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Extending an existing quantum optic model for beamsplitters, a comprehensive model is developed from the
first principles of quantum physics to describe photons traversing linear optical devices of arbitrary number
of ports and even a circuit of devices, which are essential components of photonic quantum computing gates
and circuits. The model derives the quantum operators and states of the photons at the egress ports of a
device, gate or circuit from those at the ingress ports. As an application and validation, it is used to model
the experiment that discovered the Hong-Ou-Mandel (HOM) effect. The experiment is not only a landmark
in the research of quantum optics but also important to photonic quantum computing design.

I. INTRODUCTION

Quantum computing has generated great attention in
research. The proposal that a complete set of universal
quantum computing gates – Hadamard, phase shift and
control-not (C-NOT) gates – can be made mainly from
linear optical devices including phase-shift plates, mir-
rors and beamsplitters1 is particularly exciting and has
been named after the authors Knill et al as the KLM pro-
tocol. With advanced integrated photonic technologies,
hundreds of such devices concatenated or otherwise con-
nected can be made into not only gates but also circuits2.
The ingress side of a gate or circuit not only has photons
carrying information of qubits entering its input ports,
but may also have ancilla photons carrying no informa-
tion entering ancilla ports13. Similarly on the egress side,
it may have information carrying photons exiting its out-
put ports and ancilla photons measured or discarded at
the rest of the egress ports. To study and design such
increasingly complicated gates and circuits operating in
the quantum regime of one or a few photons, we need
a sophisticated quantum optic model. Even while some
of the research attention has shifted from the KLM pro-
tocol to cluster state quantum computing scheme, linear
optical devices are still widely used and their quantum
model remain important4.

While quantum models for single or dual port devices
exist, none exists for multiple port or circuits of devices.
Mirrors and phase-shift plates are single (one ingress
and one egress) port devices, and their quantum models
are trivial. Beamsplitters, which are dual-port devices
used in building Hadamard and C-NOT gates, have gone
through extensive study and have many quantum models.
Most models treat a beamsplitter as a black box, assume
it destroys the photons entering the ingress ports and re-
creates them before they exit the egress. Such a black-
box model needs to impose restrictions such as energy
conservation to derive how the egressing photons relate
to ingressing ones1,5. One even needs to impose SU(2)
subgroup restriction6 and concludes that beamsplitters
cause fourth-order interference in the quantum regime7.
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We find only one model, by Fearn and Loudon,8 that
is derived from the first principles of quantum physics.
However, it is not as easy to derive and understand as
the blackbox models, and thus is mostly not used.

The shortcomings of the black-box models become ob-
vious in the modeling of gates and circuits for quantum
computing. They not only cannot be adopted to model
multiple port devices or circuits of devices, but also could
be wrongly used to infer what goes on inside the black
boxes – it has been inferred that one photon impinging
on a beamsplitter port causes 90-degree phase shift of
another impinging on the second port9,10 and results in
the so-called quantum interference. Not the least, such
incorrect inference has even been used in the design of
quantum computing gates11.
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FIG. 1. Schematic of HOM experiment in which signal and
idler photons from parametric down converter enter a beam
splitter’s ingress ports and exit its egress ports 1 and 2.

The inference of quantum interference has its origin
in the Hong-Ou-Mandel (HOM) experiment9. The ex-
periment shows that when two indistinguishable pulsed
photons (signal and idler photons from optical down con-
version) go through a beamsplitter as shown in the sim-
plified scheme in Fig.1, the probability of detecting co-
incidentally at both detectors placed respectively in the
two egress paths dips to zero when the optical paths from
the source of the photons to the two detectors are equal.
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Such a coincidental detection dip is called the HOM ef-
fect, named after the authors Hong et al, and has been
demonstrated repeatedly. Followup experiments demon-
strating the same or similar effect have used various se-
tups including replacing the beamsplitter with a fiber
four-way mixer12 or similar passive optical devices13, or
replacing the photon sources with two-trapped atoms14

or a single quantum dot15. The HOM experiment is a
landmark in demonstrating the quantum nature of pho-
tons and is influential to quantum computing in the fol-
lowing ways:

• the photon generation, detection and manipulation
techniques used in it are widely used in today’s re-
search on quantum computing16,

• the blackbox model used to model the experiment
is also used in quantum computing research,

• the inference of quantum interference has been used
in the design of quantum computing gates11.

