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A new ‘wave-particle non-dualistic interpretation at a single-quantum level’ is

presented by showing the physical nature of Schrödinger’s wave function as an ‘in-

stantaneous resonant spatial mode’ to which a particle’s motion is confined. The

initial phase associated with a state vector is identified to be related to a particular

position eigenstate of the particle and hence, the equality of quantum mechanical

time to classical time is obtained; this equality automatically explains the emer-

gence of classical world from the underlying quantum world. Derivation of the Born

rule as a limiting case of the relative frequency of detection is provided for the first

time, which automatically resolves the measurement problem. Also, the Born rule

derivation is supplemented with a geometrical interpretation. ‘What’s really going

on’ in Young’s double-slit and Wheeler’s delayed-choice experiments is explained at

a single-quantum level. Also, an interference experiment is proposed to verify the

correctness of the non-dualistic interpretation.
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I. INTRODUCTION

Prof. Feynmann remarked, “We choose to examine a phenomenon which is impossible,

absolutely impossible, to explain in any classical way, and which has in it the heart of quan-

tum mechanics. In reality, it contains the only mystery”, where, the ‘phenomenon’ stands

for wave-particle duality of a single quantum in Young’s double-slit experiment [1]. Photons,

electrons, neutrons, atoms, molecules, etc., are shown to exhibit the duality [2–7]. Providing

an explanation to this mystery and also a causal explanation for Wheeler’s delayed-choice

experiment [8] by uniting the mutually exclusive wave and particle natures into a single non-

dualistic entity, is the main purpose of the present article. This kind of uniting is possible

only in quantum mechanics.

There are various interpretations of quantum mechanics [9–23]. The present ‘wave-

particle non-dualistic interpretation at a single-quantum level’ provides a “derivation for

Born’s rule as a limiting case of the relative frequency of detection”, which shows the ab-

sence of measurement problem in quantum mechanics. Importantly, non-duality never de-

viates from the quantum formalism and hence, it reproduces all aspects, like, expectation

values of the observables, Heisenberg’s uncertainty relation, etc., and successes of the same;

because, it yields the Born rule when repeated measurements are made on a large number

of identical states. It only brings out the picture of reality existing in the quantum world.

In other words, it’s just a ‘quantum formalism as it is - interpretation’.

In section-II, the physical nature of Schrödinger’s wave function is unraveled and the

inner-product of a state vector with its dual is shown to be a kind of interaction arising in

a measuring device. In sections-III & IV, the relation between the initial phase of a state

vector and a particular outcome of an observable is worked out. Derivation of Born’s rule

and a solution to the ‘measurement problem’ are given in section-V. Equality of quantum

mechanical time to classical time is shown in section-VI. “What’s really happening?” in the

Young’s double-slit and Wheeler’s delayed-choice experiments is explained in sections- VII

and VIII, respectively. An interference experiment, to verify the physical nature of wave

function is proposed in section-IX. Section-X contains the conclusions and discussions.
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II. PHYSICAL NATURE OF SCHRÖDINGER’S WAVE FUNCTION

By analogy and contrast between the classical and quantum mechanical situations of a

free particle in one-dimensional Euclidean space (1DES), the physical nature of the wave

function is brought into light by a mathematical reasoning. The particle is emitted by a

source and is absorbed at some later time. The same reasoning remains valid, as it can be

straightforwardly verified, even for a non-free particle in 3DES.

The free-particle’s classical and quantum mechanical Hamiltonians are given by,

H =
p2

2m
= E ; and Ĥ|ψ >=

p̂2

2m
|ψ >= E|ψ >, (1)

respectively, where, m is the mass of the particle; p and E are momentum and total energy

in the classical scenario and p̂, |ψ > and E are momentum operator, energy eigenstate and

energy eigenvalue in the quantum mechanical case, respectively. The Hamiltonian equations

of motion yield the following solutions,

x(t) =
p(0)

m
t+ x(0) ; and p(t) = p(0), (2)

where, x(0) and p(0) are constants of integration corresponding to the initial position and

initial momentum at time t = 0, whereas, Heisenberg’s equations of motion results in,

x̂(t) =
p̂(0)

m
t+ x̂(0) ; and p̂(t) = p̂(0); (3)

here, x̂(t) & p̂(t) and x̂(0) & p̂(0) are time-dependent and time-independent position and

momentum operators, respectively, such that one has the following commutation relations,

[x̂(t) , p̂(t)] = [x̂(0) , p̂(0)] = i~. (4)

[x̂(0) , x̂(t)] =
i~
m
t and [p̂(0) , p̂(t)] = 0, (5)

and also the eigenvalue equations,

x̂(0)|x̂(0) >= x(0)|x(0) > ; x̂(t)|x̂(t) >= x(t)|x(t) >, (6)

where, i =
√
−1 and ~ is the reduced Plank’s constant; {|x(0) > |x(0) ∈ R} & {x(0)|x(0) ∈

R} and {|x(t) > |x(t) ∈ R} & {x(t)|x(t) ∈ R} are the sets of eigenstates and eigenvalues

of x̂(0) and x̂(t), respectively; R is the set of real numbers spanning the 1DES.
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Using Eq. (4), the time-independent Schrödinger’s wave equation can be written in the

position bases as,

either − ~2

2m

∂2ψ(x(t))

∂x(t)2
= Eψ(x(t)) or − ~2

2m

∂2ψ(x(0))

∂x(0)2
= Eψ(x(0)); (7)

here, ψ(x(t)) =< x(t)|ψ > and ψ(x(0)) =< x(0)|ψ >. Notice that, ψ(x(t)) does not

explicitly depend on t. As long as the form of eigenvalue equations in Eq. (7) are considered,

both ψ(x(t))and ψ(x(0)) describe the same physical situation.

When a particle appears at the source, in the classical scenario given in Eq. (2), x(0)

is a chosen unique value in R. But, the same in the quantum mechanical case given in

Eqs. (6) and (7), one has a set of all possible initial values, {x(0)|x(0) ∈ R}, which are the

eigenvalues of x̂(0) and hence, ψ(x(0)) is a function on R, implying that, the moment the

particle appears at the source, ψ(x(0)) appears instantaneously on the entire 1DES. Notice a

symmetry that the reverse is also true, i.e., the moment the particle disappears at some later

time t by absorption, then the wave function also disappears instantaneously, resembling the

‘wave function collapse’ advocated in the Copenhagen interpretation [9–11]. As well-known

from experiments [2–7], the collapse occurs at some particular eigenvalue, say xp(t) (the

subscript p stands for particle). Hence, by using the same symmetry, even the appearance

of particle at the source can be inferred to occur at some definite eigenvalue, say xp(0). Note

that, ‘the appearance of ψ at the moment of particle’s appearance and its disappearance at

the moment of particle’s disappearance’ is analogous to a resonance process.

Using the position bases in Eq. (6), |ψ > can be written as,

|ψ >=

∫
R

dx(0)|x(0) >< x(0)|ψ >=

∫
R

dx(t)|x(t) >< x(t)|ψ > . (8)

Again following the same reasoning as above, the moment the particle appears at the source,

|ψ > (= {|x(0) >< x(0)|ψ > |x(0) ∈ R}) appears instantaneously in a complex vector space

(CVS) spanned by the continuous basis set {|x(0) > |x(0) ∈ R}. After some time t, {|x(0) >

|x(0) ∈ R} evolves to {|x(t) > |x(t) ∈ R} such that the initial position eigenvalue xp(0)

of the particle changes to xp(t). |xp(0) >< xp(0)|ψ >∈ {|x(0) >< x(0)|ψ > |x(0) ∈ R};

here, |xp(0) >< xp(0)|ψ > is the particular position eigenstate where the particle appeared

initially. At t, the particle’s position eigenstate is |xp(t) >< xp(t)|ψ >∈ {|x(t) >< x(t)|ψ >

|x(t) ∈ R}. Hence, it’s clear that the particle moves in the CVS but always confined to |ψ >.

