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Abstract

To provide solutions for the unresolved theoretical questions of black
holes, such as the presence of an event horizon, we propose a new spher-
ically symmetric exact solution (we call the Ryskmit(R) solution). The
R solution can be obtained by applying Kruskal-Szekeres coordinates (re-
ferred to hereinafter as Kruskal coordinates) to the Schwarzchild solution.
The R solution has no singularities other than the origin of coordinates
and no �event horizon�; therefore, a black hole from which information
could not be extracted from the outside need not be considered. Far from
the origin, this solution is approximately equal to the Schwarzschild so-
lution. Another characteristics of this solution is that the gravity reaches
its maximum at the Schwarzschild radius, and at the half of this radius, it
transits to Minkowski space, in which gravity does not exist. This means
that the gravity gradually decreases with distance from the Schwarzschild
radius. Based on the law of conservation of energy , we deduced a result
that explains the production of su¢ cient kinetic energy for gamma-ray
burst. Furthermore, the metric of this solution was remarkably similar to
the Reissner�Nordström metric, and the presence and absence of an elec-
trical charge lead to two di¤erent masses at the scale of Planck units where
the two solutions match. This is an important relationship for answer-
ing questions about dark matter. As described above, this exact solution
could be a useful basic equation that sheds light not only on astrophysics,
but also on particle theory and the uni�ed �eld theory.
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1 Introduction

Theories of black holes is progressing rapidly these years, and their presence
is close to being con�rmed based on observations such as gravitational waves
[1] and the images of accretion disks [2]. However, many unanswered questions
remain, such as the internal structure of black holes and gamma-ray bursts. In
addition, problems surrounding dark matter and dark energy, whose essence is
elusive even in theory, a¤ect the foundation of physics. Such issues present both
exciting opportunities and challenges for physicists.
One reason for this theoretical di¢ culty is that many theoretical models of

black holes rely on the Schwarzschild solution [3] and its extension, i.e., the Kerr
solution [4]. Since their proposition, various types of spherically symmetrical
solutions have been proposed [5][6] and various types of non-symmetrical solu-
tions are also derived [7]. Although the Schwarzschild solution is, historically,
the most well-known and simplest model, it is a highly unsatisfactory solution,
since it does not address the many mysteries of black hole interiors, such as the
event horizon and the essential singularity with in�nite internal gravity.
In this study, we deduce a spherically symmetric exact solution similar to the

Schwarzschild solution by applying a simple extension to the Kruskal coordinates
[8] and explain how it works in various characteristics of the space-time concept.
For example, this solution enables to reach continuously into the interior of a
black hole without an event horizon. Here the gravity gradually decreases and
completely vanishes at half of the Schwarzschild radius, at which point the
system transits to Minkowski space where it is �at structure on which special
relativity is formulated. Thus, the internal information of a black hole can be
obtained from its external environment.

2 Method and Results

The Kruskal coordinates [8] can e¤ectively explain the external solution of a
black hole and are expressed as follows in spherical coordinates r; � and '. Here
the signs of the metric are (�+++).

ds2 = f(r; t)2(du2 � dv2) + r2d
2

= f(r; t)2(g0(r)2dr2 � g(r)2h0(ct)2c2dt2) + r2d
2 (1)

where

d
2 = d�2 + sin �2d'2

u(r; t) = g(r) coshh(ct); v(r; t) = g(r) sinhh(ct) (2)

Assuming that, with an arbitrary function A(r), the equation takes the form:

ds2 = �A(r)c2dt2 + 1

A(r)
dr2 + d
2 (3)
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�
We can obtain the Schwarzschild solution

ds2 = �
�
1� �

r

�
c2dt2 +

1�
1� �

r

�dr2 + r2d
2; � = 2GM

c2
(4)

This is a unique solution with:

g(r) = (ar + b)
1
2 exp

r

2�
; h(ct) =

ct

2�
; � =

2GM

c2
; f(r)2 =

4�3

r
exp

�
� r
�

�
a 6= 0; a; b = const: (5)

It is assumed that, in the denominator of the metric dr2 calculated in du2�dv2,
all coe¢ cients are 0 for the terms other than that having the highest order, r2.
To further generalize eq. (5), the following equation can be used:

g(r) = (ar2 + br + d)
1
2 exp

r

2�
; h(ct) =

ct

2�
; f(r)2 =

4�2

ar2
exp

�
� r
�

�
a 6= 0; a; b; d = const: (6)