In this article, we extend the Fearn and Loudon model
to a quantum model for generic linear optical devices or
circuits of devices in Section III. Before that, we intro-
duce the classical mode model in Section II. In both sec-
tions, we exemplify and validate the models by applying
them to the HOM experiment.

II. THE CLASSICAL WAVE MODEL

A. Electric field and modes

We first start with the classical wave model, which
1) establishes the mode model to be used in the quan-
tum model and 2) offers insight to the HOM effect. In
the simplest case, the signal light in Fig.1 is a traveling
plain wave propagating in the x-axis direction towards
the beamsplitter, and its electric field wave function is

Es(x, y, z, τ) = E0e
i(ksx−ωsτ) (1)

where ks and ωs are the signal light’s wavevector and
angular frequency respectively, and ks = cωs. We use
τ instead of t for time to avoid confusion with transmi-
tance t, which will be used below. The electric field is ex-
pressed as the product of amplitude E0 and a mode func-
tion, which satisfies Maxwell equations and the boundary
conditions. We can generalize the wave function to cover
experiments conducted using optical fibers by including
the lateral mode functions u(y, z) and u(z, y) – assuming
fibers are placed in the x and y-axis directions. We can
write the above electric field as

Es(x, y, z, τ) = E0u(y, z)ei(ksx−ωsτ) (2)

Without losing generality, we ignore details such as polar-
ization (i.e. by assuming polarization in the z direction).
We also assume each of the fibers supports only one lat-
eral mode u and the longitudinal wavevector ks = cωs

is true. Obviously, in the extreme case of u(y, z) = 1,
the expression is no different from a plane wave. So, we
will use equation 2 in the following discussion. Of course,
similarly to the idler light, we can write the electric field
Ei(x, y, z, τ) traveling along the y-axis toward the beam-
splitter.

As shown in Fig. 1, the beamsplitter splits the ingress
signal and idler lights each into two paths on the egress
side. Two detectors, 1 and 2, are placed on the two
egress paths. We shall assume that the beamsplitter be-
ing placed at the coordinate origin at first before being
displaced to a d distance from the origin and that the
detectors are placed at distance D from the coordinate
origin. d is a variable in the experiment, and different
values of d lead to different observation in the detectors.
We make similar assumptions of the optical fiber versions
of beamsplitters so that we are not bogged down by the
physical details. In the classical model, when such an
ingress signal light goes through a beamsplitter, the elec-
tric field at the egress sides, can be written as

Es(x, y, z, τ) = E0 {tu(y, z)ei(ksx−ωsτ)

+ru(z, x)ei[ks(y+2d)−ωsτ ]} (3)

where t and r are respectively the optical transmitance
and reflectance of the beamsplitter.

We use s and i to label the variables of the two ingress
lights because our example – the HOM experiment – used
the signal and idler lights from a parametric down con-
verter. However, through out this article, we make no as-
sumption whether the two ingress lights are generated by
a parametric down converter. We do assume their phases
are related and their amplitudes are the same. Assum-
ing equal amplitudes is for simplicity of argument and is
ignored when introducing the quantum model. However,
the phases are correlated is essential.