As it’s known, ψ(x(0)) is in one-to-one correspondence with {|x(0) >< x(0)|ψ > |x(0) ∈ R}
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and ψ(x(t)), with {|x(t) >< x(t)|ψ > |x(t) ∈ R}. Also, the functional form of ψ is

independent of its arguments, because, {x(0)|x(0) ∈ R} = {x(t)|x(t) ∈ R} = R. Thus, it

can be concluded that ψ is like a spatial mode in which the quantum particle moves akin to

the case of a test particle moving in the curved space-time of the general theory of relativity

[24]. Hence, it can be concluded that the the physical nature of Schrödinger’s wave function

(or equivalently the state vector) is ‘Instantaneous Resonant Spatial Mode (IRSM). Now

onwards, whenever it’s necessary, the IRSM is used synonymously to both Schrödinger’s

wave function and the state vector.

Like an eigenstate and its eigenvalue, the inseparable nature of IRSM and its particle

is named as the wave-particle non-duality (WPND). Born’s probabilistic interpretation [9],

“The wave function determines only the probability that a particle - which brings with itself

energy and momentum - takes a path; but no energy and no momentum pertains to the

wave”, resembles the IRSM, except for the notion of probability. In a recent experiment,

the lower limit for the speed of collapse of a delocalized photon state is estimated to be 1550

times the speed of light [25]. But, according to the WPND, such a speed is infinity due to

the instantaneous nature of the wave function.

During either absorption or scattering by collision, eigenvalues and their simultaneous

eigenstate undergo a change. If a particle suddenly gets scattered at some position eigen-

value, say xs, instead of absorption, then its IRSM disappears akin to the case of absorption

and a new one with origin at xs appears for the scattered particle.

A. Inner-Product as an Interaction

A classical-wave’s intensity is proportional to the square of its amplitude. But, according

to the WPND, Schrödinger’s wave function can’t be claimed to have such an intensity,

because, it’s an IRSM and is unlike a propagating classical wave.

Suppose that a particle ends up on a detector screen. A dual vector gets induced in

the same screen and interacts according to the inner-product, which can be found within

the quantum formalism. The scattering of |ψ > into some other state, say |ψ′ >, can be

described by associating an operator, Ô = |ψ′ >< ψ|, to the detector:

Ô|ψ >=< ψ|ψ > |ψ′ > . (9)
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Notice that, analogous to an image in a mirror, < ψ| is confined only to the screen. Therefore,

if the scattered state, |ψ′ >, is discarded, then the particle must have interacted at some

location in the region of the inner-product, < ψ|ψ >.

If a detector is associated with a projection operator P̂ , then the induced dual is <

ψ|P̂ † =< ψ|P̂ and Eq. (9) becomes,

Ô|ψ >=
(
|ψ′ >< ψ|P̂

)
|ψ > . (10)

Therefore, the inner-product interaction is given by < ψ|P̂ |ψ >.

III. STATE VECTOR’S INITIAL PHASE AND A PARTICULAR OUTCOME

OF AN OBSERVABLE

Prof. Dirac’s statement [26], “Questions about what decides whether the photon is to go

through or not and how it changes its direction of polarization when it does go through can

not be investigated by experiment and should be regarded as outside the domain of science”,

is the actual inspiration behind the proposal of a relation between the initial/overall/global

phase associated with the state vector and a particular eigenstate of an observable.

Consider the toss of a coin in the 3DES, in a CVS as shown in FIG. (1) and mapping of

the coin in CVS to a charged spin-1
2

particle in the Stern-Gerlach (SG) apparatus [1, 27, 28]

given in FIG. (2).

A. Toss of Coin in the 3D-Euclidean Space

Let |n > be a normal vector to the head-surface, passing through coin’s center-of-mass

and α be an angle between |n > and a vector, |g >, parallel to the gravitational field. Just

before the landing of coin, consider its position at a height h < r above the ground surface;

here, r is the radius of the coin. If −π/2 < α < π/2, then head will be the outcome.

Otherwise, tail occurs for π/2 < α < 3π/2. Depending on the value of α, coin will jump

into either head or tail state. Upon the outcome, |n > will be pointing either parallel or

anti-parallel to |g >. Note that, from the moment of toss to a point at h, |n > itself will be

varying from a given initial conditions, both in space and time, obeying Newton’s equations

of motion. The detailed dynamics of |n > is immaterial for the probabilistic description,

but only the value of α matters.
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B. Toss of Coin in a Complex Vector Space

Since, the coin system is aimed to map onto spin-1
2

system in the SG apparatus, let’s

choose the eigenvalues +1
2

and −1
2

for the outcomes of head and tail, respectively. Also

notice that, all the vectors considered in this subsection belongs to a CVS as shown in FIG.

(1).

Let |H > and |T > be the eigenstates for the head and tail, respectively. Upon the

outcome, |n > will be pointing along either |H > or |T > which can also be regarded as

anti-parallel vectors to |g >. Since, head and tail are mutually exclusive with respect to

observation, one has < T |H >= 0. The vector space above the ground can be taken as a

direct sum of |H > and |T >. Let α and β be the phase angles made by |n > with |H >

and |T >, respectively, such that |α|+ |β| = π.

In any CVS of any dimensionality, one can always write < a|b >= | < a|b > |.eiθ between

any pair of vectors |a > and |b >; where, | < a|b > | is the absolute value of the complex

number, < a|b >, and θ is the phase angle between the vectors:

< H|n >= | < H|n > |.eiα ;< T |n >= | < T |n > |.eiβ ; |α|+ |β| = π . (11)

Let Ĉ be an observable of the coin:

Ĉ =
1

2
(|H >< H| − |T >< T |) ; Ĉ|H >=

1

2
|H > ; Ĉ|T >= −1

2
|T >, (12)

where, < H|H >=< T |T >= 1. Using the unit operator, Î = |H >< H|+ |T >< T | in the

CVS above the ground-surface, |n > can be expressed as,

|n > = |H >< H|n > +|T >< T |n >

= |H > .| < H|n > |.eiα + |T > .| < T |n > |.eiβ. (13)

According to the criterion of the minimum phase given in subsection 3.1, if |α| < |β|,

then the coin enters into |H > and if |α| > |β|, then into |T >. Notice that, either α or β

will be minimum at a time because |α|+ |β| = π (the case of |α| = |β| is ruled out because,

h < r). As an explicit example, consider |α| < |β|; then, upon observation,

< n|n >−→ | < H|n > |2 ;

(
occurrence of the eigenvalue +

1

2

)
. (14)

Consider another tossed coin represented by a state vector |ñ > which is related to the

previous coin as,

|ñ >= eiφ.|n > . (15)
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FIG. 1. Schematic Diagram for the Toss of a Coin: (a) h is the height of coin above the

ground surface (GS) and is supposed to be less than the radius of coin. |g > is a vector parallel

to the gravitational field direction and perpendicular to the GS. |n > is a vector normal to the

head-surface passing through the center-of-mass of the coin. The outcomes, head and tail, are

represented by the state vectors |H > and |T >, respectively, which are taken to be anti-parallel to

|g >. They are mutually exclusive with respect to the observation, i.e., < T |H >= 0 (in the space

above the GS). (b) α and β are the angles between |H > &|n > and |T > &|n >, respectively;

|α|+ |β| = π. If |α| < |β| (|β| < |α|), then the coin enters into |H > (|T >).

where, φ is the overall phase by which the second coin differs from the first one. Expressing

|ñ > akin to |n > in Eq. (13):

|ñ >= |H > .| < H|n > |.ei(φ+α) + |T > .| < T |n > |.ei(φ+β). (16)

Depending upon whether |(φ + α)| < |(φ + β)| or |(φ + α)| > |(φ + β)|, the coin will enter

into either |H > or |T >, respectively.

Notice in Eq. (14) that, the absolute length of |n > and hence the value of | < H|n > |
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is immaterial for the case of single observation except for the eigenvalue. However, for

an infinitely large number of tosses, the relative frequency of detection (RFD), |<H|n>|
2

<n|n> ,

must coincide with the probability of occurrence for heads, i.e., 1
2
, due to the constraint

|α|+ |β| = π, which fixes | < H|n > | = 1√
2
.

C. Charged Spin-1
2 Particles in the SG Apparatus

All quantum phenomena actually happen in a CVS, while the eigenvalues live in 3DES.