Where it is assumed that, similar to eq. (5), in the denominator of the metric
dr2 calculated in du2 � dv2, all coe¢ cients are 0 for the terms other than that
having the highest order, r4. Simple calculations based on (1) result in:

ds2 = �
�
1� 2�

r
+
2�2

r2

�
c2dt2 +

1

1� 2�
r
+
2�2

r2

dr2 + r2d
2 (7)

This is also a unique solution that satis�es the condition given by (6). We
provisionally refer to this as the R solution (the Ryskmit solution).
Under a condition such that this solution agrees with the Schwarzschild solution
far from the origin, the constant � in eq. (7) can be given as:

� =
GM

c2
:

Furthermore, by solving Einstein�s equations using the metric (7), where the
Einstein tensor is expressed as:

Gik = R
i
k �

1

2
gikR

we obtain:

G00 = G
1
1 =

4�2

r4
; G22 = G

3
3 = �

4�2

r4
(8)
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3 Discussion

i) Versatility of the Kruskal coordinates

The Kruskal coordinates used in this paper are able to express many exact
solutions of this form in a uni�ed way.
For example, with

g(r) =

r
1 + �r

1� �r ; h(ct) = �ct; � =
r
�

3
; f(r)2 =

(1� �r)2
�2

(9)

we can obtain the metric of the De Sitter universe [9]:

ds2 = �
�
1� �

3
r2
�
c2dt2 +

1

1� �
3
r2
dr2 + r2d
2 (10)

This also satis�es eq. (3).

In addition, with

g(r) = exp(sin�1
p
Kr); h0(ct) =

@h(ct)

@ct
;

�(ct) =
1

h0(ct)
; f(r)2 = exp(� sin�1

p
Kr) (11)

the following equation is obtained:

ds2 = �h0(ct)c2dt2 + dr2

1�Kr2 + r
2d
2

Furthermore, if this is rewritten as

ds2

h0(ct)2
) ds2;

we obtain the Robertson�Walker metric [10]:

ds2 = �c2dt2 + a(ct)2
�

dr2

1�Kr2 + r
2d
2

�
(12)

This is an example where the Kruskal coordinates is applied without satisfying
eq. (3).

Minkowski metric.can be expressed as a special case:

u = exp
r

2�
cosh

ct

2�
; v = exp

r

2�
sinh

ct

2�
; f(r)2 = exp

�
� r
�

�
(13)

In particular, when f(r)2 = 1, the above equation can express the Rindler metric
[11].
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Moreover, in eq. (4), if it is assumed that h is a function of r and t, the
following conversion can be made:

u(r; t) = g(r) coshh(ct; r); v(r; t) = g(r) sinhh(ct; r) (14)

h(ct; r) =
ct

2�
� 1
2
log
� r
�
� 1
�
) ct0

2�

to obtain the Eddington�s form [12]. From this, we arrive at the Kerr solution
[4] by generalizing the Schwarzschild solution and degenerating these metrics
[13].
As mentioned above, utilizing the Kruskal coordinates is a simple and uni�ed

method that can derive various spherically symmetric exact solutions, such as
the Schwarzschild solution, without using the Christo¤el symbols. Here, we
provisionally name the forms deduced using this method as �Kruskal forms.�

The R solution derived in this study provides one of the simplest metrics
to satisfy �Kruskal forms�. It successfully explains certain previously observed
physical phenomena, for example, the de�ection of a light ray and the per-
ihelion shift of star like the Schwarzschild solution., and is specialized by a
�natural form�of extension including the Schwarzschild solution derived using
Riemannian geometry. This solution has previously been explored by Edding-
ton [14] and the metric used is similar to that of parametrized post-Newtonian
formalism (PPN) [15] , which has recently featured in discussions concerning
proposed modi�cations to the general theory of relativity [16]. For example:

ds2 = �
�
1� 2�

r
+ �

2�2

r2
+ � � �

�
c2dt2 +

�
1 + 

2�

r
+ � � �

�
(dx2 + dy2 + dz2)

�;  = const:

According to the observation, the value of � of temporal metric is shown to
be equal to 1 within the error 10�5 [17]. So the temporal metric is almost identi-
cal, comparison of the spatial components expects that they are approximately
the same in nature using isotropic coordinates and have yet to be examined
using the exact R solution. Therefore, transforming this R solution to isotropic
coordinates may lead to new developments in PPN.

