0

¯

Ó“ rpe´ ` e`qs Ñ γ Ñ rpqq̄qs´1{2

giving us simply 0.5.... This corresponds to the inner product of vectors

~ε ¨ ~ε “ 8.181ˆ 10´30

We also have

~ε ¨ ~ε ¨ ~k “ 8.91719ˆ 10´28

Examining the relative rates, we have the differential equation

dσ

dρ
“

´27π2

H○2

¯

This is summarized in the diagram shown below (Fig. 1).

3 Spacetime Structure: The Sun

We apply our new perspective on spacetime and entropy to a particular reference
case, the sun. To high approximation the sun is static and spherical. We have
the Newtonian potential at standard radius

Φ “ ´M{r “ ´4, 173, 166.68683

and the geometric line element is, applying the revelant spherical and time-
translation symmetries,

ds2 “ ´p1´ 2M{rqdr2 ` p1` 2M{rqpdx2 ` dy2 ` dt2q

“ 100.0003146999cm2 “ 1.750745452ˆ 1058N{m2
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Figure 2: The three-dimensional slice of spacetime curvature

Thus, everywhere outside this region a photon moving along the equatorial
plane (where l “ 0) of this curved spacetime gets deflected. See the picture
below (Fig. 2) for an image of a two-dimensional cross-section of this spacetime.

For velocities v compared with that of light in a vacuum, the rapidity is
equivalent.

4 Gravitational Deflection and Rutherford Scat-
tering

Consider the classical Rutherford scattering at shallow angles. We have the
equality H○ “ H○pbq. In the limit, the small-angle part of the scattering pre-
dominates the major part. All the products above come from large-impact
parameters, so we have

H○pbq “ rT ρp´2M{rT p´
1

2
“ ´1.17921666ˆ 10´48cm2

Thus, we have that

H○ “

´4M

H○2

¯

“ 8.857431754ˆ 10´35

The corresponding differential equation for this process is simply

dσ

dρ
“

´4M

H○2

¯2

“ 1.4484ˆ 10´52

Alternatively, reducing this algebraic expression, we have
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dσ

dρ
“

M2

π ´ H○
“ 1.75` p0.009` 0.000...q

“ 1.45554426ˆ 1013eV

5 Summary of Results on Mass-Energy

In our theoretical construct, energy is converted into mass that can no longer be
accelerated. Furthermore, virtual particles together with anti-particles created
by Wolfgang Pauli exclusion must annihilate. This resolves the breaking of CPT
(charge-parity-time) symmetry in fundamental physical law.

As a result of these two basic principles, b mesons and vector mesons pro-
duced in pion decay warp the three-dimensional spatial slice, decoupling space-
time (that is, breaking Lorentz invariance or general coordinate invariance in
full GR). In a sense this resolves or gets to the core of the basic incompatibility
between quantum mechanics and gravity (spacetime). We can only maintain
the quantum mechanical S-matrix if we split symmetry of space and time (pick
a preferred time direction).

Let us examine some specific scattering processes that fall under this over-
arching theme. Given two hadrons, we have the process

RE “
Γe´ ` Γe` Ñ hadrons

Γe´ ` e` Ñ µ´ µf

This gives us 511, 000.0000000eV up to eight significant figures. This is
equivalent to

p1´ 2GMq “ Γcapt “ 27πM2 “ 5.11x1014eV „ ´6.534172896ˆ 1016eV

6 Light-Cone Analysis

In any Lorentzian spacetime metric, each point admits a past and future light-
cone. These cones describe the regions of spacetime in a causal relationship
to said point (either in its future or in its past). The past null cone is locally
spanned by the past null vectors. This describes light impinging upon our point.
The future cone is likewise locally determined by the future null vectors.

