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Abstract 7 

Pluto, Ceres and all planets of Solar system except Neptune, with a high approximation, follow a 8 

rule called Titius-Bode rule or Bode rule, which can by no means be considered as a stochastic 9 

event. This rule shows that the distance of planets from the sun in the solar system is regulated. 10 

Here, I prove that the existence of a standing and cosine wave packet, with the wavelength λ = 0.6 11 

𝐴𝑈 (𝐴𝑈 represents the distance of Earth from the Sun) and the phase constant ∅ =
𝜋

6
,  in the solar 12 

system is the reason for Bode rule. And moreover I prove that this huge wave packet belongs to 13 

the sun. Bode rule does not predict the distance of Neptune from the Sun but my wave theory, 14 

which believes in the presence of a cosine and standing wave in the solar system, can give us the 15 

distance of Neptune. It seems that, based on this article, quantum mechanics will enter a new stage. 16 

Keywords: Titius-Bode rule, Solar system, Quantum mechanics 17 

Introduction 18 

The planets of the solar system move around the sun in elliptical orbits such that the sun is in one 19 

of the focal points of these ellipses. These ellipses are very close to the circle, and in fact the    20 

orbits of the planets of the solar system are concentric circles. Pluto and Ceres and all planets of           21 

Solar system except Neptune, with a high approximation follow a rule known as Bode rule or 22 

Titius-Bode rule. According to this rule, the distance of each planet from the Sun is equal  to        23 

𝑎 = 0.4 𝐴𝑈 + 0.3 𝐴𝑈 × 2𝑛, where 0.4 𝐴𝑈 is the distance of Mercury from the Sun (or more 24 

precisely the length of the semi-major axis of Mercury's orbit) and 𝑛 = 0,1,2,3,…. [1]. Table. 1 25 

shows the high accuracy of the Bode rule. It was historically based on this rule that Ceres was 26 

discovered in 1801 [1]. If this rule was only true for three or four planets, then we could call it a 27 

coincidence, but when it is true for seven planets, plus Ceres and Pluto, there is definitely a reason 28 

for it. In this article, I will find the reason for the existence of the Bode rule. In fact, I will prove 29 

that the presence of a cosine and standing wave packet in the solar system is the reason for 30 

existence of Bode rule. and, I will prove that this wave packet belongs to the sun. The Bode rule 31 

does not predict the position of Neptune but my wave theory, which believes in the presence of a 32 

cosine and standing wave in the solar system, can give us the position of Neptune. 33 
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Deviation from 

prediction 

Semi-major 

axis (AU) 

T–B rule 

distance (AU) 

Planet 

−2.5% 0.39 0.4  Mercury 

+2.8% 0.72 0.7  Venus 

0.00% 1.00 1.0  Earth 

−4.77% 1.52 1.6  Mars 

−1.16% 2.77 2.8  Ceres 

+0.00% 5.20 5.2  Jupiter 

−4.45% 9.58 10.0  Saturn 

−1.95% 19.20 19.6  Uranus 

+1.05% 39.48 38.8  Pluto 
Table. 1. Planets distances from the Sun and the prediction of Bode rule. Bode rule cannot predict the distance of 38 
Neptune from the Sun. 39 

Wave Function and Bode Rule 40 

Consider a standing and cosine wave function with a wavelength 𝜆 = 0.6 𝐴𝑈; if we assume that 41 

the first node of this wave is at a distance of 0.1 𝐴𝑈 from the Sun the next nodes are at the distances 42 

of 0.4 𝐴𝑈, 0.7 𝐴𝑈, 1 𝐴𝑈, 1.3 𝐴𝑈, 1.6 𝐴𝑈, . . . . 2.8 𝐴𝑈, … from the Sun. Each node is 0.3 𝐴𝑈 43 

ahead of the previous node. If we consider the planets of the solar system in the position of the 44 

nodes of this wave, in such a case, there is no planet on the first node ( 0.1 𝐴𝑈) and Mercury is on 45 

the second node, Venus is on the third node, Earth is on the fourth node, Mars is on the sixth node, 46 

and the position of fifth node (1.3 𝐴𝑈) is empty. The seventh, eighth, and ninth nodes are empty, 47 

and Ceres is on the tenth node. Jupiter is placed on the eighteenth node and Saturn is on the thirty-48 