As with the signal light, we can write the idler light
wave function as

Ei(x, y, z, τ) = E0 {tu(z, x)ei(kiy−ωiτ)

−r∗u(x, y)ei[ki(x−2d)−ωiτ ]} (4)

We need to stress that the Es expressed above (and
similarly Ei) is an eigen solution or a mode of the wave
function. Such a mode is different from the free space (or
single fiber) mode because the beamsplitter introduces a
boundary condition different from the free space. It takes
only one path on the ingress side of the beamsplitter but
takes both of the egress paths. We call it the ingress-
centric mode representation because the mode is confined
to only one ingress path. An alternative is what we call
the egress-centric mode representation, which is easier
for discussing what the detectors observe. With such
representation, a mode propagates along one egress path
but along both ingress paths. For example, in egress
path 1, the mode function is u(z, x)ei(k1y−ω1τ) (ignoring a
normalization factor) on the egress side. And the electric
field is

E1(x, y, z, τ) = E0u(z, x)ei(k1y−ω1τ)[t+ rei(2k1d)]. (5)
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And on the ingress paths,

E1(x, y, z, τ) = E0[u(y, z)ei(k1x−ω1τ)+u(z, x)ei(k1y−ω1τ)].
(6)

Apparently, we are assuming k1 = ks = ki above. We
can similarly write E2. In such representation, E1 and
E2 are what detectors 1 and 2 observe, respectively. If we
generalize our discussion to a generic linear optical device
or even a circuit of devices, we can write the electric field
in terms of its ingress-centric modes {vn} where n =
1, 2, · · · , N and egress-centric modes {v′m} where m =
1, 2, · · · ,M ,

E(x, y, z, τ) =
N∑
n
Envn(x, y, z)e−iωnτ

=
M∑
m

E′mv′m(x, y, z)e−iωnτ .

(7)

We can write

E′m =

N∑
n

αm,nEn (8)

with

αm,n =

∫
dxdydzv′

∗
m(x, y, z)vn(x, y, z)δωm,ωn

. (9)

Here we assume the modes are orthonormal to each other
within their own set. And δωm,ωn

is the Kronecker delta
function, which is one when ωm = ωn and is zero other-
wise. Further the matrix [αm,n] is unitary if and only if
the modes are orthonormal within their own set. We will
find the importance of the matrix [αm,n] in the section
on quantum model.

We now come back to the beamsplitter in HOM exper-
iment. If we assume the transmitance t is a real number,
ignoring any absolute phase shift, and the reflectance r
introduces a relative phase shift of θ, or r = |r|eiθ, we see
that the reflected idler wave experiences a phase shift dif-
ferent from that of the signal except when the θ+ 2kd is
90 or 270 degrees. That means, under these exceptional
phase shift conditions, the peaks and valleys of the trans-
mitted signal and idler lights are completely offset from
those of reflected lights, and therefore the probably of
detecting them simultaneously is zero. This is a result
of classical wave interference. We shall see more clearly
from both the classical and quantum models below that
this is one of the factors leading to the HOM effect. A
symmetric beamsplitter has θ being 90 or 270 degrees
and conveniently put the HOM effect dip at d = 0. How-
ever, the convenience is only for theoretic derivation and
does not affect experiments one way or another.

The HOM experiment uses pulsed lights, which are
assembles of spectrum of frequencies. Instead of writ-
ing the frequency distributions, we assume the equivalent
wavevector distributions are φ(k) – the same for ks and
ki. If we assume the Fourier transform of φ(k) is Φ(x),
we have

E1(x, y, z, τ) = E0u(z, x) [tΦ(y − cτ)
+rΦ(y + 2d− cτ)]

(10)

and

E2(x, y, z, τ) = E0u(y, z) [tΦ(x− cτ)
−r∗Φ(x− 2d− cτ)]

(11)

B. Detection and correlation probability

The detectors count the number of electrical pulses
they register. In the classical model, the counting rate are
proportional to the intensities of the electrical fields, and
the coincident probability of detecting at both detectors
within the counting period is proportional to the product
of detecting in both detectors.