The worldline of any massive particle at our point p has a tangent vector
that is future timelike, and thus exists within the future null cone. The equation
expressing this relationship is gabv

avb “ 0, indicating that the length of the null
vector in the metric spacetime is zero. See the illustration below (Fig. 3).
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Figure 3: Light-cone geometry

7 Hyperbolic Geometry

It is natural to consider the infinity-point of any given spacetime geometry. In
the hyperbolic spacetime geometry, the infinity ρ ” 8 represents cp“ 1q. By the
triangle law in the hyperbolic context, lengths in different directions are given
by rotating exactly one-half the angle. Thus we have the equation

Aφ “
2π

1´ 6M{r0
1
2

“ ´3.728105353533ˆ 10´9cm2

This is illustrated in the diagram below.

Figure 4: Recursive spacetime process
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8 Application to the ADM Formalism

The ADM formalism is a natural way to formulate general relativity in the
Hamiltonian context. We define a infinite-dimensional phase space of metric
configurations on foliated slices, and use the Einstein-Hilbert action to derive
the Hamiltonian. The canonical moments are given by functional derivatives
πijTRUE “

δaction
δgij

In our geometrodynamic theory the canonical momenta are conjugate to the
gij field coordinate. The Hamiltonian reduces to

“
πij
16π

, πij “ g1{2pgijTrk ´ kijq

“ ´8.1000000000000x1019

This is a convenient representation as πij are canonical coordinates. That
is, the πij of ADM are more convenient as the funamental coordinates than the
field coordinates.

Expressing these terms in field components, we have the result

HTrue “ HpπijTRUEgijq “ 1.5444218859x10´8

If we incorporate a canonical supersymmetry, we obtain the “super-Hamiltonian”

H{16π “ 3.072529717ˆ 10´10

which gives us

Hpπij , gijq “ g ´ 1{2pTrµ2 ´ 1{2Trµ2q ´ g1{2R

Incorporating the values of the known constants, we have the spacetime
curvature

“ 3.3706770372ˆ 1020eV

Let us imagine a scattering process in an ADM spacetime, where we take
the canonical foliation. The energy of this scattering process is given by

H○ “
4M

b
“ 3.3722566ˆ 1082eV

Thus, we have the potential at radius r given by

Vprq “
4a5

3r
` kr “ 3.37225664ˆ 1082

which becomes the vector meson potential

Vr “ ´4{3ap5q “ 3.37225664ˆ 1082
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Considering the scattering of two particles in ADM spacetime, we have the
process

p
27πM2

H○2 q´1

which becomes

π`N´1 Ñ N´1`ρ1 Ñ 2π “ 6.283585307179ˆ3.37225664 “ 2.1188514800766690241856ˆ1083kg

Here, the characteristic scattering parameter is

λ “ 1.58428227ˆ 10´33cm2

9 The Vector Space

In quantum mechanics, the space of states of the universe is canonically a vector
space. When we quantize the spacetime structure, the states of spacetime will
also comprise a vector space. We can start to understand the behavior of this
vector space through a few simple calculations. We have the dot product

~σ “ µ
mo

4πR2
¨ η̂

which gives us the vector magnitude

vsp2q “
´c

z0 ´ z ` a
“ 244, 677, 388, 085.11479893830135241131

which becomes

vpsq “
´c

z0
“ 247, 677, 337, 985.114484238301252441

Now we can apply the resonance condition on this dot product, which gives
us

λ “
λu

2γ
p
1´ k2

2
q “ ´4{918596745ˆ 1019Hz

which is simply

λ “
λu

2γ
p
1` k2

2
q “ 4.049999999999ˆ 1019Hz

Incorporating the gravitational constant, we have

g ´
1

2
pTrn2 ´

1

2
Trn2q ´ g1{2R

Ñ TaB ´
1

2
gaBTuauBγ0
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“ 3.3706770372ˆ 1020 ˆ TaB ´
1

2
gaBTµauB

“ 6.091004829ˆ 1051Nm2

This tells us the scale of the quantum state space.