If quantum mechanics (QM) is taken to be more fundamental than the classical mechanics

(CM), then obviously, any macroscopic object also lives in the CVS, because, it’s a composite

of ‘quantum entities’. Hence, Nature herself dwells in the CVS, otherwise, the quantum

mechanical commutation relations can’t have any physical meaning. Hence, the observables

of a particle and the measuring device must commute with each other in order to detection

to happen. Therefore, the CVS of particle’s observable can be used to represent the CVS of

the measuring device and vice versa - which also explains the induced dual of a state vector

as given in Eqs. (9) and (10. This is made use of hereafter.

Let SGx, SGy and SGz be the SG apparatuses [1, 27], where the magnetic field directions

are along X, Y and Z axises, respectively. By taking the gravitational and magnetic field

directions along Z-axis, the states of the coin discussed in the subsection 3.2 can be mapped

to that of a spin-1
2

particle in the SGz as follows,

|H >−→ |Sz; ↑> ; |T >−→ |Sz; ↓>, (17)

Ĉ −→ Ŝz =
1

2
(|Sz; ↑>< Sz; ↑ | − |Sz; ↓>< Sz; ↓ |), (18)

Î −→ Îz = |Sz; ↑>< Sz; ↑ |+ |Sz; ↓>< Sz; ↓ |, (19)

where, Ŝz is the Z-component of the total spin operator, Ŝ, with eigenstates |Sz; ↑> and

|Sz; ↓> corresponding to spin-up and spin-down states, respectively, and Îz is the unit op-

erator in the CVS of Ŝz. Consider an initial spin state ‘up along Y’, |Sy; ↑>, subjected to

SGz:

|n >−→ |Sy; ↑>= |Sz; ↑>< Sz; ↑ |Sy; ↑> +|Sz; ↓>< Sz; ↓ |Sy; ↑> . (20)
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Akin to the case of Eq. (13), the above equation becomes,

|Sy; ↑> = |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eiβ

= |Sz; ↑> .R.eiα + |Sz; ↓> .R.eiβ, (21)

where, | < Sz; ↑ |Sy; ↑> | = | < Sz; ↓ |Sy; ↑> | = R, < Sz; ↑ |Sy; ↑>= Reiα and

< Sz; ↓ |Sy; ↑>= Reiβ; here, R is a positive real number. Depending on whether |α| < |β|

or |α| > |β|, the particle enters into either |Sz; ↑> or |Sz; ↓>, respectively. For example, let

|α| < |β|, then the particle will be in|Sz; ↑> and |Sz; ↓> will be remaining as an ontological

empty state - see FIG. (2). Therefore, observation,

FIG. 2. Schematic Diagram for the Stern-Gerlach Apparatus: A source emits a charged

spin-1
2 particle, whose initial state is filtered ‘up along Y-axis‘, |Sy; ↑>, by a filter FUy. Then the

particle is subjected to the Stern-Gerlach measurement along Z-axis. For the case of |α| < |β|,

the particle enters into |Sz; ↑> and the state, |Sz; ↓>, remains without a particle. During the

observation, the particle contributes a point to | < Sz; ↑ |Sy; ↑> |2, while the empty mode, |Sz; ↓>,

contributes nothing.

< Sy; ↑ |Sy; ↑> = | < Sz; ↑ |Sy; ↑> |2 + | < Sz; ↓ |Sy; ↓> |2

−→ | < Sz; ↑ |Sy; ↑> |2, (22)

yields an eigenvalue +1
2
; because, |Sz; ↓> has no particle to contribute.



11

Consider another spin state prepared ‘up along Y’, |S̃y; ↑>, which differs from the previous

one only by an overall phase as,

|S̃y; ↑>= eiφ.|Sy; ↑> . (23)

The SGz feels |S̃y; ↑> as,

|S̃y; ↑>= |Sz; ↑> .R.ei(α+φ) + |Sz; ↓> .R.ei(β+φ). (24)

Depending on whether |(α+ φ)| < |(β + φ)| or |(α+ φ)| > |(β + φ)|, the particle enters into

either |Sz; ↑> or |Sz; ↓>, respectively. Therefore, it’s sufficient to notice in Eq. (21) that,

the values of α and β will be different for different ‘up along Y’ spin states. Similar to Eq.

(21), let’s write,

|Sy; ↓> = |Sz; ↑> .R.eiα
′
+ |Sz; ↓> .R.eiβ

′
, (25)

|Sx; ↑> = |Sz; ↑> .R.eiγ + |Sz; ↓> .R.eiδ, (26)

and |Sx; ↓> = |Sz; ↑> .R.eiγ
′
+ |Sz; ↓> .R.eiδ

′
. (27)

Block the |Sz; ↓> in Eq. (21) and subject |Sz; ↑> to SGx having the unit operator

Îx = |Sx; ↑>< Sx; ↑ |+ |Sx; ↓>< Sx; ↓ |:

R.eiα.|Sz; ↑> = R.eiα.|Sx; ↑>< Sx; ↑ |Sz; ↑> +R.eiα.|Sx; ↓>< Sx; ↓ |Sz; ↑>

= R2.ei(α−γ).|Sx; ↑> +R2.ei(α−δ).|Sx; ↓> . (28)

Again, depending on whether |(α−γ)| or |(α− δ)| is minimum, which in turn depends on α,

the particle will enter into either |Sx; ↑> or |Sx; ↓>, respectively. All initial states prepared

‘up along Y’ will, in general, differ from each other by initial phases occurring randomly.

Those random phases never contribute to the inner-product but responsible for the outcomes

of different eigenvalues of an observable. As it can be easily seen, akin to the case described

in Eq. (14), the Born rule emerges out here as a limiting case of RFD.

According to the requirement of WPND to describe a single-quantum behavior, a gener-

alized representation for the SU(2) algebra respecting the Eqs. (21), (25), (26) and (27) is

explicitly worked in the appendix A.
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IV. “PHASE-TUBE” STRUCTURE OF QUANTUM STATE VECTOR AND

THE BORN RULE

In this section, any quantum state is shown to fall into a phase-hole, PH , which sweeps

a phase-tube, PT , along the direction of particle’s motion. If the quantum state becomes

a superposition of, say, two orthogonal eigenstates of some observable, then the phase-tube

branches into two smaller tubes as shown in FIG. 3. This kind of geometrical structures

exist only in the complex vector space, where, the actual quantum phenomena happen.

A. Phase-Hole Representation of Quantum State Vector

As considered in Eq. (21), various spin states, filtered through FUy, can be written as

given below:

|Sy(α); ↑>= |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eiβ, (29)

where, α is a discrete and random variable depending on the nature of source. Notice that,

different |Sy; ↑> states can be characterized either by α or β, because, α and β are always

related as shown in section-II; here, α is chosen. The following set of vectors,

PH = {|Sy(α); ↑> |α ∈ [0, 2π]}, (30)

can be plotted on a complex-plane as shown in FIG. 3(a). The tips of all vectors lie on the

circumference of a circle of unit radius, since, |Sy(α); ↑> is normalized to unity. Therefore,

any vector belonging to PH always passes through the FUy. In other words, in the perspective

of quantum particle, our perspective of single direction in FUy appears as a hole (PH). In a

nutshell, the unit vector |Sy; ↑> is actually a phase-hole, PH , for the quantum particle. In

reality, there is nothing special about the vector |Sy; ↑>. Hence, any arbitrary state vector

encountered by a quantum particle can always be regarded as a corresponding phase-hole

associated with that vector.
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B. Superposition of Eigenstates with Equal Amplitudes

Consider |Sy(α); ↑> in Eq. (29) as a superposition of Ŝz’s eigenstates with equal ampli-

tudes as given below:

|Sy(α); ↑>=

(
1

2

) 1
2

eiα|Sz; ↑> +

(
1

2

) 1
2

eiβ|Sz; ↓> . (31)

However, according to non-duality, as already shown earlier, |Sy(α); ↑> lies in a circular

phase-hole, PH , of unit radius. By the same token, |Sz; ↑> and |Sz; ↓> can also be said to

lie in the corresponding circular phase-holes, say PUH and PDH , each with (1
2
)
1
2 as radius;

here, PUH and PDH correspond to up-phase-hole and down-phase-hole as shown in the FIG.

3(b), respectively. Notice that, PUH∩PDH = {}, because, any vector from PUH is orthogonal

to any vector in PDH . As the particle moves, PH sweeps a tube, say PT , which branches into

PUT and PDT ; here, PUT and PDT are phase-tubes generated by PUH and PDH , respectively.