The HOM experiment has counting periods much
longer than the optical pulses. However, it is beneficial
if we look into a different scenario in which the count-
ing period is shorter than the optical pulses. Conducting
an experiment of such scenario shall offer an alternative
to verify our model and interpretation of the HOM ef-
fect. Further, the result which we derive for this scenario
offers much better understanding of the interference fac-
tors, which may contribute to HOM effect. In such an
experiment, the coincident probability is

P1,1(τ) ∝ |E1(0, D, 0, τ)|2|E2(D, 0, 0, τ)|2

∝ | |t|2Φ(D − cτ)Φ(D − cτ)

−|r|2Φ(D + 2d− cτ)Φ(D − 2d− cτ)
+trΦ(D + 2d− cτ)Φ(D − cτ)
−tr∗Φ(D − cτ)Φ(D − 2d− cτ) |2

(12)

We see that the above is a result of 4 terms with clear
origins:

• The |t|2 term: Detector 1 detects the transmitted
idler light through the beamsplitter, and detector
2 detects the transmitted signal

• The |r|2 term: Detector 1 detects the reflected sig-
nal light, and detector 2 detects the reflected idler

• The tr term: Detector 1 and 2 detect respectively
the reflected and transmitted signal light

• The tr∗ term: Detector 1 and 2 detect respectively
transmitted and reflected idler.

We see that the first and second terms are due to signal
and idler lights interfering with each other. Their sum
is zero for a symmetric 50/50 beamsplitter when d = 0,
and the width of the dip around d = 0 depends on the
pulse width. The cancellation of these two terms is due
to phase shift difference of the reflected signal and idler
lights by the beamsplitter as we discussed above. The
third and fourth terms, however, are due to respectively
signal interfering with itself and idler with itself. They
oscillate in the scale of the optical wavelength, and thus
their sum is not zero. However we can predict, even be-
fore we go into the quantum model, that both the third
and fourth terms should vanish in the quantum extreme



4

of single signal or idler photon, in which there is no sec-
ond photon for self-interference. We will see that vanish-
ing of these terms is the reason behind HOM effect.

We now come to the HOM experiment, which has pho-
ton counting periods much longer than the widths of
pulses but shorter than the interval between two consecu-
tive pulses. The probability of detecting in each detector
is proportional to the total energy received, which is the
field intensity integrated over the period, which can be
considered infinite for the integration:

P1,1 ∝ [1 + trg(2d) + tr∗g(−2d)]
[1− trg(2d)− tr∗g(−2d)]

∝ 1− [trg(2d) + tr∗g(−2d)]2
(13)

where

g(x) =
1 +

∫∞
−∞ ds Φ(s+ x)Φ∗(s)∫∞
−∞ ds Φ(s)Φ∗(s)

. (14)

Obviously, the tr and tr∗ terms in 13 are from signal
and idler interference in detector 1 and 2 respectively.
However, the first term ”1” includes both 1) signal and
idler self interferences, which are correlated, and 2) light
pulses, which are not correlated but fall into the same
counting period. Technically, P1,1 measured this way
loses the true meaning of correlation.

In the HOM experiment, the spectrum distribution is
assumed Gaussian shaped with wavevector half width
(stanard deviation) of K. We have

P1,1 ∝ 1− 2|tr|2e−2(Kd)
2

(15)

which is the classical result.

III. QUANTUM MODEL

A. Operators and modes

We now turn to describe the quantum model of pho-
tons going through a generic linear optical device or a
circuit of devices as done for beamsplitters by Fearn and
Loudon8. In the quantum picture, the electrical fields
themselves are quantum operators. We can following the
treatment of any quantum optics textbook such as the
one by Schubert17 to rewrite an electrical field operator
into portions representing the wave and particle sepa-
rately. First, we write the electrical field operator as the
sum of the positive and negative frequency operators, we
get

Ê(x, y, z, τ) = Ê+(x, y, z, τ) + Ê−(x, y, z, τ). (16)

And then we write the positive and negative frequency
operators in terms of the mode functions vn(x, y, z)eiωnτ

and vn(x, y, z)e−iωnτ respectively along with the corre-
sponding creation and annihilation operators â‡n and ân
of all the modes n = 1, 2, 3, · · · . For example,

Ê−(x, y, z, τ) =
∑
n

Evn(x, y, z)e−iωnτ ân (17)

Here E is a unit conversion and normalization factor.
Clearly, the wave nature is represented in the the mode
functions, and the particle nature in the creation and
annihilation operators.

