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Abstract

The model of low-energy quantum gravity by the author is based on
the conjecture about the existence of the background of super-strong in-
teracting gravitons, gravity is considered as the screening effect. The
Newton constant G and the Hubble constant H are computable in the
model. In this chapter, main effects of the model are discussed, some cos-
mological consequences are confronted with observations. Galaxy num-
ber counts/redshift and counts/magnitude relations are considered. It is
shown that this model can fit observations with the theoretical luminosity
distance without dark energy. The Hubble parameter of this model is a
linear function of the redshift, that is consistent with existing observa-
tions. Results of numerical modeling of the influence of the additional
deceleration of bodies, and some possibilities to verify the model are de-
scribed.

PACS : 98.80.Es, 04.50.Kd, 04.60.Bc

1 Introduction

There are very different approaches to unify general relativity with quantum
mechanics or with the standard model of particle physics (SM), but there are
almost no theoretical predictions which may be verified by experiments or ob-
servations. Known predictions, if the ones are possible, concern mainly Planck-
scale physics and geometry, for example, foamy space-time in loop quantum
gravity. This poorness of theoretical predictions of existing models and the ab-
sence of manifestations of quantum gravity accepted by the scientific community
make the situation around quantum gravity very vague: theorists are not sure
in the validity of used approaches, experimentalists and observers do not know
what to search to help them. Taking into account logical difficulties of existing
approaches, the main sought by H. Nicolai [1] about the situation is that we
have no other choice but to try to create a future consistent theory out of purely
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theoretical basics. It seems that one of the possible ways is choosing a symme-
try group which may lead us further as it was by the creation of the SM. But
the SM’s symmetries were established due to big experimental efforts. From
another side, the SM’s continuous symmetries may result from underlying dis-
crete symmetries if the fundamental fermions are the two-component composite
particles [2, 3]. Unfortunately, even availability of the consistent model of quan-
tum gravity talking us about Planck-scale physics cannot help to understand
why micro particles prefer not to move along geodesics by small energies which
are very far from the Planck scale. Perhaps, we should search and introduce
some more non-evident ideas to come nearer to the unknown quantum nature
of gravity.

In the model of low-energy quantum gravity [4, 5, 6], gravitation is considered
as the screening effect in the sea of super-strong interacting gravitons. The
Newton constant G and the Hubble constant H are computable in the model
as functions of the background temperature. There is no need of any expansion
of the universe and dark energy in the model to fit corresponding cosmological
observations. The two-parametric theoretical luminosity distance of the model
is caused by forehead and non-forehead collisions of photons with gravitons. The
additional deceleration of massive bodies has the same nature as the redshift of
remote objects in the model: these effects are caused by collisions with gravitons,
but we should take into account both forehead and backhead collisions with
gravitons in case of massive bodies [7]. Some consequences of the model are
described in this chapter.

2 Main Features of the Model

I would like to describe here some important features of my model of low-energy
quantum gravity [4, 5, 6]. It is supposed in it that the background of super-
strong interacting gravitons exists with the same temperature T as CMB. In
the sea of gravitons, a pressure force of single gravitons and a repulsive force
due to scattered gravitons are approximately equal for any pair of usual bodies.
However they are three order greater than the Newtonian force between bodies.
It leads immediately to the very surprising conclusion: Einstein’s equivalence
principle would be roughly violated for black holes, because this repulsive force
is equal to zero for them. The ratio of gravitational to inertial masses of a black
hole is equal to 1215.4. For a binary system of a black hole and a usual body,
the third Newtonian law will also be violated.

If single gravitons of running flux couple in pairs which are destructed in
collisions, then we have for the Newton constant G :

G ≡ 4
3
· D2c(kT )6

π3h̄3 · I2, (1)

where I2 = 2.3184 · 10−6. It follows from this expression that by T = 2.7K the
new constant D should have the value: D = 0.795 · 10−27m2/eV 2. The inverse-
square law of classical gravity describes the main quantum effect of this model.
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The possibility to calculate G makes the model underlying for general relativity.
To have the condition of big distances: σ(E,< ε >) � 4πr2, where σ(E,< ε >)
is the cross-section of interaction of gravitons with an average energy < ε > with
a particle having an energy of E, r is a distance between massive particles, be
fulfilled, it is necessary to accept an ”atomic structure” of matter, i.e. gravitons
cannot interact with big bodies in the aggregate, they may interact only with
”small particles” of matter - for example, with atoms.

For photons, there are two small effects in the sea of super-strong interacting
gravitons: average energy losses of a photon due to forehead collisions with
gravitons and an additional relaxation of a photonic flux due to non-forehead
collisions of photons with gravitons. The first effect leads to the geometrical
distance/redshift relation:

r(z) = ln(1 + z) · c/H0, (2)

where H0 is the Hubble constant. The both effects lead to the luminosity
distance/redshift relation:

DL(z) = c/H0 · ln(1 + z) · (1 + z)(1+b)/2, (3)

where the ”constant” b belongs to the range 0 - 2.137 (b = 2.137 for a very soft
radiation, and b → 0 for a very hard one). In the general case it should depend
on a rest-frame spectrum and on the redshift. Because of this, the Hubble
diagram should be a multi-value function of the redshift: for a given z, b may
have different values for different kinds of sources.