ii) Characteristics of the black hole space-time by the R solution

While the metrics of the R solution approximate to the Schwarzschild solution
far from the origin, spatial structures inside the Schwarzschild radius are sig-
ni�cantly di¤erent; the most prominent feature of the R solution is that the
event horizon necessary for the formation of a black hole [14][18] does not exist.
Various discussions are made about the existence and the e¤ect of event hori-
zon [19], but in the R solution, it is not necessary to assume the event horizon.
This is because A(r) = 1� 2�

r +
2�2

r2 is always positive and has no singularities
other than that at r = 0. However, while the question of whether a structure
without an event horizon can be called a black hole is under active discussion,
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we herein refer to space-time within the Schwarzschild radius is referred to as a
black hole for purposes of simplicity. The absence of an event horizon indicates
that information inside the Schwarzschild radius can be extracted from outside.
As shown in Figure 1, the value of A(r) in the R solution reaches its minimum
( 12 ) at Schwarzschild radius r = 2�, and becomes 1 at r = �. This indicates
that the curvature of space due to gravity vanishes at half the Schwarzschild
radius, at which point the condition is the same as in Minkowski space. In
other words, in a black hole within the Schwarzschild radius, gravity gradu-
ally decreases and eventually vanishes. Such concept has not been proposed
to the present. Furthermore, reduced gravity also leads to changes in gravita-
tional mass, such that inside a black hole, there may be separation of inertial
mass and gravitational mass. Various quasi-black hole models [20] have been
proposed, such as the gravastar model [21], which combines the Schwarzschild
solution (eq. (4) at outside of the black hole) and the de Sitter solution (eq. (10)
at inside of the black hole), which does not require an event horizon, and the
brane-world black hole model [22], which considers the second order term r�2 as
A(r) = 1� �

r +
�
r2 . � is the constant found by 5-dimentional Weyl tensor. These

models are similar to the R solution in some aspects such as the possibilities
of having no event horizon or of showing gravity decrease inside the black hole.
In spite of these e¤orts, there have been no reports of a single, continuous, and
exact solution wherein gravity decreases inside the Schwarzschild radius, and in
which the r�2 term is de�ned. Therefore, new developments can be expected
based on decreasing gravity using the R solution.
If the kinetic energy of substances inside the black hole subsequently over-

comes the gravitational mass applied from the exterior part of the black hole,
explosive destruction may occur from the inside of the black hole. It remains un-
clear whether gamma-ray bursts, the most explosive phenomenon known in the
universe [23], are caused by an imbalance between two large stellar masses that
formed when the universe was smaller than it is at present. If a star equivalent
in size to the Sun converted its inertial mass to energy, E, it would yield:

E = mc2 � 2� 1030 � (3� 108)2 � 2� 1047J:

This represents a su¢ cient amount of energy for gamma-ray bursts and such
explosive phenomenon can thus be explained using the R solution.
On close inspection, for the R solution, A(r) diverges to in�nity at the

essential singularity r = 0, and the decrease of gravity inside the Schwarzschild
radius implies that the internal spatial structure of a black hole can withstand
the enormous gravity from outside, even beyond the Chandrasekhar limit [24]. It
may be possible to construct a model that maintains equilibrium for � < r < 2�
according to this kinetic pressure from Minkowski space. Due to intervention
from Minkowski space, in which gravity vanishes, it is questionable whether the
space can shrink beyond r = �. Consequently, the condition for r < � and the
essential singularity at r = 0 may be mere mathematical artifacts, which would
require signi�cant modi�cations to the conventional concept of black holes, in
which matter is simply condensed within.
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Figure 1: Plots of function A(r) and distance r for the Schwarzschild solution
and the R solution.

The R solution signi�cantly in�uences the space within the Schwarzschild
radius, causing the r�2 term to rapidly decrease with increasing distance r, and
eventually approximate the Schwarzschild solution (Figure 1). This indicates
that the e¤ect of the R solution is mainly limited to within the Schwarzschild
radius, and that the conventional Schwarzschild solution can address wide in-
terstellar spaces.
In the following section, we report on the orbits of matter obtained with

the R solution near the Schwarzschild radius by putting � = 1
2�. Based on the

motion of a test particle, m, by the Schwarzschild solution [13]�
dr

d'

�2
=
r4

L'