As we have shown in the classifcal wave model, there
can be several sets of modes. If {vn} and ân above are

for the ingress side and {v′m} and â′m} are for the egress
side, the operator equivalent of Eq. 7, 8 and 9 give us

â′m =
∑
n

αm,nân. (18)

We now have that the quantum operators of the egress
and ingress ports related by the [αm,n] matrix given
in the classical wave model. Similarly, we can write
ân =

∑
m α
′
n,mâ

′
m and derive α

′

n,m with the orthonor-
mal assumption. For the simple case of a beamsplitter
with ωs = ωi, the annihilation operators in the egress-
centric modes is the simplest when we try to calculate
the outcome of the photon detectors:

â′1 = râ1 + tâ2, and â′2 = tâ1 − r∗â2. (19)

This is a same result given by the other models1.
We can extend our results to derive the photon state in

the egress mode representation in relation to those in the
ingress representation. Assume in the ingress representa-
tion, the photon state is |N1, N2, · · · 〉, which represents
N1, N2, · · · photons in the respective degenerate and or-
thonormal modes {v1, v2, · · · }. The modes all have the
same angular frequency: ω1 = ω2 = ·ωn = ·. We can
write the same quantum state in a different set of degen-
erate and othonormal modes {v′1, v′2, · · · } as

|N1, N2, · · · 〉
=

∑
N ′

1+N
′
2+···

=N1+N2+···

bN ′
1,N ′

2,··· |N ′1, N ′2, · · · 〉 (20)

Here, the principle that the change of mode representa-
tion does not change the photons is important, and thus
we require N ′1+N ′2+· · · = N1+N2+· · · . We can derive
the coefficients of the new representation if we consider
that

bN ′
1,N ′

2,···
= 〈N ′1, N ′2, · · · | N1, N2, · · · 〉
= 〈0, 0, · · · | (â

′
1)

N′
1 (â′2)

N′
2 ···

N ′
1!N

′
2!···

|N1, N2, · · · 〉
(21)

And from Eq. (18), we can express {â′1, â′2, · · · } in terms
of {â1, â2, · · · } and thus write bN ′

1,N ′
2,··· in terms of the

elements of matrix [αm,n]. For the simplest case of a
beamsplitter with photons N1 = N2 = 1 in the ingress
mode representation and ωs = ωi and d = 0, we can
derive the bN ′

1,N
′
2
s and write the photon state in the egress

mode representation as

tr |2, 0〉 − tr∗ |0, 2〉+ (| t |2 − | r |2) |1, 1〉 (22)

This is the same result as given in paper by Hong et al9.
For a 50/50 beamsplitter, the probability of the photons
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in the |1, 1〉 state in the egress-mode representation is
zero. However, this is due to the phase relation of the
modes and is not due to any quantum interference. In
fact, for any N1 = N2 = N , the the probability of the
photons in the |N,N〉 state in the egress-mode repre-
sentation is zero while that of the |N − i,N + i〉 states
in the egress-mode representation are not zero. Here
i = 1, · · ·N − 1.