The average time delay of photons due to multiple interactions with gravitons
of the background is computed in my paper [8]. The two variants of evaluation of
the lifetime of a virtual photon are considered: 1) on a basis of the uncertainties
relation (it is a common place in physics of particles) and 2) using a conjecture
about constancy of the proper lifetime of a virtual photon. In the first case any
Lorentz violation is negligible: the ratio of the average time delay of photons
to their propagation time is equal approximately to 10−28; in the second one
(with a new free parameter of the model), the time-lag is proportional to the
difference

√
E01 − √

E02, where E01, E02 are initial energies of photons, and
more energetic photons should arrive later, also as in the first case. The effect
of graviton pairing is taken into account.

The Hubble constant may be computed in the model, too:

H0 =
1
2π

D · ε̄ · (σT 4) = (G
45

64π5

σT 4I2
4

c3I2
)1/2, (4)

where ε̄ is an average graviton energy, I4 = 24.866. We have for its value:
H0 = 2.14 · 10−18 s−1 = 66.875 km · s−1 · Mpc−1.

The additional deceleration w of massive bodies has the same nature as the
redshift of remote objects in the model: these effects are caused by collisions
with gravitons, but we should take into account both forehead and backhead
collisions with gravitons in the case of massive bodies [7]. The deceleration w
is equal to:

w = −w0 · 4η2 · (1 − η2)0.5, (5)
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where w0 ≡ H0c = 6.419 · 10−10 m/s2, if we use the theoretical value of H0 in
the model; η ≡ V/c, V is a body’s velocity relative to the graviton background.
For small velocities we have:

w � −w0 · 4η2. (6)

3 Modified Dynamics in the Graviton Back-
ground

Some results of numerical modeling of a motion of bodies in the central field by
the influence of this additional deceleration are described in this section [10].

Figure 1: A star orbit in a galaxy with M = 1010 · M� by u = 5 · 105 m/s and
r(0) = 1 kpc; t � 30 Gyr, single loops interflow, the change of the distance to
the center Δr/r(0) = −0.034.

In the Newtonian approach, if u is a more massive body’s velocity relative to
the background, M is its mass, and V = v+u is the velocity of the small body
relative to the graviton background, we will have now the following equation of
motion of the small body:

r̈ = −G
M

r2
· r
r

+
4w0

c2
(u · u − | v + u | · (v + u)), (7)

where r is a radius-vector of the small body.
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To model the motion in the central field, I have slightly modified the program
in C++ written for our work [9] to work in 3 dimensions using Eq. 7.

Figure 2: A star orbit in a galaxy with M = 1010 · M� by u = 5 · 105 m/s and
r(0) = 100 kpc; t � 300 Gyr, the first unclosed external loop corresponds to
29.2 Gyr.

Let us consider the initial conditions by which a material point trajectory in
the classical case is circular, i.e. v(0) = (G ·M/r(0))0.5, and v(0) ⊥ r(0), T is a
period of motion in the classical case of a circular trajectory by the given initial
distance to the center. To evaluate a stability of planetary orbits in the solar
system in a presence of the anomalous deceleration w, we can use the following
trick: to increase w by hand to see a very small change of the orbit’s radius, and
to re-calculate a value of the resulting effect. In a case of the Earth-like circular
orbit, i.e. by M = M�, r(0) = 1 AU, given u = 4·105 m/s and that three vectors
r, v, u lie in one plane, we get by the replacement: w → 104 ·w for one classical
period T : Δr/r(0) = −1.08 · 10−8 yr−1 by Δt = 10−10 ·T. It means that by the
anomalous deceleration w we should have now: Δr/r(0) = −1.08 · 10−12 yr−1.
For the case when u is perpendicular to r, v we have: Δr/r(0) = −7.2 · 10−13

yr−1. The Earth orbit will be stable enough to have not contradictions with the
estimated age of it in the solar system.

Results of modeling a star orbit in a galaxy in the similar way are shown
in Figures 1 and 2 for M = 1010 · M�, u = 5 · 105 m/s by r(0) = 1 kpc (Fig.
1) and r(0) = 100 kpc (Fig. 2). The ratio w0

r̈(0) is equal to 2.2 and 0.00022
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Figure 3: The deviation z(t) (solid) of a star orbit in a galaxy (with M =
1010 · M� by u = 5 · 105 m/s and r(0) = 10 kpc) from the classical plane (x, y)
for the case of v(0) = 1.2·(G·M/r(0))0.5; T = 0.781 Gyr, the graph of 10−4 ·y(t)
(dotted) is shown for the comparison.

respectively. By r(0) = 1 kpc the relative change of the distance to the center
is Δr/r(0) = −0.034 during the time interval of � 30 Gyr. By r(0) = 1 kpc the
first unclosed external loop in Fig. 2 corresponds to 29.2 Gyr. We see that at
all scales closed orbits do not exist in the model: bodies inspiral to the center
of attraction, but for the Earth-like orbits this effect is very small.