third node, and Uranus, Neptune, and Pluto are on the nodes farther from the Sun. As you can see, 49 

a wave function, with the wavelength 𝜆 = 0.6 𝐴𝑈, easily predicts the position of the planets and 50 

it seems that a huge and standing wave plays a role in determining the position of the planets in 51 

the solar system. Therefore, we can consider the reason for the Bode rule to be the existence of a 52 

large cosine wave in the solar system that oscillates along the axis perpendicular to the plane of 53 

the solar system. In this article I will obtain the equation of this wave function. But what does this 54 

wave belong to? I answer this question in this article. The presence of a huge cosine wave in the 55 

solar system seems strange at first glance, but quantum mechanics eradicates our surprise. Based 56 

on quantum mechanics, a wave packet can be assigned to each object called the ‘associated matter 57 

wave ‘of that object, and this associated wave is the solution of the Schrodinger equation. In this 58 

article I prove that the above standing and cosine wave function is the solution of the Schrodinger 59 

equation and so an object must have created this wave in the solar system; I demonstrate that this 60 

object is the sun. It is the sun that has created a standing wave around itself and provided a definite 61 

orbit for the planets to orbit. In the present article, I show that the de Broglie equation (𝜆 =  ℎ / 𝑝) 62 

with the Planck constant ℎ is not suitable on astronomical scale, and we must consider a much 63 

larger constant instead of the Planck constant in the astronomical scale. 64 

Wave Equation of the Solar System 65 

As I have mentioned, a cosine and standing wave function, with the wavelength of λ = 0.6 𝐴𝑈 66 

(𝑘 =
2𝜋

𝜆
=

10𝜋

3
), can predict the position of the planets in the solar system. First I want to derive 67 
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the phase constant of this wave function. It has been stated that Mercury is on the second node of 68 

the wave function (the second node corresponds to the phase 
3𝜋

2
). 69 

𝑥𝑀𝑒𝑟𝑐𝑢𝑟𝑦 = 0.4 𝐴𝑈 ⇒ 𝜓(𝑥𝑀𝑒𝑟𝑐𝑢𝑟𝑦) = 0 ⇒ 𝑐𝑜𝑠(𝑘𝑥 + ∅) = 0 ⇒ 𝑘𝑥 + ∅ = 
3𝜋

2
  ⟹  ∅ =

𝜋

6
 70 

Having 𝑘 and ∅, we can easily find the position of the other planets using the equation                   71 

𝑘𝑥 + ∅ =
𝜋

2
,
3𝜋

2
,
5𝜋

2
, . … . ,

(2𝑚−1)𝜋

2
 (Where m is the node number). For example 72 

𝑘𝑥𝑉𝑒𝑛𝑢𝑠 + ∅ =
5𝜋

2
 ⟹ 

10𝜋

3
𝑥𝑉𝑒𝑛𝑢𝑠 + 

𝜋

6
=
5𝜋

2
 ⟹ 𝑥𝑉𝑒𝑛𝑢𝑠 = 0.7 𝐴𝑈   74 

or 73 

𝑘𝑥𝐸𝑎𝑟𝑡ℎ + ∅ =
7𝜋

2
 ⟹ 

10𝜋

3
𝑥𝐸𝑎𝑟𝑡ℎ + 

𝜋

6
=
7𝜋

2
 ⟹ 𝑥𝐸𝑎𝑟𝑡ℎ = 1 𝐴𝑈       75 

𝑘𝑥𝑀𝑎𝑟𝑠 + ∅ =
11𝜋

2
 ⟹ 

10𝜋

3
𝑥𝑀𝑎𝑟𝑠 + 

𝜋

6
=
11𝜋

2
 ⟹ 𝑥𝑀𝑎𝑟𝑠 = 1.6         76 

The distances of the other planets can also be calculated in the same way, which is quite consistent 77 

with experience. According to the above equation, Neptune is on the ninety-eighth node, which 78 

corresponds to the phase 
195𝜋

2
. Contrary to the Bode rule, which is not able to predict the distance 79 

of Neptune, our wave theory predicts the position of Neptune. Therefore, a cosine and standing 80 

wave function with ∅ = 
𝜋

6
 and 𝑘 =

10𝜋

3
 can be attributed to the solar system. But what is the 81 

general equation of this wave function? The equation of the solar system must contain a component 82 

with the equation 𝑐𝑜𝑠(
10𝜋

3
𝑥 +

𝜋

6
) and on the other hand, this wave must be standing so that the 83 

position of the nodes (planets) does not change. Any wave in which the variables 𝑥 and 𝑡 are 84 

entered as a combination of 𝑘𝑥 ± 𝑤𝑡 is a traveling wave [2]. For example, the equation          85 

sin (𝑘𝑥 − 𝑤𝑡 + ∅) shows a traveling wave. Therefore, the form of our wave function must be either 86 