B. Photon counting and correlation probability

We now describe the quantum model of photon detec-
tion. Let’s assume the combined initial quantum state
of the signal and idler photons and the electrons in the
detectors before the photon-electron interaction at time
τ0 is |Ns, Ni; 0, 0〉, which consists of Ns signal and Ni
idler photons and zero excited state electrons in detector
1 and 2. We assume that there are large pools of elec-
trons in the lower band states, and all the excited/upper
band states are vacant so that we can ignore most of
the details of the electrons including the exclusive nature
as fermions. Let’s assume the electrons in the detectors
start to interact with the photons at time τ = τ0. The
photon-electron interaction is described by a dipole in-

teraction Hamiltonian, Hint = −d̂Ê17. We can write the
resulting combined quantum state as a superposition of
the eigenstates of the un-perturbed combined Hamilto-
nian H0:

|Ψ(τ)〉
=

∑
N ′

s+N
′
i+n

′
1+n

′
2

=Ns+Ni

bN ′
s,N

′
i ;n

′
1,n

′
2
(τ, ks, ki) |N ′s, N ′i ;n′1, n′2〉

(23)
Here we assume the single frequency case and ks = ki.

From Schroedinger equation,

∂ |Ψ(τ)〉
∂τ

= (H0 +Hint) |Ψ(τ)〉 (24)

we have

d
dτ bN ′

s,N
′
i ;n

′
1,n

′
2
(τ, ks, ki)

=
∑

N”s+N ′′
i +n”1+n”2=Ns+Ni〈

N”s, N”i;n”1, n”2 |Hint|N
′

s, N
′

i ;n
′

1, n
′

2

〉 (25)

Approximate to the first order, we can derive the co-
efficients bN”s,N”i;n”1,n”2(τ, ks, ki). For example,

bNs−1,Ni;1,0(τ, ks, ki)

=
∫ τ
τ0
dτ1
∫
dxdydz 〈Ns − 1, Ni; 1, 0 |Hint|Ns, Ni; 0, 0〉

(26)

and

bNs−2,Ni;1,1(τ, ks, ki)

=
∫ τ
τ0
dτ1bNs−1,Ni;1,0(τ1, ks, ki)

∫
dxdydz

〈Ns − 2, Ni; 1, 1 |Hint|Ns − 1, Ni; 1, 0〉
+
∫ τ
τ0
dτ1 bNs−1,Ni;0,1(τ1, ks, ki)

∫
dxdydz

〈Ns − 2, Ni; 1, 1 |Hint|Ns − 1, Ni; 0, 1〉
= bNs−1,Ni;1,0(τ, ks, ki) bNs−2/Ns−1,Ni;0,1(τ, ks, ki)

(27)
Here

bNs−2/Ns−1,Ni;0,1(τ, ks, ki)

=
∫ τ
τ0
dτ1
∫
dxdydz

〈Ns − 2, Ni; 1, 1 |Hint|Ns − 1, Ni; 0, 1〉
(28)

represents that a photon is absorbed by an electron in
the transition from the |Ns − 1, Ni; 0, 0〉 state to the
|Ns − 2, Ni; 0, 1〉 state. Similarly, we have

bNs,Ni−2;1,1(τ, ks, ki)
= bNs,Ni−1;1,0(τ, ks, ki) bNs,Ni−2/Ni−1;0,1(τ, ks, ki)

(29)
and

bNs−1,Ni−1;1,1(τ, ks, ki)
= bNs,Ni−1;0,1(τ, ks, ki) bNs−1,Ni;1,0(τ, ks, ki)
+ bNs,Ni−1;1,0(τ, ks, ki) bNs−1,Ni;0,1(τ, ks, ki)

(30)

Detecting photons in detector 1 or 2 is to look up
whether electrons are in the upper band excited states:∑

n1,n2

Bn1,n2
(τ, ks, ki) |n1, n2〉 (31)

with n1 > 0 and/or n2 > 0. The photon detection results
depend on summing up all the photon states and looking
at only the electron states:

B1,0(τ, ks, ki)
= bNs−1,Ni;1,0(τ, ks, ki) + bNs,Ni−1;1,0(τ, ks, ki)

(32)

