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Abstract: This is a review article. Here we show that neutron stars, due to the atom-like 
structure of baryons and structure of spacetime, are mathematically very simple objects: they 
have an invariant density, a spherical shape although they spin very fast, they have no 
relativistic mass, and we can neglect the nuclear and gravitational binding energy. We also
described mathematically the magnetars.

1. Introduction
The atom-like structure of baryons described in the Scale-Symmetric Theory (SST) causes 

that the neutron stars (NSs) are mathematically very simple objects.
According to the SST, baryons have an atom-like structure [1]. There is the core composed 

of the torus which interacts both electromagnetically and strongly, and there is the central 
condensate which interacts due to the nuclear weak interactions. Dynamics of the virtual 
objects shows that outside the core are created the orbits/tunnels in the SST Einstein spacetime 
which is composed of the neutrino-antineutrino pairs. Radii of such tunnels are defined by 
following formula

Rd = A + dB ,                                                           (1)

where A = 0.6974425 fm ≈ 0.7 fm is the equatorial radius of the baryon core, B = 
0.5018395 fm ≈ 0.5 fm, and d = 0, 1, 2, 4. The d = 4 for the last tunnel/orbit is calculated 
from the range of the strong interaction which is generated by the torus in the baryon core.

The surface density of the torus is ~300,000 times higher than in the SST Einstein spacetime 
so moving baryons create ordered flows in the SST Einstein spacetime. It causes that angular 
velocities of both neutron star and the part of the Einstein spacetime it overlaps are the same. 
We can see that neutron stars which are spinning for an external observer are at rest in relation 
to the part of the Einstein spacetime they overlap, so they do not gain relativistic mass and are 
always spherical in shape. There is no need to use the framework of General Relativity for 
rotating neutron stars i.e. the stationary axisymmetric space-time metric [2].

2. Calculations
We claim that besides a very thin iron crust and very thin layer of nuclear plasma on surface 

of each neutron star (which we neglect in our calculations), the neutron lattice is composed of 
cubes with neutrons in their vertices (see Fig.1). Such neutron lattice is the very stable object 
because of the strong interactions between pairs of neutrons located at the ends of diagonals of 
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the side walls of the cubes. The length of the diagonals is equal to the effective range, Reff,NS, 
of the neutron matter. From (1) we obtain

Reff,NS = Rd=4 = 2.70480 fm . (2)

This value is consistent with the mainstream value (~2.7 fm) [3] but due to the distribution 
of neutrons, we get a different density of neutron matter ρNS. Our value, contrary to the 
mainstream values, is invariant

ρNS = MNeutron / (Reff,NS / 21/2)3 = 2.39406·1017 kg/m3 , (3)

where MNeutron = 939.565 MeV is the mass of neutron calculated in SST [1].
Why is the effective range Reff,NS equal to the length of the diagonal and not of the side of 

the cubes and why is it equal to the radius of the last tunnel for the strong interactions of 
baryons? For diagonals smaller than ~2.7 fm (from (1) we have that there can be ~1.7 fm, 
~1.2 fm, or ~0.7 fm) the tori in the cores of baryons, which due to the very strong short-
distance quantum entanglement cannot be disturbed or destroyed [1] (the half-integral spin and 
electric charge of such tori are conserved), would partially overlap, which, because of the very 
high surface density of the tori, is forbidden. Moreover, the binding energy of neutrons is 
higher for shorter distances so cubes with the side equal to 2.7048 fm are not in the ground 
state.

The upper limit for mass, MNS,upper, and radius, RNS,upper, of neutron stars we obtain from 
the boundary condition that spin speed on equator of NS should be equal to the speed of light 
in “vacuum” c = 299,792,458 m/s.

The below system of two equations leads to RNS,upper and MNS,upper

RNS,upper = G MNS,upper / c2 = 36.64 km , (4)
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where G = 6.6740007 m3 / (kg s2) is the gravitational constant calculated in SST [1],

MNS,upper = ρNS 4 π RNS,upper
3 / 3 = 24.81 solar masses , (5)

Such a biggest neutron star we call “the neutron black hole (NBH)” because it has the spin 
speed equal to c on its equator.