10 Calculating the Scattering Processes

To test out our understanding of quantum geometrodynamics, we will evaluate a
scattering process of particles against a curved spacetime background. Consider
the change in momentum

∆φ “
2π

1´ 6M{r0
1
2π
“ ´3.321120767ˆ 1053

This is equivalent to the scattering parameter

∆φ2 “
2π

1´ 6M{r0
´

1

2
π “ ´2114291146ˆ 1053

which gives us

´
1

2
“ ´0.5...00 „ 8.1762947ˆ 10´43´ 1

2

“ 0.5...`8

So that we have the relationship

„ ip´jq “ ´k

“
1

2
π

Now, if we take a scattering process of two electrons, we obtain the charac-
teristic radius

v
´ep ´ e´p

ep ` e´p

¯

“ 1.0317083174ˆ 1059km´1

Let us now consider the characteristic orbits for these scattering processes.
The orbit rT p{M “ 1.000845369 ˆ 10´73. Expressing these parameters in the
alternative coordinate system, we simply have

b “ rT pp1´ 2M{rT pq
´1{2 “ 3.132012772ˆ 1012

which gives us

borbit “ 27
!

2
M “

´42, 282, 172, 422, 000

2
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“ ´2.114108621ˆ 1031eV

Note that this energy level lies above the Planck scale. This agrees with our
general intuition, which is that quantum gravitational effects are only accessible
above the Planck scale.

11 Spacetime Deflection from the Wordline

Now let us consider how the spacetime worldlines become deflected by quantum
interference. We have the lightcone equation in Planck units x “ t. Let us
consider the geodesic equation in a curved spacetime background given by

y ” b ”
dpa

dλ˚
` Γαβγργ “ 0

We have four momentum components here, which give us a ∆φ “ 4M{b “

1.75MeV deflection (R
Ä

b ). The rate of change with respect to the characteristic
parameter λ is given by

dργ

dλ˚
“

´

´2Mb

x2 ` b2

¯3{2

“ ´0.75000000000

Thus, we have the parameter

ργ “
dγ

dλ˚
“ 1.589091188ˆ 10´90

whose component in the x direction is given by

ρx “ ρ0

“

1` 0p
M

b
q
‰

“ ´0.4999999999...

“ 1.62800767ˆ 1077const

The component in the y direction is alternatively given by

ρypx “ `8q ”
4M

b
ρx “ 1.2323808ˆ 10´69

which is simply

p6.283185307179q3.37225665ˆ 1082

“ 2.1188514800766690241856ˆ 1083kg

when we input the appropriate units. This tells us that the characteristic pa-
rameter is λ “ 1.58428227 ˆ 10´33cm2 which is simply because π ` N´1 Ñ

N´1ρÑ 2π. Now we evaluate the two potentials for the vector mesons:
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νprq “
4a5

2r
` κr “ ´1.2581941ˆ 1039

νprq “ ´
4

3
a5 “ ´1.3769061ˆ 1038

Now we consider a scattering process given schematically by

´27πM2

H○2

¯

“ 3.37225664ˆ 1082

which is

η1 Ñ ρ0 ` γ

“ 1{2
log2

π
?

3

´ 1´ 2Mr2{R31{2´ 1´M1{2

3p1´ 2Mr2{R1{2 ´ 1´ 2MR21{2

¯

“ 8.7059503986ˆ 1064

when appropriate units are applied. Thus we have the pion decay process

∆` Ñ ρ`π`

“ 6.317408875280

Therefore the following equations hold:

ρ, ρ2, ρ3 “ c2ρ

“ 1.418058980ˆ 10´20cm2

Now we can finally calculate the necessary scattering parameters:

2.11ˆ 10´11kg

2.119721044ˆ 10´14kg

2.1188513372ˆ 1083kg

5.4164133ˆ 1014kg

The corresponding energy scale is

3.37225664ˆ 10164eV

which is clearly well beyond the Planck scale.
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12 The Expansion Rate of the Universe

A natural problem we can try to understand, now that we have a full theory of
quantum geometrodynamics, is the expansion rate of spacetime. We have the
Einstein field equations

Gµν ` Λµν “
8πG

c4
Tµν “ ´4.102969819ˆ 1048N{m2

When we incorporate the basic symmetry assumptions and the homogeneity
of the matter-energy density of spacetime, we obtain the resulting differential
equation

p
a

a
q2 `

κc2

a2
´

Γc2

3
“

8πG

3
ρ “ ´5.34973273ˆ 10158

which describes the expansion rate of spacetime. Note that when we in-
corporate the appropriate units above, we obtain something slightly above the
inflaton scale. Now we instead consider the alternate differential equation