B0,1(τ, ks, ki)
= bNs−1,Ni;0,1(τ, ks, ki) + bNs,Ni−1;0,1(τ, ks, ki)

(33)

and

B1,1(τ, ks, ki)
= bNs−2,Ni;1,1(τ, ks, ki) + bNs,Ni−2;1,1(τ, ks, ki)
+ bNs−1,Ni−1;1,1(τ, ks, ki)
= bNs−1,Ni;1,0(τ, ks, ki) bNs−2/Ns−1,Ni;0,1(τ, ks, ki)
+ bNs,Ni−1;1,0(τ, ks, ki)bNs,Ni−2/Ni−1;0,1(τ, ks, ki)
+ bNs−1,Ni;1,0(τ, ks, ki)bNs,Ni−1;0,1(τ, ks, ki)
+ bNs−1,Ni;0,1(τ, ks, ki)bNs,Ni−1;1,0(τ, ks, ki)

(34)
When Ns and Ni are large, we can imagine that

the terms involving Ns − 2 and Ni − 2 are the same
as those of Ns − 1 and Ni − 1, and B1,1(τ, ks, ki) =
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B1,0(τ, ks, ki)B0, 1(τ, ks, ki) and that the photon detec-
tion results shall be no different from the classical results.
In the quantum extreme of single photons, Ns = Ni = 1,
the Ns − 2 and Ni − 2 terms will vanish.

We now shall look into photon detection with the fol-
lowing assumptions to simplify the calculation:

• For photon detection, we only need to consider
the photon annihilation portion of the interaction

Hamiltonian, which is Hint = −d̂+Ê−;

• The detectors have wide and flat spectral responses
that the electron dipole moment in each detector is
the same across the entire spectrum in concern;

• The optical wavelengths are much longer than that
of an electron, and the mode functions can be as-
sumed constant within the space where an electron
interacts with a photon. Therefore, the spatial in-
tegrations only involve electron dipole moments;

• The photon-electron interaction process is of much
shorter time than the photon counting period or
the optical wave pulses.

If we write at detector 1,

Ê−(0, D1, 0, τ)

= rÊ−s (0, D, 0, τ) + tE−i (0, D, 0, τ)

= rEu(0, 0)ei(ksD+2ksd−ωsτ)âs

+ tEu(0, 0)ei(kiD−ωiτ)âi

(35)

and at detector 2,

Ê−(D2, 0, 0, τ)

= tEu(0, 0)ei(ksD−ωτ)âs

− r∗Eu(0, 0)e(i(kiD−2kid−ωτ)âi

(36)

we can write

bNs−1,Ni;1,0(τ, ks, ki)

=
∫ τ
τ0
d τ1

∫
V1
dxdydz

r
√
NsEu(0, 0)ei(ksD+2ksd−ωsτ)〈1, 0

∣∣∣−d̂+∣∣∣ 0, 0〉
= rt

√
Ns
∫ τ
τ0
dτ1e

i(ksD+2ksd−ωsτ)M1

(37)

where V1 is the volume of detector 1 and M1 reflects
the electron dipole moment:

M1 = Eu(0, 0)
∫
V1
dxdydz〈1, 0

∣∣∣−d̂+∣∣∣ 0, 0〉 (38)

We can also write

bNs,Ni−1;1,0(τ, ks, ki) = t
√
Ni

∫ τ

τ0

dτ1e
i(kiD−ωiτ)M1

(39)

bNs−1,Ni;0,1(τ, ks, ki) = t
√
Ns

∫ τ

τ0

dτ1e
i(ksD−ωsτ)M2

(40)

bNs,Ni−1;0,1(τ, ks, ki)

= −r∗
√
Ni
∫ τ
τ0
dτ1e

i(kiD−2kid−ωiτ)M2

(41)

If we take into consideration that the signal and idler
lights are assembles of spectrum of wavevectors, we have

B1,1(τ)