Also notice that, every particle state in PUT has a corresponding empty state in PDT and

vice versa (see FIG. 3(b) & 3(c)).

When a huge number of particles, say N , enters PT , then some of them, say NU , moves

through PUT and the remaining, say ND, through PDT . Obviously, one has N = NU +ND.

Also, NU = (AU/A)N and ND = (AD/A)N ; here, A, AU and AD are the areas of cross-

section of PT , PUT and PDT , respectively. Therefore, one has,

NU

N
+
ND

N
=
AU
A

+
AD
A

= 1 = RU +RD, (32)

where, Ri = Ni/N = Ai/A, corresponds to the relative frequency of detection or Born’s

probability; here, i = U,D. Therefore, it’s clear that, the conservation of total number of

particles implies the conservation of the total of area of cross-sections of the phase-tubes,

which yields the Born rule in Eq. (32). Hence, one has,

A = AU + AD =⇒ π =
π

2
+
π

2
. (33)

The above equation implies the splitting of the interval, [0, π], as,

[0, π] = [0, π/2] ∪ [π/2, π], (34)

and the physical phenomenon in the interval, [π, 2π], is exactly identical to the one in [0, π].

Therefore, depending on whether |α| ∈ [0, π/2] or |α| ∈ [π/2, π], the quantum particle enters

into either PUT or PDT , respectively.
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FIG. 3. Schematic Diagram of Phase-Tubes: (a) All initial states, |Sy(α); ↑>, are plotted

with a common origin on a complex plane. The tips of all vectors lie on a circle of unit radius,

which is named as ‘Phase-Hole’, PH ; here, α occurs discretely and randomly. (b) & (c) PH sweeps

a ‘Phase-Tube’, PT , in the direction of particle’s motion. PT branches into ‘up-phase-tube’, PUT ,

and ‘down-phase-tube’, PDT , because, any vector from PUH is orthogonal to any vector in PDH ;

here, PUH and PDH are up-phase-hole and down-phase-hole, respectively. For convenience, the

state vectors are drawn symmetrically, which is not true in reality due to the nature of α. See

main text for the details of equations.

C. Superposition of Eigenstates with Unequal Amplitudes

Consider |Sy(α); ↑> in Eq. (29) as a superposition of Ŝz’s eigenstates with unequal

amplitudes as given below:

|Sy(α); ↑>=

(
1

4

) 1
2

eiα|Sz; ↑> +

(
3

4

) 1
2

eiβ|Sz; ↓> . (35)

All phase-tube details of the above equation is identical to the one given in section-II(b) for

Eq. (31), except for how the interval, [0, π], splits. Notice that, the phase-tube structure

given in FIG. 3(c) can be obtained from the one in FIG. 3(b) by uniformly shrinking and

stretching the PUT and PDT , respectively.

By making use of the conservation of total cross-sectional area, one has from Eq. (35),

A = AU + AD =⇒ π =
1

4
π +

3

4
π, (36)

implying the splitting of [0, π] as,

[0, π] = [0, π/4] ∪ [π/4, π], (37)
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Therefore, depending on whether |α| ∈ [0, π/4] or |α| ∈ [π/4, π], a quantum particle enters

into either PUT or PDT , respectively.

D. General Case of Superposition of Ŝz’s Eigenstates

The above analysis can be straightforwardly applied to the generic case given in Eq. (29),

|Sy(α); ↑>= |Sz; ↑> .| < Sz; ↑ |Sy; ↑> |.eiα + |Sz; ↓> .| < Sz; ↓ |Sy; ↑> |.eiβ, (38)

as follows:

By making use of the conservation of total cross-sectional area, one has,

A = AU + AD =⇒ π = | < Sz; ↑ |Sy; ↑> |2π + | < Sz; ↓ |Sy; ↑> |2π = RUπ +RDπ, (39)

where, RU = | < Sz; ↑ |Sy; ↑> |2 and RD = | < Sz; ↓ |Sy; ↑> |2, implying the splitting of

[0, π] as,

[0, π] = [0, RUπ] ∪ [RUπ, π], (40)

Hence, depending on whether |α| ∈ [0, RUπ] or |α| ∈ [RUπ, π], the quantum particle enters

into either PUT or PDT , respectively.

Consider the detection of a single particle in the SGz apparatus for the case |α| ∈ [0, RUπ].

According to non-duality, the state |Sy(α); ↑> induces its dual-state and interacts at the

detector screen according to the inner-product:

< Sy(α); ↑ |Sy(α); ↑> = | < Sz; ↑ |Sy; ↑> |2 + | < Sz; ↓ |Sy; ↑> |2

Detection−−−−−−→
|α|∈[0,RUπ]

| < Sz; ↑ |Sy; ↑> |2, (41)

resulting in the detection of eigenvalue, +1
2
; the particle itself contributes a point to | <

Sz; ↑ |Sy; ↑> |2, while | < Sz; ↓ |Sy; ↑> |2 receives zero contribution [see FIG. 2]. When a

large number of particles are sent through FUy, either one at a time or all at once, then the

particles from both intervals in Eq. (40) contribute:

< Sy(α); ↑ |Sy(α); ↑>= | < Sz; ↑ |Sy; ↑> |2 + | < Sz; ↓ |Sy; ↑> |2, (42)

which is the same result as in Eq. (39) modulo π.
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V. DERIVATION OF BORN’S RULE USING INDIVIDUAL QUANTUM

EVENTS

The results obtained in the sections-III & IV are generalized in this section.

A. Observable with Discrete Eigenstates: Minimum Phase and Quantum Jump

If |ψ > encounters a CVS spanned by the discrete orthogonal eigenstates, |ai >; i =

1, 2, 3, · · · , of an operator, Â:

|ψ >=
∑
i

|ai >< ai|ψ >, (43)

then, as shown in the sections-III & IV, the particle enters into one of the eigenstate, say

|ap >, having the minimum phase with respect to |ψ >, i.e., phase{< ap|ψ >} < phase{<

ai|ψ >}∀i 6= p. Due to the interaction of |ψ > with its dual as shown in Eq. (9), an

observation yields,

< ψ|ψ >=
∑
i

< ψ|ai >< ai|ψ >−→ | < ap|ψ > |2, (44)

and the particle will be naturally found in |ap > with an eigenvalue ap, because, all other

ontological orthogonal states are empty. The particle contributes a point to the function

| < ap|ψ > |2. Repeated measurements on a large number of identical state vectors, each

one of them differing from the other only by the initial phase, yield different eigenvalues of

Â. Notice that, as shown by an explicit example in sections-III & IV, the range of the set

of initial phases can be divided into various subsets, such that, each subset is related to a

particular eigenvalue. Normalizing the number of particles found in |ap > with respect to

the total number of particles yields the RFD. As it can be easily seen from Eq. (44), in the

limit of infinite number of particles, the RFD coincides with | < ap|ψ > |2:

< ψ|ψ >=
∑
p

| < ap|ψ > |2 = 1, (45)

which is the well-known Born’s rule. Therefore, QM itself is not about probabilities, because,

it can be deterministically described in a CVS at a single quantum level. Nevertheless, the

unavailability of the information about the initial phase of |ψ > due to inner-product forces

experiments to observe only RFD which, anyhow, yields Born’s rule as a limiting case.
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B. Bohr’s Complementarity at a Single-Quantum Level

Suppose that, instead of Â, |ψ > encounters a different observable, B̂, whose CVS is

spanned by the eigenstates, say |bi >:

|ψ >=
∑
i

|bi >< bi|ψ > . (46)

The particle will be present in some eigenstate, |bp >, making a minimum phase with |ψ >

. The inner-product at the detector B is,

< ψ|ψ >=
∑
i

< ψ|bi >< bi|ψ >−→ | < bp|ψ > |2, (47)

yielding the eigenvalue bp and the particle contributes a point to | < bp|ψ > |2. Therefore,

it’s the measuring device, either A or B, where the inner-product interaction occurs, decides

which property, either ap or bp, of the particle to be observed. This is Bohr’s principle of

complementarity [8, 29, 30], but, at a single-quantum level, provided Â and B̂ are non-

commuting observables. However, notice that, the non-dualistic picture of a particle flying

in its IRSM is further irreducible and is independent of any measuring device. Therefore, the

wave and particle natures are not complementary to each other in QM like in the CM, albeit

the position and momentum of a quantum are. Finally, notice that, due to the principle of

minimum phase and the inner-product interaction, the measurement problem is absent in

QM.