𝑐𝑜𝑠(𝛿𝑤𝑡) 𝑐𝑜𝑠(
10𝜋

3
𝑥 +

𝜋

6
) or 𝑠𝑖𝑛(𝛿𝑤𝑡) 𝑐𝑜𝑠(

10𝜋

3
𝑥 +

𝜋

6
). Due to the symmetry of the solar system 87 

around the sun we choose the equation 𝑐𝑜𝑠(𝛿𝑤𝑡) 𝑐𝑜𝑠(
10𝜋

3
𝑥 +

𝜋

6
) and then we will show that our 88 

choice has been correct( δ is a constant number that we will derive its value). Since the solar system 89 

has a certain size and is not infinitely wide, its wave equation must also be localized (a wave 90 

packet). If we consider an expression in the form 𝑒− 𝛾𝑥
2
 (which is a Gaussian function and plays 91 

the role of a wave envelope) in the final equation, in such a case, the final equation is a localized 92 

wave or a wave packet,(the value of γ, which is a positive number, is obtained in the following) 93 

thus, the primary form of the wave function of the solar system is as follows (equation 1) and the 94 

planets are on the nodes of this wave function (Fig. 1): 95 

{
𝜓(𝑥, 𝑡) = 𝐶 𝑐𝑜𝑠(𝛿𝑤𝑡) 𝑐𝑜𝑠(

10𝜋

3
𝑥 +

𝜋

6
) 𝑒− 𝛾𝑥

2
             𝑥 ≥ 0           (1 − 𝑎)

𝜓(𝑥, 𝑡) = 𝐶 𝑐𝑜𝑠(𝛿𝑤𝑡) 𝑐𝑜𝑠(
10𝜋

3
𝑥 −

𝜋

6
) 𝑒− 𝛾𝑥

2
             𝑥 ≤ 0            (1 − 𝑏)

                     (1)  96 



4 
 

In equation 1, γ, C and δ are constant values and we obtain their values in this article. 97 

 98 

Fig. 1. Solar system standing wave packet with λ = 0.6 𝑨𝑼 and ∅ =
𝛑

𝟔
. Diagram of 𝜓(𝑥, 𝑡) at the moment t = 0. The 99 

value of 𝜓(0,0) is equal to √3𝐶 2
⁄ . This diagram is drawn by a certain value of 𝐶 and γ in equation 1, which we will 100 

obtain their value at the end of the article. As you can see, the planets are on the nodes of the wave function. Jupiter, 101 
Saturn, Uranus, Neptune, and Pluto are on the nodes farther from the Sun. 102 

In Fig. 1, the wave oscillates along the 𝜓 axis over time. But the nodes and the anti-nodes do not 103 

move relative to each other along the x-axis. This does not mean that the wave packet is stationary 104 

in the space; it is just like passengers sitting on a train who do not move relative to each other but 105 

the train is moving relative to the rails. In the same way, the solar system wave packet is a standing 106 

wave that rotates, along with the solar system, around the center of the galaxy. As you can see, 107 

Equation (1) can easily predict the position of planets. This equation is the "wave equation of the 108 

solar system". In the continuation of the article, we will prove that this equation is the Real part of 109 

a solution of Schrodinger equation1 and that's why we can assign it to an object like the sun.  110 

 111 

 112 

Associated Wave Packet of Sun 113 

In quantum mechanics, in order to build a wave packet from a set of infinite number of flat matter 114 

waves 𝐴0𝑒
𝑖(𝑘𝑥−𝑤𝑡) that move in one direction, we sum them together based on the superposition 115 

                                                             
1 As you know, the solutions of Schrodinger equation have two parts: Real and Imaginary. 
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principle [3],[4]. In this case, the net wave is a wave packet, and this wave packet is the solution 116 

of Schrodinger equation. But this wave packet is a traveling wave packet, and now we want to see 117 

if it is possible to make a standing wave packet from the sum of the infinite number of flat matter 118 

waves. To obtain this standing wave packet, we proceed as follows. 119 

Schrodinger wave equation for a free particle in one dimension is as follows: 120 