=
∫∞
−∞ dksφ(ks)

∫∞
−∞ dkiφ(ki)

[ bNs−1,Ni;1,0(τ, ks, ki)bNs−2/Ns−1,Ni;0,1(τ, ks, ki)
+ bNs,Ni−1;1,0(τ, ks, ki)bNs,Ni−2/Ni−1;0,1(τ, ks, ki)
+ bNs−1,Ni;1,0(τ, ks, ki)bNs,Ni−1;0,1(τ, ks, ki)
+ bNs−1,Ni;0,1(τ, ks, ki)bNs,Ni−1;1,0(τ, ks, ki)]

(42)
In the scenario that photon counting period is shorter

than the optical pulses, we have

P1,1(τ) = |B1, 1(τ)|2

∝ | |t|2
√
NsNiΦs(D − cτ)Φi(D − cτ)

− |r|2
√
NsNiΦi(D − 2d− cτ)Φs(D + 2d− cτ)

+ tr
√

(Ns − 1)NsΦs(D − cτ)Φs(D + 2d− cτ)

− tr∗
√

(Ni − 1)NiΦi(D − 2d− cτ)Φi(D − cτ) |2
(43)

All the terms have their corresponding ones in the clas-
sical wave model. Obviously, when Ns = Ni = 1, the
self-interference terms vanish. And in the case Φ(x) be-
ing a Gaussian shaped pulse,

P1,1(τ) = |B1,1(τ)|2 ∝ |t2 − r2e−(2Kd)
2

|2e−K
2(D−cτ)2

(44)
We see that P1,1(τ) is also reverse bell shaped but with a

different width from the HOM experiment – 1/(2
√

2K)

vs. 1/(
√

2K). An experiment may be designed to ver-
ify this difference and thus validate the model. Such an
experiment is more difficult than the HOM experiment
because the detection period is only a portion of a photon
pulse width – the opposite to the HOM experiment. This
difficulty may be compensated by repeating the counting
many many times, a technique also used in the HOM
experiment.

In the HOM experiment, the photon counting period
is much longer than the optical pulses and can be con-
sidered infinite, the coincident probability is

P1,1

=
(∞)∫

(−∞)

dτ1
(∞)∫

(−∞)

dτ2|M1M2|2

[ tr
√

(Ns − 1)NsΦs(D − cτ1)Φs(D + 2d− cτ2)e2ik0d

− tr∗
√

(Ni − 1)NiΦi(D − 2d− cτ1)Φ(D − cτ2)e−2ik0d

− |r|2
√
NsNiΦi(D − 2d− cτ1)Φs(D + 2d− cτ2)

+ t2
√
NsNiΦi(D − cτ1)Φs(D − cτ2)]

2
.

(45)



7

When Ns = Ni = 1, the signal or idler self-interference
terms vanish, and

P1,1 ∝ |t|4 + |r|4 − 2|tr|2|g(2d)|2 (46)

It is the same result as given in the HOM paper. Clearly,
variation of P1,1 by d depends on φ(k). If φ(k) is of
Gaussian distribution, the optical pulse shape Φ(x) and
|g(2d)|2 are all of Gaussian shape, and P1,1 is of upside-
down bell shape. The reason that some other similar
experiments18 that see P1,1 − d variation different from
the upside-down bell shape is because their φ(k) are dif-
ferent from Gaussian distribution.

IV. CONCLUSION

We have shown that a quantum optic model can be de-
veloped to describe photons traversing linear optical de-
vices from the first quantum principle without additional
assumptions or restrictions. It is generic and powerful –
it can be applied to modeling a circuit of linear optical
devices of arbitrary ingress and egress ports. We have
applied the model to explain the HOM effect without in-
troducing any quantum interference. HOM effect is due
to lack of signal-signal or idler-idler self-interference in
the quantum extreme of single signal and idler photons
and leaving signal-idle interference dominant.
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