C. Sequential Selective Measurements

Consider three sequential detectors A, B and C corresponding to the observables Â, B̂

and Ĉ, whose eigenstates and eigenvalues are |ai >, |bj > and |ck > and ai, bj and ck,

respectively [27]; here, i, j, k = 1, 2, 3, · · · . Let A, B and C select some particular states

|a′i >, b′j > and |c′j > and reject the rest, respectively. Then, in A’s CVS,

|ψ >=
∑
i

< ai|ψ > |ai >, (48)

and only |a′i > component comes out:

|ψ >=
∑
i

< ai|ψ > |ai >−→< a′i|ψ > |a′i >≡ |ãi > (49)
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If |ψ > makes a minimum phase with respect to |a′i >, then the particle enters into B’s

CVS:

|ãi >=
∑
j

< bj|ãi > |bj >−→< b′j|ãi > |b′j >, (50)

because, B allows only |b′j >, which in turn encounters C’s CVS,

< b′j|ãi > |b′j >=< b′j|ãi >
∑
k

< ck|b′j > |ck >−→< b′j|ãi >< c′k|b′j > |c′k > . (51)

because, only |c′k > comes out and the inner-product interaction results in a RFD,

RFDC = | < b′j|ãi > |2| < c′k|b′j > |2. (52)

Suppose, B allows all {|bj > |j ∈ N} to pass through. Then C will encounter a superposition,∑
j

< bj|ãi > |bj >= |ãi >, (53)

In B’s CVS, though only |b′j > contains the particle, but all other empty modes do exist

ontologically and if unblocked, they contribute at C:

|ãi > =
∑
k

∑
j

< bj|ãi >< ck|bj > |ck >

=
∑
k

< ck|ãi > |ck >−→< c′k|ãi > |c′k >

yielding, RFDC = | < ãi|c′k > |2, (54)

which is entirely different from Eq. (52). Therefore, ontological empty modes produce

physically observable effect.

In Eq. (52), if | < b′j|ãi > |2 is regarded as a probability for the particle to go through the

|b′j > route in B and | < c′k|b′j > |2 as a probability of finding the same at C, then they do

obey the usual rule of probability multiplication. Here, if the probability is really in play,

then its total, say P (c′k), for the particle to arrive at C through all possible routes in B,

P (c′k) =
∑
j

| < b′j|ãi > |2| < c′k|b′j > |2, (55)

must be the same as without B. But, in the absence of B, Eq. (54) gives the total probability

of finding the particle at C, which is not the same as Eq. (55). This is a clear proof for

the absence of probability in quantum mechanics. Only the RFD arises at a detector when

repeated measurements are made on identical states, differing only by initial phases. If the

presence of a particle is inferred by a probability, that too, in the absence of observation,

then it will not yield the correct picture of a single-quantum.
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D. Observable with Continuous Eigenstates and no Quantum Jump

In the case of an observable with continuous eigenvalues, there will always be an eigenstate

whose phase with respect to |ψ > will be the same as the initial phase of |ψ > itself. Instead

of Â in the Eq. (43), consider the position operator, r̂, with orthogonal eigenstates, |r >

and continuous eigenvalues, r = (x, y, z), spanning the 3DES:

|ψ >=

∫∫∫
d3r|r >< r|ψ > . (56)

The particle naturally enters into a position eigenstate, say |rp >< rp|ψ >, without any

quantum jump, such that phase{< rp|ψ >} = phase{|ψ >} (also, see section-II). Therefore,

the interaction of |ψ > with its induced dual is,

< ψ|ψ >=

∫∫∫
d3r < ψ|r >< r|ψ >−→ | < rp|ψ > |2, (57)

because, except |rp >< rp|ψ >, the remaining orthogonal states, |r >< r|ψ >, are empty.

The RFD in the limit of infinite number particles is,

< ψ|ψ >=

∫∫∫
d3rp| < rp|ψ > |2 = 1, (58)

which is the Born rule. Therefore, if the position variable in Schrödinger’s wave equation

is identified with rp, then the unavoidable inference is that the particle should be present

in multiple locations at the same time, which, in turn demands the ‘collapse of the wave

function’ upon observation [9–11, 16, 17].

VI. PATH OF A QUANTUM PARTICLE THROUGH ITS IRSM

In section-II, it’s shown that a particle moves in its IRSM (|ψ >), but nothing was

said about its motion along some trajectory, if exists. In order to uncover the same, the

propagators [27] are derived in a new way using the Heisenberg’s equations of motion,

because, the time-dependent Schrödinger’s wave equation is not explicitly considered in the

present article. Application of the notion of minimum phase, as given in subsection 5(D),

to the propagator results in a path of least action as shown below:

Substitution from Eq. (3) into the second part of Eq. (6) results,

(x̂(0) +
t

m
p̂(0))|x(t) >= x(t)|x(t) >, (59)
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which can be expressed as a first order partial differential equation by making use of the

unit operator,
∫
dx(0)|x(0) >< x(0)|,(

−i~ t
m

∂

∂x(0)
+ x(0)− x(t)

)
< x(0)|x(t) >= 0, (60)

whose solution can be found to be,

< x(0)|x(t) >= exp

{
− im

2~t
[x2(0)− 2x(0)x(t) + α]

}
, (61)

where, − im
2~tα is an integration constant. Similarly, making use of the identity operator,∫

dx(t)|x(t) >< x(t)|, in the first part of Eq. (6) along with a substitution from Eq. (3),

results in the equation,(
i~
t

m

∂

∂x(t)
+ x(t)− x(0)

)
< x(t)|x(0) >= 0, (62)

having a solution,

< x(t)|x(0) >= exp

{
im

2~t
[x2(t)− 2x(0)x(t) + β]

}
, (63)

where, im
2~tβ is another constant of integration. Using the property, C = C?, of a complex

number, C, in Eqs. (61) and (63) yields,

x2(t)− 2x(0)x(t) + β = x2(0)− 2x(0)x(t) + α?, (64)

whose solutions are,

β = σ + x2(0) and α? = σ + x2(t), (65)

where, σ is a constant. Hence, Eq. (63) can be rewritten as,

< x(t)|x(0) >= exp

{
σ′ +

im

2~t
(x(t)− x(0))2

}
, (66)

with σ′ = im
2~tσ. From the requirement,

lim
t→0

< x(t)|x(0) >= δ(x(t)− x(0)), (67)

an inference, eσ
′

=
√

m
2πi~t , can be made, but it works only for a free particle case. The

following is a general procedure:

Using the identity operators in the position basis at time t and at t = 0 as,

Î(t) =

∫
dx(t)|x(t) >< x(t)|

=

∫∫∫
dx′(0)dx′′(0)dx(t)|x′(0) > F (x(t), x′(0), x′′(0)) < x′′(0)|, (68)
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where,

F (x(t), x′(0), x′′(0)) ≡ < x′(0)|x(t) >< x(t)|x′′(0) >

= e{σ′+σ′?+ im
~t [x′(0)−x′′(0)]x(t)+ im

2~t (x′(0)−x′′(0))2} (69)

such that, ∫
dx(t)F (x(t), x′(0), x′′(0)) = e2σ′

R
2π~t
m

δ(x′(0)− x′′(0)), (70)

yielding, eσ
′
R =

√
m

2π~t ; here, σ′R = (σ′ + σ′?)/2 = Re{σ′} is the real part of σ′. Now, Eq.