𝑖ℏ
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ħ2

2𝑚
∆𝜓(𝑥, 𝑡)                                                             (2) 121 

Where Δ is the Laplace operator. This equation clearly has the following solutions [3]. 122 

𝜓(𝑥, 𝑡) = A(𝑥, 𝑡) = 𝐴0𝑒
𝑖(𝑘𝑥±𝑤𝑡±∅) = 𝐴0𝑒

𝑖(𝑘𝑥±∅)𝑒±𝑖𝑤𝑡                                  (3)   123 

On the condition that 𝑘 and 𝑤 satisfy the relation below: 124 

𝑤 =
ħ𝑘2

2𝑚
                                                                                  (4) 125 

𝐴0𝑒
𝑖(𝑘𝑥−𝑤𝑡±∅) represents the matter wave propagating in the positive direction of the x-axis2, and 126 

𝐴0𝑒
𝑖(𝑘𝑥+𝑤𝑡±∅) represents the matter wave propagating in the negative direction of x-axis. Equation 127 

4 is obtained by combining the Planck equation 𝐸 = ħ𝑤 and de Broglie equation 𝑝 = ħ𝑘. 128 

The flat wave with equation 3 represents an associated wave with a matter particle whose 129 

probability of presence is uniform throughout all space3. But real matter particles are not extensive 130 

throughout space, they are localized, and in quantum we are seeking the description of localized 131 

matter particles. So we have to use the equation of a wave packet instead of equation 3. The 132 

equation of a matter wave packet is obtained from the superposition of (sum of) the waves of 133 

Equation 3. And we know from the principle of superposition that this net wave is also the solution 134 

of the Schrodinger equation (Equation 2). 135 

In order to obtain an equation for a ’standing wave packet ‘, we must calculate the superposition 136 

of a set of infinite numbers of flat matter waves which move in opposite directions to each other. 137 

The net wave is a standing wave packet, which is the solution of the Schrodinger equation. 138 

First we calculate the superposition of the waves moving in the positive direction of the x-axis and 139 

add this net wave to the superposition of the waves moving in the negative direction of the x-axis. 140 

Consider a set of infinite numbers of flat matter waves 𝐴0𝑒
𝑖(𝑘𝑥−𝑤𝑡+∅), which move in the positive 141 

direction of the x-axis, and suppose that the angular frequency of these waves is equal to 𝑤0 and 142 

the wave number of these waves is around the median of 𝑘0 and between 𝑘0 +
𝛥𝑘

2⁄  and              143 

                                                             
2 The sign ± behind ∅ means that both 𝐴0𝑒

𝑖(𝑘𝑥−𝑤𝑡−∅) and 𝐴0𝑒
𝑖(𝑘𝑥−𝑤𝑡+∅) are the solution of Schrodinger equation. 

3 According to the uncertainty principle 𝛥𝑥. 𝛥𝑝 ≥ ħ and the formula 𝑝 = ħ𝑘, when k has a certain value then  we 
have Δ𝑝 = 0 and therefore, the value of 𝛥𝑥 is infinite. 
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𝑘0 −
𝛥𝑘

2⁄
4. In such a case, the resultant of these waves, using the superposition principle, is a 144 

wave packet with equation 5 [3][4]. 145 

𝜓𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) =  𝐴𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = ∫𝐴0(𝑘)𝑒
𝑖(𝑘𝑥−𝑤0𝑡+∅)𝑑𝑘                                  (5) 146 

Where k means 𝑘𝑥. In equation 5, 𝐴0(𝑘) is a Gaussian and symmetric function. 147 

𝐴0(𝑘) = 𝑒
−𝛼(𝑘−𝑘0)

2
                                                                       (6) 148 

In equation 6, α is a constant with a positive value and shows the width of the bell-shaped function 149 

of 𝐴0(𝑘). Since equation 5 is derived from the superposition principle, it is the solution of 150 

Schrodinger equation. 151 

To obtain 𝜓𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) from equation 5, we calculate the superposition of all of the waves in one 152 

moment, which we consider to be the origin of time (𝑡 =  0)5, and then we can obtain the net wave 153 

at any other time. We have: 154 

𝜓(𝑥, 0) = ∫𝐴0(𝑘)𝑒
𝑖(𝑘𝑥+∅)𝑑𝑘                                                             (7) 155 