"�
E

c

�2
�
�
1� 2�

r
+
2�2

r2

� 
L2'
r2
+m2c2

!#
(15)

where,
E

c
= m

�
1� 2�

r
+
2�2

r2

�
c _t; L' = �mr2 _'; � =

GM

c2
(16)
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Using the transformation u � 1
r and taking a derivative with respect to ',

with

a =
L'
m
;h =

a2

GM
;

we obtain the following:

d2u

d'2
+

�
1 +

2�

h

�
u =

1

h
+ 3�u2 � 4�2u3 (17)

For Mercury, where perihelion shift by the gravitation was solved for the
�rst time by Einstein, the perihelion shift occurs in a substantially weaker grav-
itational �eld than in a black hole. In such cases, where r � �; h � �, we
neglected 2�

h on the left side of eq. (17) instead made an approximation us-
ing the terms of u2 on the right side. This is equivalent to Einstein�s equation
[25]. However, in a strong gravitational �eld, the R solution indicates that other
terms can also have an e¤ect.
For instance, SgrA* [26], which is assumed to be the black hole of the Milky

Way and a strong source of gravity, has many orbiting stellar and gas cloud [27].
In such cases, it is expected that eq. (17) explains the perihelion shift. Long-
term observations will shed light on whether perihelion shifts of them orbiting
SgrA* are di¤erent from those predicted by Einstein.

iii) Similarity between the R solution and the Reissner-Nordström
solution [28][29]

The form of the R solution is similar to that of the Reissner-Nordström solution
(18).

ds2 = �
�
1� 2�

r
+

Ge2

4�"0c4r2

�
c2dt2 +

1

1� 2�
r
+

Ge2

4�"0c4r2

dr2 + r2d
2 (18)

where "0 is the permittivity of a vacuum, e is the electrical charge, and � = GM
c2 .

The Einstein tensor Gik in both solutions are the same except for the constants
(see equation (8)).
Assuming that the two solutions with the same structure match exactly, as

the only di¤erence is the term of r�2,
This leads to 2G

2M2

c4r2 = Ge2

4�"0c4r2
and �nally to 2GM

2

r2 = e2

4�"0r2
, which is

suggests gravity and Coulomb force.
With further transformation, we obtain an equation independent of r

M =

s
e2

8�"0G
; (M > 0) (19)

By further applying transformation, we obtain

M =

r
1

2
�

s
e2

4�"0~c
�
r
~c
G
=

r
1

2
� � �Mp (20)
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Here, � is the �ne structure constant and Mp is the Planck mass.
The Reissner-Nordström solution is an exact solution for a single charge.

Therefore, there would be two masses in the quantum mechanical level i.e., both
the mass of this solution and that of the R solution. It is not clear whether the
two solutions can be identi�ed; however, by calculating the constant part of
eq.(20), we obtain

M � 0:06Mp

Thus, 6% of the Planck mass is the mass in the R solution. In other words,
when a charge acts on the Planck mass, it is replaced by a small mass. This
may contribute to our understanding of dark matter [30][31]. �Electrical charge�
is a physical concept that is associated with a particle; however, at a particle
level, charge plays a role in interacting with mass and changing mass. The
Reissner-Nordström solution assumes the space-time of a stationary single elec-
trical charge and does not consider interactions with magnetic and electromag-
netic �elds. A general solution may be obtained by including such interactions
into account.

4 Conclusion

1) The present study proposes a simple extension of the Kruskal coordinates,
which are used in general relativity. In addition, this study identi�ed a
new exact solution (termed the Ryskmit solution, it is the R solution for
short), which is di¤erent from the Schwarzschild solution.

2) The most striking characteristic of this metric is that, while it can be
approximated by the Schwarzschild solution far from the origin of coor-
dinates, there is no event horizon at the Schwarzschild radius, allowing
internal information to be extracted. This di¤ers from a conventional
black hole.

3) There are two values of r where the metric of the R solution matches the
Minkowski metric: in�nity and half the Schwarzschild radius. This implies
that, within the Schwarzschild radius, the gravity gradually decreases and
eventually vanishes.

4) It is implied that the motion of matter in the R solution di¤ers from the
Einstein�s perihelion shift near the Schwarzschild radius.

5) The R solution is similar to the Reissner-Nordström solution, and their
spacial structures are the same. When the two exactly match, the presence
of an electrical charge results in two masses, which would shed a new light
on the problem of dark matter.

6) As shown above, it is expected that further analysis of the R solution
will make tremendous contributions not only to astrophysics but also to
particle theory and the uni�ed �eld theory.
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