When u is perpendicular to r, v, another effect takes place: the motion of
the body in the central field is not planar. The deviation z(t) of a star orbit
in a galaxy (with M = 1010 · M� by u = 5 · 105 m/s and r(0) = 10 kpc)
from the classical plane (x, y) is shown in Figures 3 and 4. For the case of
v(0) = (G · M/r(0))0.5 (the classical orbit would be circular), deviations from
the classical plane (x, y) occur in one side off this plane, with returns to it (Fig.
4). In the case of the Earth-like circular orbit, the maximal deviation from the
classical plane is lesser of 1 mm by u = 4 · 105 m/s. If v(0) �= (G · M/r(0))0.5,
deviations from the classical plane (x, y) occur in both sides off this plane (Fig.
3, v(0) = 1.2 · (G · M/r(0))0.5), and the ones may be interpreted as a slow
revolution of a quasi-classical planar orbit around some axis in this plane.

The described results show two peculiarities of modified dynamics in the
model: an absence of closed orbits and a possibility of the non-planar motion
of massive bodies in the central field due to the anomalous deceleration by
the graviton background. These effects are negligible for the Earth-like orbits
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Figure 4: The same graphs as in Fig. 3, but for the case of v(0) = (G·M/r(0))0.5;
T = 0.781 Gyr, 10−4 · y (dotted), z (solid).

and, perhaps, too small to be observable during an acceptable time interval
in galaxies. But the interaction of photons with the background leads to the
observable effects which can be essential for our understanding of the universe.

4 Cosmological Consequences of the Model

Small additional effects of this model have essential cosmological consequences.
In the model, redshifts of remote objects and the dimming of supernovae 1a may
be interpreted without any expansion of the Universe and without dark energy.
Some of these consequences are discussed and confronted with galaxy number
counts, supernovae 1a, long GRBs, and QSOs observations in this section. It
is shown that the two-parametric theoretical luminosity distance of the model
fits observations with high confidence levels, if all data sets are corrected for no
time dilation. These two parameters are computable in the model.

4.1 Galaxy Number Counts

In this subsection, I consider galaxy number counts/redshift and counts/magnitude
relations on a basis of this model [11]. I assume here that a space is flat and
the Universe is not expanding.
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Figure 5: The graph of the function f2(z) (solid) of this model. The typical
error bar and data point are taken from paper by Loh and Spillar [13].

4.1.1 The Galaxy Number Counts-Redshift Relation

Total galaxy number counts dN(r) for a volume element dV = dΩr2dr is equal
to: dN(r) = ngdV = ngdΩr2dr, where ng is the galaxy number density (it is
constant in the no-evolution scenario), dΩ is a solid angle element. Using the
function r(z) of this model, we can re-write galaxy number counts as a function
of the redshift z:

dN(z) = ngdΩ(H0/c)−3 ln2(1 + z)
1 + z

dz. (8)

Let us introduce a function (see [12])

f2(z) ≡ (H0/c)3dN(z)
ngdΩz2dz

;

then we have for it in this model:

f2(z) =
ln2(1 + z)
z2(1 + z)

. (9)

A graph of this function is shown in Fig. 5; the typical error bar and data
point are added here from paper by Loh and Spillar [13]. There is not a visible
contradiction with observations. There is not any free parameter in the model
to fit this curve; it is a very rigid case.
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Figure 6: Magnitude changes Δm as a function of the redshift difference z2−z1

in this model for z1 = 0.001 (solid); 0.01 (dot); 0.1 (dash).

It is impossible to count a total galaxy number for big redshifts so as very
faint galaxies are not observable. For objects with a fixed luminosity, it is
easy to find how their magnitude m changes with a redshift. So as dm(z)
under a constant luminosity is equal to: dm(z) = 5d(lgDL(z)), we have for
Δm(z1, z2) ≡

∫ z2

z1
dm(z) :

Δm(z1, z2) = 5lg(f1(z2)/f1(z1)). (10)

The graph of this function is shown in Fig. 6 for z1 = 0.001; 0.01; 0.1.

4.1.2 Taking into Account the Galaxy Luminosity Function

Galaxies have different luminosities L, and we can write ng as an integral:
ng =

∫
dng(L), where dng(L) = η(L)dL, η(L) is the galaxy luminosity function.

I shall use here the Schechter luminosity function [14]:

η(L)dL = φ∗(
L

L∗
)αexp(− L

L∗
)d(

L

L∗
) (11)

with the parameters φ∗, L∗, α. So as we have by a definition of the luminosity
distance DL(z) that a light flux I is equal to: I = L

4πD2
L
(z)

, and a visible
magnitude m of an object is m = −2.5 lg I + C, where C is a constant, then m
is equal to:

m = −2.5 lg I + 5 lg DL(z) + (C − 4π). (12)
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Figure 7: The relative difference (f3(m) − a(m))/a(m) as a function of the
magnitude m for α = −2.43 by 10−2 < A1 < 102 (solid), A1 = 104 (dash),
A1 = 105 (dot), A1 = 106 (dadot).

We can write for L :

L = A · D2
L(z)
κm

, (13)

where κ = 100.4, A = const. For a thin layer with z = const we have:

dL =
∂L

∂m
· dm,

where
∂L

∂m
= −mκ · AD2

L(z)
κm

= −mκL. (14)

Then

dng(m, z) = −(φ∗κ) · lα(m, z) exp(−l(m, z)) · (m · l(m, z))dm, (15)

where (−dm) corresponds to decreasing m by growing L when z = const, and

l(m, z) ≡ L(m, z)
L∗

.