The above equation is the momentary image of the net wave. Multiply equation 7 by 𝑒𝑖𝑘0𝑥−𝑖𝑘0𝑥. 156 

We have: 157 

𝜓(𝑥, 0) = 𝑒𝑖(𝑘0𝑥+∅)∫𝐴0(𝑘)𝑒
𝑖(𝑘−𝑘0)𝑥𝑑𝑘                                                   (8) 158 

Considering 𝑘 ́ = 𝑘 − 𝑘0, we have: 159 

𝜓(𝑥, 0) = 𝑒𝑖(𝑘0𝑥+∅)∫𝑒− 𝛼𝑘
́2

𝑒𝑖𝑘
́𝑥𝑑𝑘 ́                                                     (9) 160 

Using the variable transformation 𝑘 ́ −
𝑖𝑥

2𝛼
= 𝑞 (this variable transformation can be explained based 161 

on the theory of complex variables [4]) and the Gaussian integral ∫ 𝑑𝑞 𝑒− 𝛼𝑞
2
= √

𝜋

𝛼
 

∞

−∞
, equation 162 

9 can be calculated. After placement and simplification, we reach the following final solution [4]: 163 

𝜓(𝑥, 0) = √
𝜋

𝛼
 𝑒𝑖(𝑘0𝑥+∅) 𝑒− 

𝑥2

4𝛼                                                            (10) 164 

                                                             
4 In the Electromagnetic waves we cannot consider one 𝑤0 for two or many waves in which their 𝑘 is different from 
each other, because for all of the EM waves we have: 𝑤 = 𝑐𝑘 where 𝑐 is the speed of light. But for matter waves the 

issue is different. In the matter waves we have 𝑤 =
ħ𝑘2

2𝑚
. As you can see 𝑤 is the function of 𝑘 and 𝑚. Therefore, it is 

possible to choose one value of 𝑤0 for the waves in which their 𝑘 is different from each other.  
 
5 It is like taking photo from the wave function with equation 5 in a moment of time, in such a case, the resulting 
image is the picture of the net wave packet in a moment of time. 
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This equation shows us the form of a traveling wave packet at a point in time. But how are the 165 

time variations of Equation 10? As we have mentioned, we consider 𝑤 for each wave is equal to 166 

𝑤0, We have 167 

𝜓(𝑥, 𝑡) = ∫𝐴0(𝑘)𝑒
𝑖(𝑘𝑥−𝑤0𝑡+∅)𝑑𝑘 =    ∫𝑒−𝛼𝑘

́2

𝑒𝑖(𝑘𝑥−𝑤0𝑡+∅)𝑑𝑘               168 

We put 𝑒𝑖𝑘0𝑥−𝑖𝑘0𝑥 in the equation: 169 

𝜓(𝑥, 𝑡) = 𝑒𝑖(𝑘0𝑥+∅)−𝑖𝑤0𝑡∫𝑒−𝛼𝑘
́2

𝑒𝑖𝑘
́𝑥𝑑𝑘 ́          170 

This integral is similar to integral 9, which led to 𝜓(𝑥) (Equation 10). Therefore, the output wave 171 

equation of a set of the infinite number of waves 𝐴0(𝑘) 𝑒
𝑖(𝑘𝑥−𝑤0𝑡+∅), which are moving in the 172 

positive direction of the 𝑥-axis, is equal to [4]; 173 

𝜓1(𝑥, 𝑡) = √
𝜋

𝛼
 𝑒𝑖(𝑘0𝑥+∅−𝑤0𝑡) 𝑒− 

𝑥2

4𝛼                                                 (11) 174 

𝑒𝑖𝜃 = 𝑐𝑜𝑠𝜃 + 𝑖𝑠𝑖𝑛𝜃 ⟹  𝑅𝑒 𝜓1(𝑥, 𝑡) = √
𝜋

𝛼
𝑐𝑜𝑠(𝑘0𝑥 − 𝑤0𝑡 + ∅) 𝑒

− 
𝑥2

4𝛼                (12) 175 

Due to the presence of the factor 𝑘0𝑥 − 𝑤0𝑡, Equation 12 represents a traveling wave packet that 176 

propagates in the positive direction of the 𝑥-axis [2]. This means that the location of the nodes is 177 

not known. 178 

Similarly, we use the recent trend to obtain the superposition of flat waves traveling in the negative 179 

direction of the 𝑥-axis, i.e. 𝐴0(𝑘)𝑒
𝑖(𝑘𝑥+𝑤0𝑡+∅). If we do this, we get to Equation 13. 180 