(66) becomes,

< x(t)|x(0) >= eiσ
′
I

√
m

2π~t
exp

{
im

2~t
(x(t)− x(0))2

}
, (71)

where, σ′I = (σ′ − σ′?)/(2i) = Im{σ′} is the imaginary part of σ′, which can be evaluated

from the requirement given in Eq. (67):

δ(x(t)− x(0)) = lim
t→0

< x(t)|x(0) >

= lim
t→0

eiσ
′
I

√
m

2π~t
exp

{
im

2~t
(x(t)− x(0))2

}
= eiσ

′
I i

1
2 δ(x(t)− x(0)), (72)

implying eiσ
′
I i

1
2 = 1. Hence,

< x(t)|x(0) >=

√
m

2πi~t
exp

{
im

2~t
(x(t)− x(0))2

}
. (73)

Similar analysis can be carried out for a simple harmonic oscillator:

< x(t)|x(0) >=

√
mω

2πi~ sin(ωt)
. exp

{
imω

2~ sin(ωt)
G(x(t), x(0))

}
, (74)

where, G(x(t), x(0)) ≡ (x2(t) + x2(0)) cos(ωt)− 2x(t)x(0).

When, t = ∆t→ 0, both Eq. (73) and (74) can be written as

lim
∆t→0

< x(t)|x(0) > = K exp

{
i∆t

~

[
m

2

(
x(t)− x(0)

∆t

)2

− 1

2
[V (x(t)) + V (x(0))]

]}

= K exp

{
i

~

∫ t

0

dtL(ẋ(t), x(t))

}
. (75)

where, K ≡
√

m
2πi~∆t

. Now, consider the energy eigenstate,

|ψ > =

∫
dx(0)|x(0) >< x(0)|ψ >

=

∫∫
dx(0)dx(t)|x(0) >< x(0)|x(t) >< x(t)|ψ > . (76)
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The particle will be present at some particular eigenstates |xp(0) > whose phase ph{<

xp(0)|ψ >} at time t = 0 is the same as ph{|ψ >} (see subsection-V(D)). This criterion

yields the following relation from Eq. (76):

ph{|ψ >} = ph{< xp(0)|ψ >} = ph{< xp(0)|xp(t) >< xp(t)|ψ >}

= ph{< xp(0)|xp(t) >}+ ph{< xp(t)|ψ >}, (77)

where, ph{< xp(t)|ψ >} is the phase of the particle state at t. These phases of the particle

states at t = 0 and t need not be the same, i.e.,

ph{< xp(0)|ψ >} 6= ph{< xp(t)|ψ >}, (78)

but, any infinitesimal variation of phase at t = 0 results in the corresponding variation of

phase at t:

δ{ph < xp(0)|ψ >} = δ{ph < xp(t)|ψ >}. (79)

Applying the above condition to Eq. (77) results,

δ{ph < xp(0)|xp(t) >} = 0, (80)

which, in turn, by use of Eq. (75), yields the classical least action principle,

δ

∫ t

0

dtL(ẋp(t), xp(t)) = 0. (81)

The above equation explicitly shows that the position eigenvalues of a particle state always,

as a function of time, lie on a classical path. It can be straightforwardly verified that the

same result can be obtained even for the case of 3DES. Also, this result is independent

of whether the physical system is microscopic or macroscopic and proves that the time

parameter entering both QM and CM is one and the same. Even though the result in

Eq. (81) is proved here for free particle and harmonic oscillator, its general validity can be

verified by noting the additive property of phase in Eq. (77) and time-interval independence

of Eq. (80).

Keeping in mind the particle trajectories observed in particle detectors like Wilson’s

chamber, consider a special type of scattering process: Let t1 < t2 < · · · < ti < · · · < tN be

the time sequence and the elements of the following set,

Rp(t) ≡ {rp(t1), rp(t2), · · · , rp(tN)} ⊂ R3,
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be the locations of some point-scatterers. A moving particle gets scattered by those scat-

terers. Let the initial state vector, say |ψ1 >, gets scattered into |ψ2 > at rp(t1), |ψ2 > into

|ψ3 > at rp(t2), etc.,. Now, by using Eq. (10), one has,

|ψ1 >−→
N∏
i=1

| < rp(ti)|ψi > |2 . |ψN+1 > . (82)

If the loss of energy and change in momentum of the particle is extremely small when

compared to its actual energy and momentum at each scatterer, then, it can be concluded

from Eq. (81) that the elements of the set, Rp(t), will almost lie on a classical trajectory for

an appropriately chosen time interval, (t1, tN).

VII. YOUNG’S DOUBLE-SLIT EXPERIMENT: WHAT’S REALLY

HAPPENING?

Consider the Young’s double-slit (YDS) experiment (FIG. 4) with a single-particle source.

Each particle is shot onto the screen through the YDS, only after the registration of the

previous one. Classically, the particles were expected to leave a pattern of two strips on

the screen, as some of them pass through slit-1 and the others through slit-2, because, they

were infered to be moving in the 3DES. But, according to WPND, each particle actually

moves in its own IRSM, i.e., Schrödinger’s wave function, and hence an interference pattern

occurs.

The state vector, |ψ0 >, of a particle emitted at the source is projected through YDS as

|ψ > onto the screen:

|ψ >= |ψ1 > +|ψ2 >, (83)

where, |ψ1 > and |ψ2 > are the IRSMs through slit-1 and slit-2, respectively. As explained

in the section-II(A), |ψ > interacts with its induced dual in the screen:

< ψ|ψ >=< ψ1|ψ1 > + < ψ2|ψ2 > + < ψ1|ψ2 > + < ψ2|ψ1 > . (84)

Notice that, the above inner-product interaction happens instantaneously the moment a

particle is emitted, but its effect remains unfelt until the hit of the particle on the screen.

Using Eq. (77), it can be seen that, depending on the initial phase of |ψ0 >, the particle

flies from the source through either slit-1 or slit-2, towards the screen excluding the regions
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of dark fringes. As given in the section-II - if particle’s momentum changes due to either

absorption or scattering at the screen, then the IRSM disappears in such a way that the

particle contributes a point to < ψ|ψ >.

The next particle appears at the source along with its IRSM whose initial phase will be

different from the previous one. However, its interaction region, < ψ|ψ >, being independent

of the initial phase, is the same as all previous ones. The hits of particles on the screen occur

randomly at different locations due to different initial phases. This randomness in the phase

is due to its dependence on the detailed nature of the source. After a large collection of

particles, an interference pattern emerges out, which is nothing but the construction of

the function | < rp(ta)|ψ > |2 with individual points; here, the set of position eigenvalues,

{rp(ta)}, span the detector screen and ta is the arrival time which will be different for different

particles (see Eq. (77)). No particle will be found in the regions of dark fringes because,

< ψ|ψ > vanishes there, which in turn implies that no classical paths, formed by the position

eigenvalues of the particle states, are available from any slit to any dark fringe. Therefore, a

moving particle itself never behaves like a wave though it is associated with the wave nature

(IRSM). Therefore, the interference pattern obtained with macroscopic molecules of definite

internal structure [4, 5, 7] can also be explained unambiguously.

If slit-1 (slit-2) is blocked, then the diffraction due to slit-2 (sli1-1) is produced as an ap-

proximate clump pattern given by < ψ2|ψ2 > (< ψ1|ψ1 >). Wave-particle duality attributes

single-slit diffraction to the particle nature, while the double-slit interference to the wave

nature. But, according to WPND, particle always moves in its IRSM irrespective of single

slit or double-slit. That’s why the which-path detectors, D1 and D2, always find the particle

as going through either slit-1 or slit-2. As shown in the section-II and also in Eq. (82), the

scattering of detector’s probe results in the disappearance of |ψ >, which had two origins,

one at each slit. A new IRSM, either |ψ′1 > or |ψ′2 >, appears with a single origin where the

scattering took place in the vicinity of the respective slit. Its inner-product interaction with

the detector screen is given by either < ψ′1|ψ′1 > or < ψ′2|ψ′2 >: the RFD is,

< ψ|ψ >−→< ψ′1|ψ′1 > + < ψ′2|ψ′2 > . (85)

Therefore, in the presence of detectors, clump patterns occur and in their absence, the

interference pattern (Eq. (84)) comes back.

The de Broglie wave length of a macroscopic object is extremely small when compared
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to its own size, the dimensions of slits and their separation, yielding the clump patterns in

accordance with the prediction of CM. In this case, Eq. (75) shows the diminishing of wave

nature and hence, the particle nature, which is always present as given in Eq. (81), becomes

apparent. Eq. (82) also shows the classical behavior when the macroscopic object is not

isolated from its environment.