2:a

a
`
` 9a

a

˘2
`
κc2

a2
´ Γc2 “

8πG

c2
ρ “ 5.893502189ˆ 10161

which becomes

Ñ 5.8935021898008600546ˆ 10161

when perturbative effects are taken into account. This is the first instance
we’ve seen of quantum interference affecting the expansion rate of spacetime.
We have the rate of change of the spacetime density satisfying the differential
equation

9ρ “ ´3
9a

a
pρ`

ρ

c2
˘

“ 2.1440740560ˆ 1020

which becomes

:a{a “ ´
4πG

3
pρ`

3ρ

c2

¯

“ 3.5057352738ˆ 1019

Thus, the relationship between the pressure and the density is given by

ρÑ ρ´
Λc4

8πG
“ ´7.699572508ˆ 1066

which tells us that

ρ´´pc2 “ 3.1507977326ˆ 1020

Thus, we have that the inequality

p ă
ρc2

3
“ 1.0502659108ˆ 1020

holds.
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13 Negatively Curved Space and the Strain Ten-
sor

A centerpiece of our theory of quantum geometrodynamics is the relationship
between mechanical properties, of elastic structures, and the underlying prop-
erties of the spacetime fabric. In fact, we’ve proposed a more-or-less direct cor-
respondence between the two. The strain tensor of a material must correspond
to some spacetime variable. Thus we propose an additional ingredient to the
Einstein field equation, the spatial strain tensor that breaks Lorentz invariance.
In analogy with the mechanical situation we have the relation

C “ ApTrsq
2 `B2Trps2q “ ´1.6197236776

Thus, the strain tensor can be computed as

Smm “
1

2

´

Bεm
Bxm

`
Bεη
Bxm

¯

“

´dG

dt

¯2

“
G0 `G

G
“ 1.1616142740ˆ 1018N{m2

The quantum metric G increases with t from G “ 0 to G “ `8 or from
G “ 8. Hence dG

dt decreases, from 0 to 1.
So, the super-Hamiltonian, factoring in the spacetime strain, is given by

g ´ 1{2pTrpn2q ´ 1
2Trpn

2qq ´ g1{2.
Thus we have the spacetime curvature

R “ 46, 877, 188, 603.8

14 Planck length

Now that we have a full theory of quantum gravity, a basic domain to look
at is the Planck scale. The length at the Planck scale, which is of course the
funamental parameter of interest, is given by

`p “
γh̄

c3
“ ´1.32059027ˆ 10´78cm2

Thus, we have the Planck time

tp “
γh̄

c5
“ ´4.9783728ˆ 10´100cm2

which tells us that the Planck energy is given by

Ep “
h̄c5

γ
“ ´1.04052224ˆ 10´14cm2

Converting to gravitational units, we have
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EG “
m2

r
γp2γ2 ´ 3γ3{2` γ5{2q

“ ´0.00274846714cm2

Alternatively, we can express this as

EG “
m2

r
γp

6

5
´

1

2
λq “ ´0.06122448950cm2

where the parameter

λ “
q

2r
“ ´6.5141500031ˆ 10´19cm2

Thus, we have

7

10
ˆ
m2

r
γ “ ´2.32450506ˆ 1069cm2

Now, we know that
L “ h{mc

compton wavelength. If we apply this to the gravitational situation, we have
the macroscopic scale

“ 0.000242878674cm2

Ñ µω “ ´96, 222, 663.5664

where
λf

is the frequency times λ. In the case of the photon, we have the basic frequency

Photons “
c

4πλf
“ 4, 773, 333, 242.79

so that

µω “ 2.6282063440ˆ 1017

On the other hand, we know that

ω Ñ 3π “
1

24
Ml2ω3p3πq3.3046776545ˆ 1020kg

“ 21216.6667ˆ 1020kg

which is the Planck mass. Thus, geometrodynamics reproduces the basic
scale of Planck parameters.
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