𝜓2(𝑥, 𝑡) = √
𝜋

𝛼
 𝑒𝑖(𝑘0𝑥+∅+𝑤0𝑡) 𝑒− 

𝑥2

4𝛼                                                           (13) 181 

𝑅𝑒 𝜓2(𝑥, 𝑡) = √
𝜋

𝛼
𝑐𝑜𝑠(𝑘0𝑥 + 𝑤0𝑡 + ∅) 𝑒

− 
𝑥2

4𝛼                                       (14) 182 

This equation shows a traveling wave packet that propagates in the negative direction of                  183 

the 𝑥-axis. 184 

Now we sum up the two equations 14 and 12 together to get the final wave. 185 

𝑅𝑒 𝜓𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = 𝑅𝑒 𝜓1 + 𝑅𝑒 𝜓2                   186 

Thus: 187 

𝑅𝑒 𝜓𝑡𝑜𝑡𝑎𝑙(𝑥, 𝑡) = √
𝜋

𝛼
 𝑒− 

𝑥2

4𝛼[𝑐𝑜𝑠(𝑘0𝑥 − 𝑤0𝑡 + ∅) + 𝑐𝑜𝑠(𝑘0𝑥 + 𝑤0𝑡 + ∅)]              (15) 188 

Using the equation 𝑐𝑜𝑠𝛼 + 𝑐𝑜𝑠𝛽 = 2𝑐𝑜𝑠
1

2
(𝛼 + 𝛽)𝑐𝑜𝑠

1

2
(𝛼 − 𝛽) and cos (𝜃) = cos (−𝜃) we 189 

obtain the equation of a standing wave packet. 190 
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{
𝛼 = 𝑘0𝑥 − 𝑤0𝑡 + ∅
𝛽 = 𝑘0𝑥 + 𝑤0𝑡 + ∅

⟹ 𝑅𝑒 𝜓(𝑥, 𝑡) = 2√
𝜋

𝛼
 𝑒− 

𝑥2

4𝛼  cos (𝑘0𝑥 + ∅)𝑐𝑜𝑠 (𝑤0𝑡)              (16) 191 

There is not the structure of 𝑘𝑥 ± 𝑤𝑡 in Equation 16 so the net wave is a standing wave. As 192 

observed, Equation 16 is exactly the same as equation 1-a. By comparing these two equations, we 193 

have 194 

𝛿 = 1   ,   𝛾 =
1

4𝛼
    𝑎𝑛𝑑    𝐶 = 2√

𝜋

𝛼
           195 

If we put the values ∅ = 
𝜋

6
 and 𝑘0 =

10𝜋

3
 in Equation 16, then we get the final equation of the solar 196 

system wave function for 𝑥 ≥ 0. 197 

𝑅𝑒 𝜓(𝑥, 𝑡) = 2√
𝜋

𝛼
𝑐𝑜𝑠(𝑤0𝑡) 𝑐𝑜𝑠(

10𝜋

3
𝑥 +

𝜋

6
) 𝑒− 

𝑥2

4𝛼              𝑥 ≥ 0                  (17) 198 

Equation 17 is obtained by calculating the superposition of a set of infinite number of waves of 199 

𝐴0(𝑘) 𝑒
𝑖(𝑘𝑥−𝑤0𝑡+∅) and 𝐴0(𝑘) 𝑒

𝑖(𝑘𝑥+𝑤0𝑡+∅) that move in opposite directions to each other (pay 200 

attention to the + sign behind ∅). Now if we sum a set of infinite number of flat wave functions 201 

with the formula 𝐴0(𝑘) 𝑒
𝑖(𝑘𝑥−𝑤0𝑡−∅) and 𝐴0(𝑘) 𝑒

𝑖(𝑘𝑥+𝑤0𝑡−∅) (pay attention to the − sign behind 202 

∅)  together, by following the path we have taken from equation 5 to equation 17, we reach the 203 