FIG. 4. Young’s double-slit experiment: A source shoots particles, one at a time, towards a

double-slit assembly. State vectors |ψ1 > and |ψ2 > from slits 1and 2 get superposed as |ψ >=

|ψ1 > +|ψ2 >. B1 and B2 are two blockers which can block either slit 1 or slit 2 at any time. D1

and D2 are which-path detectors and T1 and T2 are telescopes, tightly focused on slit-1 and slit-2,

respectively. Particles’ distributions at the screen and telescopes were given at the right hand side.

If slit 2 (1) is blocked, then the distribution is < ψ1|ψ1 > (< ψ2|ψ2 >).

VIII. CAUSALITY IN WHEELER’S DELAYED-CHOICE EXPERIMENT

According to Bohr’s principle of complementarity [8, 11, 29, 30], observation of wave

nature excludes the simultaneous observation of particle nature and vice versa, depending

on the experimental configuration. In the YDS experiment (FIG. 4), the presence of a
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screen or a twin-telescopes, T1 and T2, corresponds to observe the wave or particle behavior,

respectively. Alternatively, the same can also be viewed as a decision taken by a photon

which ‘somehow’ senses the configuration of the measuring device and behaves accordingly

like a wave or a particle [10, 11]. This later view-point was examined in Wheeler’s delayed-

choice experiment [8] (WDCE): after the photon has already passed through the YDS, the

screen is quickly removed exposing the twin-telescopes. The expected interference pattern

on the screen is lost and two clump patterns, one at each telescope, are formed. According

to duality, the photon retroactively rearranges its past history of simultaneously passing

through both the slits like a wave to that of passing through any one slit like a particle,

resulting in the clump patterns.

So far, only the non-relativistic QM is considered by WPND, which, for the relativistic

case, will be considered separately elsewhere. But, notice that, a wave function yielding the

photon’s dispersion relation is sufficient for the present purpose of a causal explanation of

all the observations in WDCE. By considering such a wave function or a state vector as an

IRSM, the WPND can be applied to the case of a single-photon.

As mentioned above, if the screen is quickly removed, then the state vector encountered

jointly by T1 and T2, is

(T̂1 + T̂2)|ψ >= (T̂1 + T̂2)(|ψ1 > +|ψ2 >) = T̂1|ψ1 > +T̂2|ψ2 >

= |ψ̃1 > +|ψ̃2 >≡ |ψ̃ >, (86)

where, T̂1 and T̂2 are projection operators associated with the telescopes and T̂1|ψ2 >=

T̂2|ψ1 >= 0, because, T1 and T2 are tightly focused on slit-1 and slit-2, respectively.

Let |Φ > be the photon’s eigenstate:

[|Φ >]FBC=DS
IBC=PO ≡ |ψ > ; [|Φ >]FBC=TT

IBC=PO ≡ |ψ̃ >, (87)

where, IBC and FBC are initial and final boundary conditions; PO stands for photon’s

origin; DS and TT are detector screen and twin-telescopes, respectively. Both |ψ > and

|ψ̃ > have the same IBC and they differ only by FBC. Notice that, changing the FBC is

equivalent to changing the representation of detector’s CVS. Initially, the photon is flying

in |ψ >. When it is in the mid-flight after crossing the YDS, |ψ > is quickly replaced by

|ψ̃ >. Wherever be the photon at the moment of replacement - from there - it continues

flying in |ψ̃ >. According to WPND, the physical nature of |ψ > and ψ̃ > is an IRSM and
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hence, one can be replaced by the other instantaneously. This is equivalent to a photon

flying from the source to YDS and then, from the YDS to screen, because, the photon feels

a sudden change of its IRSM from |ψ0 > to |ψ > at the YDS. Therefore, photon’s motion is

always continues, preserving the causality, even though the final boundary condition changes

suddenly. Therefore, the observed RFD at T1 and T2 is,

< ψ̃|ψ̃ >=< ψ̃1|ψ̃1 > + < ψ̃2|ψ̃2 >, (88)

which corresponds to clump patterns.

Again consider the same YDS experiment with horizontal and vertical polarization filters

H and V fitted to the slits 1 and 2, respectively. In this case, the state vector is,

|ψ >>= |ψ1 > |H > +|ψ2 > |V >, (89)

where, |H > and |V > are horizontal and vertical polarization states of a photon, respec-

tively. Insertion of a 45o polarization rotator (PR), with an unit operator, Îpr = |H̄ ><

H̄|+ |V̄ >< V̄ |, just before the screen, changes the representation of IRSM:

|ψ >>= |H̄ >< H̄|ψ >> +|V̄ >< V̄ |ψ >>= |H̄ > |ψ̄1 > +|V̄ > |ψ̄2 >, (90)

where, |H̄ > =
1√
2

(|H > +|V >) ; |V̄ >=
1√
2

(−|H > +|V >)

|ψ̄1 > = < H̄|ψ >>=
1√
2

(|ψ1 > +|ψ2 >)

and |ψ̄2 > = < V̄ |ψ >>= − 1√
2

(|ψ1 > −|ψ2 >). (91)

It’s clear from Eq. (91) that the photon passing through slit-1 will be present in either |ψ̄1 >

or |ψ̄2 > and the same can be said if it passes through slit-2 as well.

Now, insertion of a Wollaston prism (WP), with unit operator, ÎWP = |H >< H|+|V ><

V |, between PR and the screen, changes again the representation of the photon state:

|ψ >> = (< H|H̄ > |ψ̄1 > + < H|V̄ > |ψ̄2 >)|H >

+(< V |H̄ > |ψ̄1 > + < V |V̄ > |ψ̄2 >)|V >

= |ψ1 > |H > +|ψ2 > |V >, (92)
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whose interaction with its dual at the screen is given by,

<< ψ|ψ >> =
1

2

2∑
i,j=1

(−1)i+j < ψ̄i|ψ̄j >< H|H >

+
1

2

2∑
i,j=1

< ψ̄i|ψ̄j >< V |V >

= < ψ̄1|ψ̄1 > + < ψ̄2|ψ̄2 >=< ψ1|ψ1 > + < ψ2|ψ2 >, (93)

which shows that the clump patterns are intact even in the presence of both PR and WP.

Note that, the above equation never implies < ψi|ψi >=< ψ̄i|ψ̄i >.

The RFDs of two orthogonal components, |H > and |V >, of WP can be detected by

two independent detectors, say DH and DV :

RFDDH
=

1

2

2∑
i,j=1

(−1)i+j < ψ̄i|ψ̄j >=< S1|S1 > (94)

and RFDDV
=

1

2

2∑
i,j=1

< ψ̄i|ψ̄j >=< S2|S2 > . (95)

Therefore, a photon present in the |H > component of the WP will contribute a point to the

anti-interference pattern given in Eq. (94) and the one in |V >, to the interference pattern

in Eq. (95). Also, these equations predict that the photon initially entered through slit-1

or slit-2 of YDS will be detected by DH or DV , respectively. In the absence of PR, the

usual clump patterns corresponding to YDS will be formed at DH and DV . The role of PR

is simply to replace the clump patterns by the respective anti-interference and interference

structures. If the screen is used for detection instead of DH and DV , then these structures

disappear into each other yielding the clump patterns as given by Eq. (93).

Notice that, the PR can be randomly introduced or removed before a photon passes

through the same, because, as already shown, even during the random changes of represen-

tations or boundary conditions for the IRSM, the photon flies continuously. This technique

was used in an experiment by Jacques et al. [31, 32], where the Mach-Zehnder interferom-

eter is used instead of YDS assembly. Similar experiments using single atoms [33] and its

quantum versions [34–36] were also done.
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IX. EXPERIMENTAL PROPOSAL TO VERIFY THE IRSM

The WPND has shown that the physical nature of Schrödinger’s wave function is an

IRSM. To verify this, a modified Mach-Zehnder interferometer (mMZI) experimental set

up, as given in FIG. (5), can be used, where, BS is a 50 : 50 beam splitter resolving a single-

photon’s state vector into refracted and reflected components along the Path1 and Path2,

respectively - which are recombined by the inverse beam splitter, IBS. The path difference

= Path2 − Path1 = δ is to be chosen such that the recombined components at IBS interfere

destructively and constructively towards the photon detectors D1 and D2, respectively.

A large number of single-photons are fired into mMZI such that the time interval between

any two consecutive ones is chosen to be sufficiently greater than the time of flight of a photon

along the Path2 to either D1 or D2 (if D1 and D2 are placed at the same distance from IBS).