Let us introduce a function f3(m, z) with a differential

df3(m, z) ≡ dN(m, z)
dΩ(−dm).

(16)
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We have for this differential in the model:

Figure 8: Number counts f4(m, z) (dot) and f5(m1,m2) (solid) (logarithmic
scale) as a function of the redshift by A1 = 105 for α = −2.43, m1 = 10 and
different values of m = m2 : 15, 20, 25, 30; m = 10 (only f4(m, z)).

df3(m, z) = (
φ∗κ
a3

) · m · lα+1(m, z) · exp(−l(m, z)) · ln2(1 + z)
(1 + z)

dz, (17)

where a = H0/c. An integral on z gives the galaxy number counts/magnitude
relation:

f3(m) = (
φ∗κ
a3

) · m ·
∫ zmax

0

lα+1(m, z) · exp(−l(m, z)) · ln2(1 + z)
(1 + z)

dz; (18)

I use here an upper limit zmax = 10. To compare this function with observations
by Yasuda et al. [15], let us choose the normalizing factor from the condition:
f3(16) = a(16), where

a(m) ≡ Aλ · 100.6(m−16) (19)

is the function assuming ”Euclidean” geometry and giving the best fit to obser-
vations [15], Aλ = const depends on the spectral band. In this case, we have two
free parameters - α and L∗ - to fit observations, and the latter one is connected
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with a constant A1 ≡ A
a2L∗

if

l(m, z) = A1
f2
1 (z)
κm

.

Figure 9: The theoretical Hubble diagram μ0(z) of this model (solid); Super-
novae 1a observational data (580 points of the SCP Union 2.1 compilation) are
taken from [18] and corrected for no time dilation.

If we use the magnitude scale in which m = 0 for Vega then C = 2.5 lg IV ega,
and we get for A1 by H0 = 2.14 · 10−18 s−1 (it is a theoretical estimate of H0

in this model):

A1 � 5 · 1017 · L�
L∗

, (20)

where L� is the Sun luminosity; the following values are used: LV ega = 50L�,
the distance to Vega rV ega = 26 LY.

Without the factor m, the function f3(m) by exp(−l(m, z) → 1 would be
close to a(m) by α = −2.5. Matching values of α shows that f3(m) is the closest
to a(m) in the range 10 < m < 20 by α = −2.43. The ratio f3(m)−a(m)

a(m) is
shown in Fig. 7 for different values of A1 by this value of α (to turn aside
the problem with divergencies of this function by small L for negative values
of α, all computations are performed here for z > 0.001). All such the curves
conflow by A1 ≤ 102 (or 5 · 1015 < L∗), i.e. observations of the galaxy number
counts/magnitude relation are non-sensitive to A1 in this range. For fainter
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Figure 10: Values of k(z) (580 points) and < k(z) >, < k(z) > +σk, < k(z) >
−σk (lines) for the SCP Union 2.1 compilation.

magnitudes 20 < m < 30, the behavior of all curves is identical: they go
below of the ratio value 1 with the same slope. If we compare this figure with
Figs. 6,10,12 from [15], we see that the considered model provides a no-worse
fit to observations than the function a(m) if the same K-corrections are added
(perhaps, even the better one if one takes into account positions of observational
points in Figs. 6,10,12 from [15] by m < 16 and m > 16) for the range 102 <
A1 < 107 that corresponds to 5 · 1015 > L∗ > 5 · 1010.

Observations of N(z) for different magnitudes are a lot more informative. If
we define a function f4(m, z) as

f4(m, z) ≡ (
a3

φ∗κ
) · df3(m, z)

dz
, (21)

this function is equal in the model to:

f4(m, z) = m · lα+1(m, z) · exp(−l(m, z)) · ln2(1 + z)
(1 + z)

. (22)

Galaxy number counts in the range m1 < m < m2 are proportional to the
function:

f5(m1,m2) ≡
∫ m2

m1

f4(m, z)dm = (23)

=
∫ m2

m1

m · lα+1(m, z) · exp(−l(m, z)) · ln2(1 + z)
(1 + z)

dm.
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Figure 11: The theoretical Hubble diagram μ0(z) of this model with b = 2.365
(solid); Supernovae 1a observational data (31 binned points of the JLA com-
pilation) are taken from Tables F.1 and F.2 of [19] and corrected for no time
dilation.

Graphs of both f4(m, z) and f5(m1,m2) are shown in Fig. 8 by α = −2.43, A1 =
105; they are very similar between themselves. We see that even the observa-
tional fact that a number of visible galaxies by z ∼ 10 is very small allows us to
restrict a value of the parameter A1 much stronger than observations of N(m).
Quasar number counts are considered in [11], too.

4.2 Fitting Observations with the Theoretical Luminosity
Distance

4.2.1 The Hubble Diagram of This Model

In this model, the luminosity distance is given by Eq. 3. The theoretical value
of relaxation factor b for a soft radiation is b = 2.137. Let us begin with
this value of b, considering the Hubble constant as a single free parameter to
fit observations [16]. All observational data should be corrected for no time
dilation as: μ(z) → μ(z) + 2.5 · lg(1 + z) in this model without expansion.