following relationship; 204 

𝑅𝑒 𝜓(𝑥, 𝑡) = 2√
𝜋

𝛼
𝑐𝑜𝑠(𝑤0𝑡) 𝑐𝑜𝑠(

10𝜋

3
𝑥 −

𝜋

6
) 𝑒− 

𝑥2

4𝛼        205 

Which is in the form of equation 1 for  𝑥 ≤ 0. Therefore, the final form of the solar system wave 206 

function (Equation 1) is as follows: 207 

{
 

 𝑅𝑒 𝜓(𝑥, 𝑡) = 2√
𝜋

𝛼
𝑐𝑜𝑠(𝑤0𝑡) 𝑐𝑜𝑠(

10𝜋

3
𝑥 +

𝜋

6
) 𝑒− 

𝑥2

4𝛼              𝑥 ≥ 0

𝑅𝑒 𝜓(𝑥, 𝑡) = 2√
𝜋

𝛼
𝑐𝑜𝑠(𝑤0𝑡) 𝑐𝑜𝑠(

10𝜋

3
𝑥 −

𝜋

6
) 𝑒− 

𝑥2

4𝛼              𝑥 ≤ 0

                         (18)  208 

In this equation, the larger the α, the more the width of wave packet is, along the x-axis. We drew 209 

Fig. 1 by 𝛼 = 6. 210 

Thus we demonstrated here that Solar system wave equation (equation 1) is the real part of a 211 

solution of Schrodinger equation. So we can assign it to an object like the sun. The closest star to 212 

the solar system is at a distance of 4.8 light-years. Therefore, the wave function of the solar system 213 

(equation 18) can only belong to the sun (it seems that quantum mechanics has entered a new 214 

phase or stage). But, according to the very large mass of the sun, using the de Broglie equation 215 

(𝜆 =
ℎ

𝑚𝑣
) the wavelength of 0.6 𝐴𝑈 will not obtain. So instead of Planck constant we have to 216 

choose another value for celestial objects. We call this new value the Planck constant in Astronomy 217 

(ℎ𝐴𝑠𝑡𝑟𝑜𝑛𝑜𝑚𝑦) abbreviated as ℎ𝐴 and we have:  𝜆𝐴 =
ℎ𝐴

𝑃
 . Based on a clever conjecture in his 1924 218 
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dissertation, de Broglie hypothesized that the equation 𝜆 =
ℎ

𝑃
, which is true for photons, could also 219 

be applied to matter particles [5]. Here, too, we assume that there is a relation in the form of       220 

𝜆𝐴 =
ℎ𝐴

𝑃
 on the scale of astronomy, according to the existence of a huge wave in the solar system. 221 

In such a case, the Schrodinger equation on the astronomical scale can be written as follows: 222 

𝑖ħ𝐴
𝜕

𝜕𝑡
𝜓(𝑥, 𝑡) = −

ħ𝐴
2

2𝑚
∆𝜓(𝑥, 𝑡)                                                       (19) 223 

If we follow the path of proving the Schrodinger wave equation and put the value ħ𝐴 instead of ħ, 224 

we reach equation 19. The Davisson–Germer experiment [6] can be considered as the confirmation 225 

of the de Broglie relationship and the Schrodinger equation at the atomic scale, and the Regularity 226 

of the distances of the planets from the sun can confirm equation 19 and the formula 𝜆𝐴 =
ℎ𝐴

𝑃
. For 227 

the celestial wave packet we also have 𝑤 =
ħ𝐴𝑘

2

2𝑚
. 228 

Conclusion 229 

In this article, by investigating the distances of the planets of the solar system from the sun, we 230 

concluded that a huge, cosine, and standing wave packet surrounds our solar system. Using 231 

quantum mechanics calculations, it was proved that this wave packet belongs to the sun. Finally, 232 

I obtained the Schrodinger equation in astronomy, which describes the behavior of huge 233 

astronomical wave packets. Wave theory predicts the distances of all of the planets (including 234 

Neptune), plus Ceres and Pluto, but as we have seen, the Bode rule does not predict the distance 235 

of Neptune. Describing the distances of the planets by a quantum wave packet can be another 236 

confirmation of the validity of quantum theory. In addition to the astronomical scale, in the atomic 237 

scale, according to this article, it is very likely that electrons are located on the nodes of the 238 

associated wave packet of the atom nucleus. This issue can be discussed and investigated in future 239 

studies. 240 
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