The binding energy of neutrons in neutron stars that follows from the nuclear strong 
interactions, due to the very short time of interactions (~10–23 s), is frozen inside the neutron 
star so there is no need to take it into account in calculations of NS mass.

But why can we also neglect the gravitational potential binding energy?
For example, let’s calculate the gravitational potential binding energy of a neutron, ΔEg, 

located at the surface of the neutron black hole

ΔEg = –G MNS,upper MNeutron / RNS,upper = –MNeutron c2 = –939.565 MeV . (6)

This value suggests that such neutron behaves as a virtual neutron because the sum of its 
mass and binding energy is equal to zero. So, do we really have to consider the change in mass 
due to gravitational interaction? Well, no, and this is due to phenomena occurring in the SST 
Einstein spacetime.

When a star collapses into a neutron star or neutron stars collide, potential gravitational 
energy must be emitted, and this is due to the divergent flows in the SST Einstein’s spacetime, 
which the external observer observes as ripples in the spacetime. But due to the tremendous 
dynamic pressure in Einstein’s spacetime (~5·1044 Pa [1]), a reverse flow occurs that restores 
the initial state of local spacetime. Thus, it is the dynamic pressure in Einstein’s spacetime that 
means that we do not have to take into account the gravitational potential binding energy in the 
calculations of the mass of a neutron star.

We can say that the neutrons on the NBH surface are accompanied by virtual gravitational 
quanta of the potential binding energy with energy equal to the mass of the neutron, and such 
gravitational quanta are exchanged between the neutrons on the star’s surface. It is the 
gravitational quantum-star resonance! Such quanta are part of the zero-energy field.

The energy of virtual gravitational quanta on surfaces of NSs is not a linear function of the 
star’s mass but the mass of the star, MNS,i, and the energy of the virtual gravitational quanta 
with the highest number density, ΔEg,i, should depend in the same way on the temperature of 
the star, so these two quantities are directly proportional to each other

ΔEg,i ~ MNS,i . (7)

From the boundary condition we have

MNeutron ~ MNS,upper . (8)

From (7) and (8) we obtain the equation for the gravitational quantum-star resonance

MNS,i / MNS,upper = ΔEg,i / MNeutron . (9)

From (9), for ΔEg,i equal to the characteristic masses for the atom-like structure of neutron, 
we obtain masses of NSs that behave in a strange way.
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Using the formula (9), we calculated the lower limit for mass of NSs (0.891 solar mass – it 
relates to the characteristic energy of neutrinos in baryonic plasma ΔEg,i = ENeutrino = 33.74 
MeV [1]) and we described the gamma-ray bursts (GRBs).

We also showed that the interaction of our NSs with dark-matter (DM) loops leads to the 
conclusion that the TOV limit is an illusion [4].

The gravitational binding energy/mass of two neutrons, ΔMnn, in distance Reff,NS we can 
calculate from formula

ΔEg
* = –G MNeutron

2 / Reff,NS = –ΔMnn c2 , (10)

so we have

ΔMnn ≈ 7.70·10–67 kg .                (11)

This value is close to the mass of the lightest non-rotating-spin neutrino-antineutrino pairs 
(~6.67·10–67 kg) so between neutrons in NSs are exchanged the Einstein-spacetime 
components.

Colliding NSs with a total mass less or equal to 24.81 solar masses can merge into single 
neutron star, while NBHs cannot.

We should also remind that in SST neutrinos acquire their gravitational masses because they 
are immersed in the SST tachyon Higgs field and because gravitational fields are gradients 
created in the SST Higgs field by masses, so the “gravitational waves” detected by LIGO-
Virgo are only indirectly related to gravitational fields.

3. The step changes in the intrinsic brightness of neutron stars as an undeniable proof 
of the correctness of the SST theory of NSs

In [1] we showed that the effective range Reff,NS = 2.70480 fm relates to the virtual quanta 
with energy of ΔEg,i = Eeff,NS = 187.573 MeV. The virtual quanta appear in distance 
2.70480 fm from centre of the neutron but their range is 4B = 2.00736 fm because they are 
created on the equator of the core of baryons [1].