Two big compilations of SN 1a observations are used here: the SCP Union
2.1 compilation (580 supernovae) [18] and the JLA compilation (740 supernovae)
[19]. These compilations may be used to evaluate the Hubble constant in this
approach. Using the definition of distance modulus: μ(z) = 5lgDL(z)(Mpc) +
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Figure 12: Values of k(z) (31 binned points) and < k(z) >, < k(z) > +σk, <
k(z) > −σk (lines) for the JLA compilation.

25, we get from Eq. 3 for the theoretical distance modulus μ0(z): μ0(z) =
5lgf1(z)+k, where f1(z) ≡ ln(1+ z) · (1+ z)(1+b)/2, and the constant k is equal
to:

k ≡ 5lg(c/H0) + 25.

If the model fits observations, then we shall have for k(z):

k(z) = μ(z) − 5lgf1(z), (24)

where μ(z) is an observational value of distance modulus. The weighted average
value of k(z) :

< k(z) >=
∑

k(zi)/σ2
i∑

1/σ2
i

, (25)

where σ2
i is a dispersion of μ(zi), will be the best estimate of k. Here, σ2

i is
defined as: σ2

i = σ2
i stat + σ2

i sys. The average value of the Hubble constant may
be found as:

< H0 >=
c · 105

10<k(z)>/5 · Mpc
. (26)

For a standard deviation of the Hubble constant we have:

σ0 =
ln10· < H0 >

5
· σk, (27)
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Figure 13: The theoretical Hubble diagram μ0(z) of this model (solid); long
GRBs observational data (109 points) are taken from Tables 1,2 of [20] and
corrected for no time dilation.

where σ2
k is a weighted dispersion of k, which is calculated with the same weights

as < k(z) > .
The theoretical Hubble diagram μ0(z) of this model with < k(z) > which is

calculated using the SCP Union 2.1 compilation [18] is shown in Fig. 9 together
with observational points corrected for no time dilation. Values of k(z) (580
points) and < k(z) >, < k(z) > +σk, < k(z) > −σk (lines) are shown in Fig.
10. For this compilation we have: < k > ±σk = 43.216± 0.194. Calculating the
χ2 value as:

χ2 =
∑ (k(zi)− < H0 >)2

σ2
i

, (28)

we get χ2 = 239.635. By 579 degrees of freedom of this data set, it means that
the hypothesis that k(z) = const cannot be rejected with 100% C.L. Using
Eqs. 25, 26, we get for the Hubble constant from the fitting:

< H0 > ±σ0 = (2.211 ± 0.198) · 10−18 s−1 = (68.223 ± 6.097)
km

s · Mpc
.

The theoretical value of the Hubble constant in the model: H0 = 2.14·10−18 s−1 =
66.875 km · s−1 · Mpc−1 belongs to this range. The traditional dimension
km · s−1 · Mpc−1 is not connected here with any expansion.
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Figure 14: Values of k(z) (109 points) and < k(z) >, < k(z) > +σk, < k(z) >
−σk (lines) for long GRBs.

To repeat the above calculations for the JLA compilation, I have used 31
binned points from Tables F.1 and F.2 of [19] (diagonal elements of the cor-
relation matrix in Table F.2 are dispersions of distance moduli). We have for
this compilation by b = 2.137: < k > ±σk = 43.174 ± 0.049 with χ2 = 51.66.
By 30 degrees of freedom of this data set, it means that the hypothesis that
k(z) = const cannot be rejected only with 0.83% C.L. Varying the value of b,
we find the best fitting value of this parameter: b = 2.365 with χ2 = 30.71.
It means that the hypothesis that k(z) = const cannot be rejected now with
43.03% C.L. This value of b is 1.107 times greater than the theoretical one. For
the Hubble constant we have in this case:

< H0 > ±σ0 = (2.254 ± 0.051) · 10−18 s−1 = (69.54 ± 1.58)
km

s · Mpc
.

Results of the best fitting are shown in Figs. 11,12.
If observations of long Gamma-Ray Bursts (GRBs) for small z are calibrated

using SNe 1a, observational points are fitted with this theoretical Hubble dia-
gram, too [6]. But for hard radiation of GRBs, the factor b may be smaller,
and the real diagram for them may differ from the one for SNe 1a. With this
limitation, the long GRBs observational data (109 points) are taken from Tables
1,2 of [20] and fitted in the same manner with b = 2.137. In this case we have:
< k > ±σk = 43.262 ± 8.447 with χ2 = 70.39. By 108 degrees of freedom of
this data set, it means that the hypothesis that k(z) = const cannot be rejected
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with 99.81% C.L. For the Hubble constant we have in this case:

< H0 > ±σ0 = (2.162 ± 0.274) · 10−18 s−1 = (66.71 ± 8.45)
km

s · Mpc
.

Results of the fitting are shown in Figs. 13,14.

Figure 15: The theoretical Hubble diagram μ0(z) of this model with b = 1.11
(solid); GRB observational data with the Yonetoku calibration (44 points) are
taken from Table 3 of [21] and corrected for no time dilation.