This guarantees that there will never be more than one photon inside the mMZI at a given

time. If the wave nature associated with the photon is really propagating like a classical

wave, then the refracted and reflected components will not be recombined by the IBS where

they arrive at different times and hence, the interference condition becomes invalid; the

reflected component along Path2 lags behind the refracted one along Path1 (see FIG. 5).

Therefore, each one of D1 and D2 will detect 50% of the total number of photons.

Prediction by the WPND: If the wave function is an IRSM in accordance with the

WPND, then the interference condition is automatically satisfied and D2 will register 100%

of all the photons entered into mMZI. This is because, the moment a photon appears, its

IRSM gets refracted and reflected by the BS and recombined at the IBS, forming destructive

and constructive interferences towards D1 and D2, respectively - all at once. Depending on

the initial phase of the IRSM, the photon will enter into either the Path1 or Path2 and

always emerges out of IBS towards D2. If a similar experiment is done with slow-moving

single-electrons, particularly single-atoms or single-molecules, then not only the results will

be better obtained but also the instantaneous nature of the wave function becomes very

apparent.

Let T1 and T2 be the times of flight of the photon along Path1 and Path2, respectively.

If the difference, T2 − T1, is sufficiently larger and also very greater than all possible exper-

imental errors involved in determining the initial time of production and the final time of

detection of the photon, then half of the total number of photons detected by D2 will have
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FIG. 5. Modified Mach-Zehnder Experiment: BS and IBS are 50:50 beam splitter and inverse

beam splitter. M1 and M2 are 100% reflecting mirrors and D1 and D2 are single-photon detectors.

A single-photon pulse, entering BS gets partially refracted and partially reflected along Path1 and

Path2, respectively. At the moment when the refracted pulse reaches IBS, the reflected one, along

the Path2, lags behind by a path difference = Path2 − Path1 = δ which is chosen to yield the

destructive and constructive interferences towards the detectors D1 and D2, respectively. Also, the

pulse width should be much smaller than the path difference. (If a ripple-packet produced for a

brief time by dropping a single small stone on the surface of water is considered in the places of

the refracted and reflected pulses, then their wave-fronts will never be recombined at IBS).

arrival time T2 and the remaining half will have T1. Therefore, in this particular experiment,

‘which path information’ can be obtained by merely measuring T1 and T2.

X. CONCLUSIONS AND DISCUSSIONS

The physical nature of Schrödinger’s wave function is shown to be an instantaneous

resonant spatial mode (IRSM) in which a particle flies akin to the case of a test particle in

the curved space-time of the general theory of relativity. The inseparable nature of IRSM

and its particle, which is like the eigenstate and eigenvalue, is named as wave-particle non-

duality. The state vector interacts, according to the inner-product, with its induced dual in

a measuring device. Collection of these interactions for a large number of particles yields
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the relative frequency of detection and hence, the Born rule; here, the unavoidable initial

phase of the state vector is shown to be responsible for the outcome of a definite eigenvalue

of an observable. At this moment, it may worth recollecting a philosophical saying, “It is

necessary for the very existence of science that the same conditions always produce the same

result” - which seems to be in perfect agreement even in the quantum domain, because,

all initially prepared identical states are not actually identical with respect to their initial

phases.

It’s shown that the eigenvalues of a particular position eigenstate, where the particle

resides, always lie on a classical path of least action. The equality of quantum mechanical

time to the classical time and also, the emergence of classical world from the underlying

quantum world is explicitly shown (in the case of non-relativistic quantum mechanics).

‘What’s really going on?’ in the Young’s double-slit experiment at a single quantum level is

unambiguously explained. Also, a causal explanation of Wheeler’s delayed-choice experiment

is provided for the first time. With respect to non-duality, the measurement problem does

not exist and the quantum mechanics is indeed a classical mechanics, but in a complex vector

space. Finally, an interference experiment is proposed to verify the instantaneous nature of

the wave function.

In the relativistic case, the IRSM is such that, apart from obeying the usual quantum

mechanical commutation relations, it takes care of the cosmic speed limit of its resonant

particle, though it itself can change instantaneously - which will be reported elsewhere.

Another mystery of the quantum world, untouched in the present article, is Einstein’s spooky

action-at-a-distance among two or more entangled particles. It’s worth mentioning that the

non-duality is capable of providing the physical mechanism for spooky action by making use

of the nature of IRSM and will be reported elsewhere. Also, the explanations of Young’s

double-slit experiment using the entanglement with which-path detectors’ probes, quantum

erasure, entanglement swapping both in space and time and the well-known paradoxes like

Schrödinger’s cat, Wigner’s friend etc., will be reported elsewhere. Undoubtedly, non-duality

will further enhance the deeper understanding of Nature’s working at the most fundamental

level.
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Appendix A: Generalized Representation for the SU(2) Algebra

According to the requirement of non-duality to describe a single-quantum behavior, a

generalized representation for the SU(2) algebra respecting the Eqs. (21), (25), (26) and

(27) is explicitly worked out below:

Writing down the other operators,

Ŝx =
1

2
(|Sx; ↑>< Sx; ↑ | − |Sx; ↓>< Sx; ↓ |)

=
R2

2
(Cx|Sz; ↑>< Sz; ↓ |+ C∗x|Sz; ↓>< Sz; ↑ |), (A1)

Ŝy =
1

2
(|Sy; ↑>< Sy; ↑ | − |Sy; ↓>< Sy; ↓ |)

=
R2

2
(Cy|Sz; ↑>< Sz; ↓ |+ C∗y |Sz; ↓>< Sz; ↑ |), (A2)

where, Cx = ei(γ−δ) − ei(γ′−δ′) and Cy = ei(α−β) − ei(α′−β′) and | < Sz; ↑ |Sx; ↑> | = | < Sz; ↓

|Sx; ↑> | = | < Sz; ↑ |Sx; ↓> | = | < Sz; ↓ |Sx; ↓> | = R. It can be shown that,

< Sx; ↓ |Sx; ↑> = 0 =⇒ (γ − γ′)− (δ − δ′) = ±π (A3)

< Sy; ↓ |Sy; ↑> = 0 =⇒ (α− α′)− (β − β′) = ±π (A4)

As it’s well known, the sign ambiguity in the above equations is related to the two possible

ways of writing the commutation relations viz., [Ŝx , Ŝy] = iŜz or [Ŝy , Ŝx] = iŜz due to

the rotational symmetry about Z-axis, which can be fixed using the SU(2) algebra:

[Ŝx , Ŝy] =
R4

4
(Axy|Sz; ↑>< Sz; ↑ |+ A∗xy|Sz; ↓>< Sz; ↓ |) = iŜz, (A5)

[Ŝz , Ŝx] =
R2

2
(Cx|Sz; ↑>< Sz; ↓ | − C∗x|Sz; ↓>< Sz; ↑ |) = iŜy, (A6)

[Ŝy , Ŝz] =
R2

2
(C∗y |Sz; ↑>< Sz; ↓ | − Cy|Sz; ↓>< Sz; ↑ |) = iŜx, (A7)

where, Axy = CxC
∗
y −C∗xCy. The above commutation relations yield Cx = iCy and R4

4
Axy =

i
2
, which result in the following unique relations:

(γ − δ)− (α− β) = (γ′ − δ′)− (α′ − β′) =
π

2
, (A8)

and (α− α′)− (β − β′) = +π ; (γ − γ′)− (δ − δ′) = −π ; R =
1√
2
, (A9)
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which are sufficient to satisfy the other aspects of SU(2) algebra, viz.,

{Ŝi , Ŝj} =
1

2
δij ; Ŝ2 = Ŝ2

x + Ŝ2
y + Ŝ2

z =
3

4
Î ; [Ŝ2 , Ŝi] = 0 (A10)

where, i and j run over x, y and z and { , } stands for the anti-commutator, δij is the

Kronecker delta and Î is the identity operator.

It’s straightforward to check the special case by setting α = α′ = γ = γ′ = 0 in Eqs.

(A8) and (A9), yielding the well-known representation of SU(2) algebra available in any

text book of QM. This special case does not admit the notion of minimum phase and is

good only for the probabilistic description.
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