Due to the quantum-star resonance, the intrinsic brightness of neutron star with a mass 
relating to Eeff,NS should be significantly higher – from formula (9) we have

MNS,i=187.573 = MNS,upper Eeff,NS / MNeutron ≈ 5.0 solar masses . (12)

This result is consistent with the observational data [5].
In paper [4], we showed that for mass equal to 2.44 solar masses (the TOV limit) and 

higher, the intrinsic brightness should be significantly lower. On the other hand, for mass ~5.0
solar masses, the intrinsic brightness should be higher. It is not true that there is a mass gap for 
NSs with masses between the TOV limit and ~5.0 solar masses – for such an interval, the 
intrinsic brightness of NSs is much lower than a mean value so there is an illusion that the 
interval defines a mass gap.

For Eeff,NS ≈ 187.6 MeV and MNS,i=187.573 ≈ 5.0 solar masses, due to the quantum-star 
resonance, number density of the quanta with an energy of 187.6 MeV significantly increases 
– it looks as a LASER phenomenon. We should observe also some increases in intrinsic
brightness of NSs for ~2Eeff,NS and ~4Eeff,NS [1], i.e. for masses ~10 and ~20 solar masses.
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In SST, the diameter of the equators of the core of neutrons is equal to D2A,NS = 2A = 
1.395 fm. Ranges are inversely proportional to masses of virtual quanta so the D2A,NS relates 
to virtual energy equal to ΔEg,i = E2A,NS = 269.9 MeV – this value is very close to mass of 
two neutral pions.

From (9) we obtain that the energy E2A,NS relates to mass of NS equal to

MNS,i=269.9 = MNS,upper E2A,NS / MNeutron = 7.13 solar masses . (13)

For such NSs, intrinsic brightness should be also higher than a mean value so it leads to an 
illusion that abundance of NSs with such masses is higher – it also is consistent with the 
observational data [5].

The highest intrinsic brightness should be also for NSs with a mass of 1.395 solar masses
(it relates to the mass of the central condensate in muons, ΔEg,i = E52.83,NS = 52.83 MeV, 
which decays to electromagnetic quanta [1]) and for 1.78 solar masses (it relates to energy of 
the typical gluon loops: ΔEg,i = E67.54,NS = 67.54 MeV [1]).

Let’s summarize this chapter.
We obtained a series of masses of NSs with higher intrinsic brightness

MNS,i ≈ 1.395, 1.78, 5.0, 7.13, 10, and 20 solar masses, (14)

but most important are following two threshold values: ~1.4 and ~5.0 solar masses.
A lower intrinsic brightness is for NSs with masses MLIB defined by the following interval

~2.44 < MLIB < ~5.0 [solar masses] . (15)

4. Magnetars versus pulsars
In paper [4], we showed that the spin-1 dark-matter loops have radius ~16.9 km. They are 

built of the spin-1 neutrino-antineutrino pairs with the spins tangent to the DM loop. Such a 
radius of neutron star leads to its mass equal to the TOV limit, i.e. 2.44 solar masses. The spin 
speed of the resting DM loops is equal to the speed of light in “vacuum” c.

We claim that magnetars are the neutron stars interacting weakly with the spin-1 DM loops 
i.e. the initial mass of magnetars should be close to the TOV limit: MMagnetar = 4.86·1030 kg. 
Due to the weak interactions of the spin-1 DM loops with the nuclear-plasma vortex on surface 
of a magnetar, angular momentum of the vortex increases. We define the nuclear plasma as the 
plasma composed of 50% of protons and 50% of neutrons. Initially the weak interaction 
increases the spin speed of the nuclear-plasma vortex so there is created the very strong 
magnetic field, but as time goes on, the star’s rotation slows down so the strong magnetic field 
weakens. Slowing the magnetar’s rotation causes the radii of the DM loops to increase, 
separating them from the magnetar. Such increases in the radii of the DM loops combined with 
the weak interactions cause that the baryon matter is scattered so with time mass of the 
magnetar decreases.

Magnetic axis of magnetar has the same direction as the angular momentum of the DM 
loops. In neutron-stars, there can be an angle different from zero between the magnetic axis 
and the axis of rotation.
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Rotation of the free NSs is slowing down because of the friction between the rotating 
part of the Einstein spacetime inside the NSs and the non-rotating part outside them (the 
spin down).