A data set of 44 long Gamma-Ray Bursts was compiled with the redshift
range of [0.347; 9.4] [21], in which two empirical luminosity correlations (the Am-
ati relation and Yonetoku relation) were used to calibrate observations. Because
the GRB Hubble diagram calibrated using luminosity correlations is almost in-
dependent on the GRB spectra, as it has been shown by the authors, I use here
values of μ(zi)±σi from columns 7 of Tables 2 and 3 of [21], based on the Band
function, but with both calibrations. If this data set is fitted in the same manner
with b = 2.137, we have for the Amati calibration: < k > ±σk = 43.168± 1.159
with χ2 = 40.585. By 43 degrees of freedom of this data set, it means that
the hypothesis that k(z) = const cannot be rejected with 57.66% C.L. For the
Hubble constant we have in this case:

< H0 > ±σ0 = (2.26 ± 1.206) · 10−18 s−1 = (69.732 ± 37.226)
km

s · Mpc
.
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Figure 16: The theoretical Hubble diagram μ0(z) of this model (solid); quasar
observational data (18 binned points) [23] are corrected for no time dilation.

By b = 2.137, we have for the Yonetoku calibration: < k > ±σk = 43.148±1.197
with χ2 = 43.148. It means that the hypothesis that k(z) = const cannot be
rejected with 46.5% C.L. For the Hubble constant we have in this case:

< H0 > ±σ0 = (2.281 ± 1.257) · 10−18 s−1 = (70.386 ± 38.793)
km

s · Mpc
.

But best fitting values of b are less than 2.137 in both cases: b = 1.885 for the
Amati calibration (< k > ±σk = 43.484 ± 1.15, χ2 = 39.92, with 60.57% C.L.
and < H0 > ±σ0 = (1.954±1.035) ·10−18 s−1 = (60.309±31.932)km/s/Mpc.),
and b = 1.11 for the Yonetoku one (< k > ±σk = 44.439 ± 1.037, χ2 =
32.58, with 87.62% C.L. and < H0 > ±σ0 = (1.259 ± 0.601) · 10−18 s−1 =
(38.841 ± 18.546)km/s/Mpc.). Namely smaller values of this parameter for
bigger photon energies are expected in the model. For best fitting values of b,
values of distance moduli are overestimated in both calibrations: on ∼ 0.225
for the Amati calibration, and on ∼ 1.18 for the Yonetoku calibration, if we
compare values of < k > with its theoretical value of 43.259. It leads to the
corresponding underestimation of the Hubble constant. Results of the best
fitting for the Yonetoku calibration are shown in Fig. 15.

A new method to test cosmological models was introduced, based on the
Hubble diagram for quasars [22]. The authors built a data set of 1,138 quasars
for this purpose. Some later, this method and the data set were used to compare
different models [23]. I have used here the binned quasar data set (18 binned
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points) of the paper [23] to verify my model in the described above manner.
This data set contains the sum of observed distance modulus and an arbitrary
constant A. To find this unknown constant for the calibration of QSO observa-
tions, I have computed < k′(z) >=< k(z) > +A and replaced < k(z) > by its
value for the JLA compilation; it gave: A = 50.248. This linking means that
the average values of the Hubble constant should be identical for the two data
sets. Subtracting this value of A, we get from the fitting of the quasar data by
b = 2.137: < k > ±σk = 43.175 ± 0.340 with χ2 = 23.378. By 17 degrees of
freedom of this data set, it means that the hypothesis that k(z) = const cannot
be rejected now with 13.73% C.L. For the Hubble constant we have:

< H0 > ±σ0 = (2.253 ± 0.340) · 10−18 s−1 = (69.534 ± 10.873)
km

s · Mpc
.

Results of the fitting are shown in Fig. 16.

4.2.2 Comparison with the LCDM Cosmological Model

The luminosity distance in the concordance cosmology by w = −1 is:

DL(z) = c/H0 · (1 + z)
∫ z

0

[(1 + x)3ΩM + (1−ΩM )]−0.5dx ≡ c/H0 · f2(z), (29)

where f2(z) ≡ (1 + z)
∫ z

0
[(1 + x)3ΩM + (1 − ΩM )]−0.5, ΩM is the normalized

matter density. To compare the above results of fitting with results for the
LCDM cosmology, let us replace f1(z) → f2(z) and repeat the calculations. Of
course, all data sets should remain now corrected for time dilation. The results
of fitting are presented in Table 1; for convenience, the main above results for
the model of low-energy quantum gravity are collected in the table, too. It is
obvious, that confidence levels for both models do not allow to reject any of
them.

