Distribution of Integrals of Wiener Paths

Yu-Lin Chou∗

Abstract

We show that the normal distribution with mean zero and variance 1/3 is the
distribution of the integrals \(\int_{[0,1]} W_t \, dt \) of the sample paths of Wiener process \(W \in C([0,1], \mathbb{R}) \).

Keywords: Brownian motion; classical Wiener space; integrals of Wiener paths;
Wiener process

MSC 2020: 60G17; 60G15; 60F05; 26A42

1 Introduction

In contrast with the notion of “martingale (stochastic) integration” associated with
Wiener measure, attention is less directed to the integrals of the sample paths of Wiener
process \(W \) in \(C([0,1], \mathbb{R}) \). Since every realization of \(W \) is a continuous function on
a compact interval, it always makes sense to speak of the integral of a Wiener path;
investigating the integrals of Wiener paths, in particular the distribution of such integrals
(which is evidently possible and is justified in what follows), is then a natural move.

In the present short communication, we prove

Theorem *. If \(W \) is Wiener process in \(C([0,1], \mathbb{R}) \), then

\[
\int_{[0,1]} W_t \, dt \sim N(0, 1/3).
\]

2 Proof

Throughout, let \(C_w \) be the metric space \(C([0,1], \mathbb{R}) \) equipped with the uniform metric;
and let \(W \) be Wiener process in \(C_w \).

We now give

∗Yu-Lin Chou, Institute of Statistics, National Tsing Hua University, Hsinchu 30013, Taiwan, R.O.C.;
Email: y.l.chou@gapp.nthu.edu.tw
Proof (of Theorem *). For all $f, g \in C_w$, we have

$$\left| \int (f - g) \right| \leq \sup_t |f(t) - g(t)|;$$

so the integration operator \int is (uniformly) continuous on C_w.

If X_1, X_2, \ldots are independent identically distributed standard normal random variables, let \hat{W}^n be for each $n \in \mathbb{N}$ the “Donsker process” obtained by linear interpolation between the $\frac{1}{\sqrt{n}}$-scaled cumulative sums of X_1, \ldots, X_n such that the resulting process fixes the origin, so that the sequence $(\hat{W}^n)_{n \in \mathbb{N}}$ satisfies the assumptions of Donsker’s theorem (Theorem 8.2 in Billingsley [1], for concreteness). The continuous mapping theorem and Donsker’s theorem then jointly imply the weak convergence

$$\int \hat{W}^n_t \, dt \rightsquigarrow \int W_t \, dt. \quad (1)$$

Let $S_0 := 0$; and let $S_j := \sum_{i=1}^{j} X_i$ for all $1 \leq j \leq n$ and all $n \in \mathbb{N}$. If $n \in \mathbb{N}$, then we have

$$\int \hat{W}^n_t \, dt = \sum_{j=1}^{n} \frac{j}{n} \hat{W}^n_{j/n} \, dt,$$

and we have $\hat{W}^n_{j/n} = S_j / \sqrt{n}$ for each $0 \leq j \leq n$. Given any $1 \leq j \leq n$, we have

\[
\int_{(j-1)/n}^{j/n} \hat{W}^n_t \, dt = \frac{1}{\sqrt{n}} \int_{(j-1)/n}^{j/n} \tau S_j + (1 - \tau)S_{j-1} \, d\tau = \frac{1}{\sqrt{n}} \left(S_j \frac{\tau^2}{2} \right)_{(j-1)/n}^{j/n} + \frac{1}{n} S_{j-1} - S_{j-1} \frac{\tau^2}{2} \right)_{(j-1)/n}^{j/n}. \]

Summing the last term above over each $1 \leq j \leq n$ gives

$$\int \hat{W}^n_t \, dt = \frac{1}{n^{3/2}} \left(nX_1 + (n-1)X_2 + \cdots + X_n \right) - \frac{1}{2n^{5/2}} S_n. \quad (2)$$

The last term in (2) vanishes in probability by the continuous mapping theorem and the usual weak law of large numbers.

If $n \in \mathbb{N}$, the sum of the independent normal random variables $(n - j + 1)X_j$ with $1 \leq j \leq n$ in (2) is the normal random variable with mean zero and variance $1^2 + 2^2 + \cdots + n^2 = n(n+1)(2n+1)/6$. If $\kappa := 2^{3/2}\Gamma(2)/\sqrt{\pi}$, then

$$\sum_{j=1}^{n} \mathbb{E}[(n-j+1)X_j]^3 = \kappa \sum_{j=1}^{n} j^3 = \kappa \frac{n^2(n+1)^2}{4},$$

which grows more slowly than $(n(n+1)(2n+1)/6)^{3/2}$ as $n \to \infty$. The classical Lyapunov central limit theorem (e.g. p. 332, Shiryaev [2], for concreteness) and the continuous
mapping theorem together imply that
\[
\frac{1}{n^{3/2}} \left(nX_1 + (n - 1)X_2 + \cdots + X_n \right)
= \sqrt{\frac{n(n+1)(2n+1)}{6}} \left(\frac{n(n+1)(2n+1)}{6} \right)^{-1} \left(nX_1 + (n - 1)X_2 + \cdots + X_n \right)
\sim N(0, 1/3).
\]

Upon applying the continuous mapping theorem once more, we have
\[
\int \hat{W}^n_t \, dt \sim N(0, 1/3)
\]
from (2). But then from [1] and the uniqueness of weak limit it follows that
\[
\int W_t \, dt \sim N(0, 1/3)
\]
as desired.

\[\square\]

References