The friction in the Einstein spacetime together with strong magnetic field causes the 
emission of the polarized electromagnetic radiation.

The observed pulse periods of the so-called “normal pulsars” are between 0.3 s and 3 s. 
Assume that a pulsar with a mass of the TOV limit (so its radius is RMagnetar = 1.69·104 m) 
has the pulse period equal to t = 1 s. Then the spin speed of the nuclear-plasma vortex, vVortex
is

vVortex = 2 π RMagnetar / t = 1.06·105 m/s .        (16)

On the other hand, from [6] follows that the DM loops, due to their weak interactions with 
the condensates in centres of baryons, increase the spin speed of the nuclear-plasma vortex to 
vVortex-with-loops = 5.8·107 m/s. It means that the DM loops increase the spin speed and 
decrease the vortex period, t*, N times

N = vVortex-with-loops / vVortex = 547 , (17)

t* = t / N = 1.83·10–3 s .                                                 (18)

The Biot-Savart law relates magnetic fields to the currents. The magnetic field (magnetic 
flux density), B, at centre of a current loop (of the nuclear-plasma vortex) with a radius R is

B = μo Q / (2 R t) ,                                           (19)

where t is the period (in magnetars it is the vortex period t*), μo ≈ 1.26·10–6 H/m is the 
magnetic constant (the vacuum permeability), and Q is the total charge of the loop/vortex.

From (19) results that magnetic field is inversely proportional to pulse period. Since the DM 
loops decrease the pulse period N times so magnetic field of a magnetar with such a mass is N
times higher than the pulsar in the absence of the DM loops. We can see that magnetic fields of 
magnetars are indeed very strong.

The mass of the nuclear-plasma vortex, MPlasma, should be as many times lower than the 
mass of the magnetar, MMagnetar = 4.86·1030 kg, as the mass of the DM loop, MDM-loop =
2.0796·10–47 kg [4], is lower than the mass of the neutron MNeutron = 1.6749·10–27 kg

MPlasma = MMagnetar MDM-loop / MNeutron = 6.03·1010 kg . (20)

It leads to the total electric charge, Q, of the nuclear-plasma vortex

Q = Qelementary MPlasma / (2 MNucleon) = 2.89·1018 C , (21)

where Qelementary = 1.6022·10–19 C is the electric charge of proton, and MNucleon is the mean 
mass of proton and neutron.

From the Biot-Savart law with the vortex period t*, we have



7

BMagnetar = μo Q / (2 RMagnetar t*) ≈ 6·1010 T . (22)

This result is consistent with observational data because the magnetic field of magnetars is 
from 1010 to 1011 T.

From formulae (18), (17) and (16) follows that the initial period of the nuclear-plasma 
vortex t* in magnetar with the TOV-limit mass does not depend on initial period of pulsar

t* = 2 π RMagnetar / vVortex-with-loops = 1.83·10–3 s . (23)

For such a magnetar, Q and RMagnetar are the initially invariant values so the magnetic field 
equal to ~6·1010 T is the upper limit unless there appears an accretion disc (it increases 
magnetic field).

From [6] and formula (22) follows that the ratio of the magnetic field of the nuclear-plasma 
vortex, BNuclear, to the magnetic field of the vortex of electrons, BElectron, is

BNuclear / BElectron = t*Electron / t*Nuclear = (αw(proton) / αw(electron-muon))1/2 = 140.3 , (24)

where αw(proton) = 0.0187229 is the coupling constant for the nuclear weak interactions, and 
αw(electron-muon) = 0.951108·10–6 is the coupling constant for the weak interactions of 
electrons [1], so we can neglect the BElectron in comparison with the BNuclear.