It is a big surprise that the Einstein–de Sitter model (Eq. 29 with ΩM =
1) cannot be rejected on a base of the full SCP Union 2.1 data set and the
χ2−criterion. We get χ2 = 428.579 and 99.9999% C.L. The cause is in a big
number of small-z supernovae 1a in this set; it leads to a big number of degrees
of freedom, but to small differences of χ2 for models with similar values of DL(z)
in this range of z. But if one splits the data set in two subsets, for example with
z ≤ 0.5 and z > 0.5, and uses the first subset to evaluate < H0 >, then using
this < H0 > and the second subset to compute χ2 by much smaller number
of degrees of freedom, one can reject this model with high probability (when
z > 0.5, we get χ2 = 247.551 by 166 observations and 0.004% C.L.). Results for
the model of low-energy quantum gravity and the LCDM cosmological model
are not essentially changed by the splitting. But the Einstein–de Sitter model
with ΩM = 1 bests the LCDM cosmological model with any amount of dark
energy for the 44 long GRBs data set with the Yonetoku calibration.
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Table 1: Results of fitting the Hubble diagram with the model of low-energy
quantum gravity and the LCDM cosmological model. The best fitting values
of b and ΩM for 44 long GRBs are marked by the bold typeface.

the model of low-energy quantum gravity
Data set b χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [18] 2.137 239.635 100 68.22 ± 6.10
JLA [19] 2.365 30.71 43.03 69.54 ± 1.58
109 long GRBs [20] 2.137 70.39 99.81 66.71 ± 8.45
44 long GRBs [21], 2.137 40.585 57.66 69.73 ± 37.23
the Amati calibration 1.885 39.92 60.57 60.31 ± 31.93
44 long GRBs [21], 2.137 43.148 46.5 70.39 ± 38.79
the Yonetoku calibration 1.11 32.58 87.62 38.84 ± 18.55
quasars [23] 2.137 23.378 13.73 69.53 ± 10.87

the LCDM cosmological model
Data set ΩM χ2 C.L., % < H0 > ±σ0

SCP Union 2.1 [18] 0.30 217.954 100 69.68 ± 5.94
JLA [19] 0.30 29.548 48.90 70.08 ± 1.56
109 long GRBs [20] 0.30 66.457 99.94 70.04 ± 8.62
44 long GRBs [21], 0.30 40.777 56.81 68.99 ± 36.92
the Amati calibration 0.49 40.596 57.61 60.75 ± 32.44
44 long GRBs [21], 0.30 38.456 66.85 69.59 ± 36.10
the Yonetoku calibration 1.0 34.556 81.72 49.51 ± 24.35
quasars [23] 0.30 21.368 21.03 69.68 ± 10.42

4.3 The Hubble Parameter of This Model

If the geometrical distance is described by Eq. 2, for a remote region of the
universe we may introduce the Hubble parameter H(z) in the following manner:

dz = H(z) · dr

c
, (30)

to imitate the local Hubble law. Taking a derivative dr
dz , we get in this model

for H(z) :
H(z) = H0 · (1 + z). (31)

It means that in the model:
H(z)

(1 + z)
= H0. (32)

The last formula gives us a possibility to evaluate the Hubble constant using
observed values of the Hubble parameter H(z). To do it, I use here 28 points of
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Figure 17: The ratio H(z)/(1 + z) ± σ and the weighted value of the Hubble
constant < H0 > ±σ0 (horizontal lines). Observed values of the Hubble param-
eter H(z) are taken from Table 1 of [24] and one point for z < 0.1 is taken from
[25].

H(z) from [24] and one point for z < 0.1 from [25]. The last point is the result
of HST measurement of the Hubble constant obtained from observations of 256
low-z supernovae 1a. Here I refer this point to the average redshift z = 0.05.
Observed values of the ratio H(z)/(1 + z) with ±σ error bars are shown in Fig.
17 (points). The weighted average value of the Hubble constant is calculated
by the formula:

< H0 >=

∑ H(zi)
1+zi

/σ2
i∑

1/σ2
i

. (33)

The weighted dispersion of the Hubble constant is found with the same
weights:

σ2
0 =

∑
(H(zi)

1+zi
− < H0 >)2/σ2

i∑
1/σ2

i

. (34)

Calculations give for these quantities:

< H0 > ±σ0 = (64.40 ± 5.95) km s−1 Mpc−1. (35)

The weighted average value of the Hubble constant with ±σ0 error bars are
shown in Fig. 17 as horizontal lines.
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Figure 18: The ratio H(z)/(1+z)±σ and the weighted value of the Hubble con-
stant < H0 > ±σ0 (horizontal lines). Observed values of the Hubble parameter
H(z) are taken from [26].

Calculating the χ2 value as:

χ2 =
∑ (H(zi)

1+zi
− < H0 >)2

σ2
i

, (36)

we get χ2 = 16.491. By 28 degrees of freedom of our data set, it means that the
hypothesis described by Eq. 31 cannot be rejected with 95% C.L.

If we use another set of 21 cosmological model-independent measurements
of H(z) based on the differential age method [26], we get (see Fig. 18):

< H0 > ±σ0 = (63.37 ± 4.56) km s−1 Mpc−1. (37)

The value of χ2 in this case is smaller and equal to 3.948. By 21 degrees of
freedom of this new data set, it means that the hypothesis described by Eq. 31
cannot be rejected with 99.998% C.L.