The composition of the nuclear-plasma vortex suggests that there dominates ionized helium-
4. Radius of the ground-state orbit/shell in helium, RHelium-4, has radius 4 times smaller than 
the Bohr first orbit in hydrogen

RHelium-4 = 0.529·10–10 m / 4 = 0.132·10–10 m . (25)

From (23) results that P ~ rPulsar is a relationship between the period, P, of a pulsar and its
radius rPulsar. Assume that the first-time derivative of the period for pulsars, dP/dt (it defines 
the changes over time in period of the pulsars) is defined by the ratio of the radius of the DM 
loops overlapping with the ground-state orbit in helium-4, RHelium-4, to radius of the DM loops 
overlapping with the magnetic equator of the pulsar. For rPulsar = RMagnetar = 1.69·104 m, we 
obtain

(dP/dt)Pulsar = RHelium-4 / RMagnetar = 0.78·10–15 s/s . (26)

From (26) follows that pulsars with smaller the equatorial radii have the first-time derivative 
of the period higher. Such values for pulsars are consistent with the observational data – see 
Figure 1 in [7].

In the pulsars, there is the friction between the rotating and non-rotating parts of the Einstein 
spacetime. But the friction in magnetars is much stronger because there appears also the very 
strong friction between the neutron star and the nuclear-plasma vortex. We can assume that the 
friction in pulsars leads to the electroweak interactions so there are produced the electron-
neutrino pairs with energy equal to the mass distance between the charged and neutral pions: it 
is ΔEPion ≈ 4.6 MeV. On the other hand, the friction in magnetars leads to the nuclear strong 
interactions represented by the gluon loops with energy equal to mLL = 67.544 MeV (it is 
close to a half of mass of the neutral pion) [1].
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On the other hand, the Stefan-Boltzmann law is a function of total emitted energy of a black 
body j* proportional to its thermodynamic temperature T

j* = σ T4 .                              (27)

We can assume that T is directly proportional to involved energy while the total emitted 
energy j* is directly proportional to the changes in period so we have

(dP/dt)Magnetar / (dP/dt)Pulsar = (mLL / ΔEPion)4 = 4.6·104 . (28)

From (26) and (28) we obtain

(dP/dt)Magnetar = 3.6·10–11 s/s . (29)

From (26) and (28) results that magnetars with smaller the equatorial radii have the first-
time derivative of the period higher. Such values for magnetars are consistent with the 
observational data – see [8] and figure 1 in [7].

Stronger interactions (here they follow from stronger friction) slow down rotation 
more effectively.

Due to the strong friction in magnetars between the nuclear-plasma vortex and neutron star, 
the high temperature of the very thin iron crust below the vortex sometimes damages it almost 
simultaneously at two or more points, each with a diameter of several dozen metres. Through 
the damages, high-energy photons and neutrinos from beta decays are emitted. The damages 
are quickly repaired when the local pressure is reduced – such a mechanism produces 
millisecond pulses, and their time distance may be a second or so. The periods are defined by 
size and period of rotation of magnetars. Such a phenomenon was observed in magnetar SGR 
1935+2154 [9]. The described phenomenon is a bit like volcanic eruptions at the junction of 
tectonic plates.

Due to an increase in density of dark energy, matter and energy tend to the state of uniform 
distribution. In turn, most of the interactions tend to create condensates. Gravity dominates on 
larger scales, but the appearance of the DM loops within baryonic plasma causes such plasma 
to disperse.

5. Summary
In this paper, based on the atom-like structure of baryons and structure of spacetime 

described in SST, we have expanded the physical side of the NS theory to show that the theory 
is complete. We showed also that in such a theory the key role play the dark-matter loops.

Emphasize that due to the quantum-star resonance, higher intrinsic brightness of some 
NSs means also that their stability is higher so their abundances also should be higher.

SST shows that General Relativity is neglecting some important phenomena in and around 
black holes so it leads to the wrong conclusions. Due to the formation of tunnels/orbits in 
spacetime as a result of the virtual strong interactions and the exchanges of the virtual quanta 
(especially the quanta with energy equal to 187.573 MeV), even the most massive neutron star 
(i.e. NBH) cannot collapse into black hole with a central singularity. According to SST, the 
massive black holes are built of the neutron black holes and neutron stars so they have an 
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internal structure – their half-jets should be built of separated subjets. The dark-matter loops 
play a key role in the emission of hadrons and leptons by black holes. Black holes are not the 
mathematical black holes predicted by General Relativity.
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