Some authors try in a frame of models of expanding universe to find deceleration-
acceleration transition redshifts using the same data set (for example, [24]). The
above conclusion that the ratio H(z)/(1 + z) remains statistically constant in
the available range of redshifts is model-independent. For the considered model,
it is an additional fact against dark energy as an admissible alternative to the
graviton background.
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4.4 The Alcock-Paczynski Test of the Model

The Alcock-Paczynski cosmological test consists in an evaluation of the ratio of
observed angular size to radial/redshift size [27]. This test has been carried out
for a few cosmological models by Fulvio Melia and Martin Lopez-Corredoira
[28]. They used model-independent data on BAO peak positions from [29]
and [30]. For two mean values of z (< z >= 0.57 and < z >= 2.34), the
measured angular-diameter distance dA(z) and Hubble parameter H(z) give for
the observed characteristic ratio yobs(z) of this test the values: yobs(0.57) =
1.264± 0.056 and yobs(2.34) = 1.706± 0.076. In this model we have: dcom(z) =
dA(z) = r(z), where dcom(z) is the cosmological comoving distance. Because
the Universe is static here, the ratio y(z) for this model is defined as:

y(z) =
r(z)

z · d
dz r(z)

=
r(z) · H(z)

cz
= (1 +

1
z
) · ln(1 + z), (38)

where H(z) is defined by Eq. 31. This function without free parameters charac-
terizes any tired light model (model 6 in [28]). We have only two observational
points to fit them with this function. Calculating the χ2 value as:

χ2 =
∑ (yobs(zi) − y(zi))2

σ2
i

, (39)

we get χ2 = 0.189, that corresponds to the confidence level of 91% for two
degrees of freedom.

5 The Light-from-Nowhere Effect

The additional relaxation of a photonic flux of a remote galaxy due to non-
forehead collisions of photons with gravitons is accompanied with the deviation
of some part of photons from the galaxy-observer direction. Given multiple
collisions on their long ways, the number of initial photons scattered in such
the manner rises quickly, and each of them may be scattered again and again.
It should lead to the appearance of a diffuse background with a complex spec-
trum. A tentative detection of a diffuse cosmic optical background [33] may be
connected with this light-from-nowhere effect.

To evaluate how big is the ratio δ(z) of the scattered flux to the the remainder
Φ(z) ≡ L/D2

L(b, z) reaching the observer, we can compute the flux Φ0(z) ≡
L/D2

L(0, z), where L is the luminosity, DL(b, z) and DL(0, z) are luminosity
distances by b �= 0 and b = 0. Φ0(z) corresponds to the absence of non-forehead
collisions. Then the ratio may be defined as:

δ(z) ≡ (Φ0(z) − Φ(z))/Φ(z). (40)

Using Eq. 3 we get:
δ(z) = (1 + z)b − 1. (41)

24



We have by b = 2.137: δ(1) = 3.34, δ(2) = 9.46, δ(10) = 167.06. To find the
sky brightness in the optical range, for example, it is necessary to know the
ratio δ(z), and, at least, the light flux of galaxies and their number counts by
different redshifts.

6 Conclusion

The Newton constant G has been measured up to now with the relative standard
uncertainty only ∼ 10−4 (about the long story of these measurements, see [31]).
In this model, the Newton constant arises as an average value of the stochastic
variable characterizing the interaction of a couple of bodies with a huge number
of gravitons. Uncertainties of G and T are connected as:

ΔG

G
= 6

ΔT

T
.

If fluctuations of the temperature of the graviton background have the same
order of magnitude as the ones of the CMB temperature, then ΔG/G ≤ 6 ·10−4.
It is important that measured values of G may depend on the orientation of two
bodies relatively to remote stars. Further attempts to measure G taking into
account these circumstances may be interesting for the verification.

In this model, the luminosity distance is a multi-value function of the redshift
due to different values of the factor b for soft and hard radiation. It opens
another way to verify the model by cosmological observations comparing the
Hubble diagrams of sources with different spectra. But to realize it we should
have the possibility to calibrate the luminosity, for example, of remote GRBs
independently of the Hubble diagram of supernovae Ia.

The Hubble parameter H(z) of this model is a linear function of z: H(z) =
H0 · (1 + z) (as well as in the Rh = ct cosmological model [32]), that is in
a big discrepancy with ΛCDM. As it was shown, this function fits available
observations of H(z) very well [6, 32], and further investigations of this problem
are important.

The most important cosmological consequence of the model is the local quan-
tum nature of redshifts of remote objects. At present, advanced LIGO tech-
nologies may be partly used to verify this redshift mechanism in a ground-based
laser experiment [6]. One should compare spectra of laser radiation before and
after passing some big distance in a high-vacuum tube. If one constructs a future
version of the LIGO detector with some additional equipment, the verification
of the redshift mechanism may be performed in parallel with the main task or
during a calibration stage of the detector. The positive expected result of such
the experiment would mean also that the universe does not expand.

It seems that to open minds for the broader perception of possible mani-
festations of quantum gravity and ways to its future theory, we should doubt
in some commonly accepted things. The very bright example is the claimed
existence of dark energy that is unnecessary in the considered model. If red-
shifts of remote objects have the local quantum nature, the expansion of the
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universe becomes not necessary, and some observable effects may be interpreted
as the long-awaited manifestation of quantum gravity but in the absolutely un-
expected scale of energies ∼ 10−3 eV. This scale may move us much closer to
the understanding of the existing chasm between general relativity and quantum
mechanics. And, perhaps, it can give us chances to construct if not a bridge
between them, then a new common base for both theories.
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