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Abstract

The alignment of transverse vectors on the sky, such as the polarization directions of electromagnetic
radiation from astronomical sources, can be an interesting property of the sources themselves or of the
intervening medium between source and detector. For many regions of the Milky Way the alignment of
the polarization directions of starlight is evident. However evident visually, it is useful to have a numerical
alignment function that can be used to judge the significance of the correlations. The test described here
evaluates the tendency for aligned directions to focus on points in the sky, as well as correlations in their
avoidance of points in the sky. The formulas needed to conduct the test are derived and two illustrative
examples are provided. In one sample from the Milky Way, the polarization directions from starlight
are seen to converge far from the sample and, for another sample, a set of quasars with polarized radio
emissions, the convergence occurs close to the sample.
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1 Introduction

Partially polarized starlight traces Galactic Magnetic fields, helping to understand Galactic structure [1, 2]
and to inform the physics of the contaminating dust [3, 4] that obscures more distant objects of interest,
such as quasi stellar objects (QSOs). The linear polarization of electromagnetic emissions of QSOs [5, 6]
provides, for example, evidence of correlations between polarization directions and large scale structure. [7,8]
Detailed maps of the polarized cosmic microwave background radiation provide another subject for alignment
studies. [9]

At all of these scales and for a variety of reasons, the alignment of a set of sources can be an interesting
property. The test described in this paper provides a quantitative geometric basis for judging alignment.

Existing tests, for example, the ‘S’ and ‘Z’ tests, Ref. [5,6,10], collect the polarization directions together,
rating how well position angles agree. These tests are blind to samples with well-correlated polarization
directions when those directions focus down on a point that is close to the sources. Only samples with nearly
parallel position angles and with necessarily distant convergence can be detected.

The alternate test described here extends the polarization directions around the Celestial Sphere, forming
a set of geodesics, a.k.a. great circles. Those great circles converge in places on the sphere and diverge at
other places. The locations of best convergence and the locations of greatest divergence are “hubs”, a name
associated with important transportation centers which are places where great circle travel routes converge.

∗affiliation and mailing address: Department of Sciences, Wentworth Institute of Technology, 550 Huntington Avenue,
Boston, MA, USA, 02115, orcid.org/0000-0001-5920-759X, e-mail: shurtleffr@wit.edu, momentummatrix@yahoo.com

1



1 INTRODUCTION 2

A circle of sources each with polarization directions aimed radially, like the spokes of a bicycle wheel, are
arguably well correlated, but do not favor a single position angle and would not be considered well aligned
by direct comparison tests like the S and Z tests. Less severe is the case with the polarization directions
converging on a hub that is very close to the sources on the sky. Parallax requires the polarization directions
to depend on each source’s location. Again, the S and Z tests, looking for equal polarization directions,
would not detect such an alignment. A set of sources that exhibit such a pattern is discussed in Sec. 4.

Figure 1: (Color online) A source S of polarized EM radiation and a point H are plotted on the Celestial
sphere. (a) The source S and point H determine a great circle. The polarization direction is tangent to
a second great circle. The angle η is the acute angle between the two circles at S. (b) In the plane tangent
to the Celestial sphere at S, the polarization position angle PPA is an angle ψ measured clockwise from
North with East to the right. The angle η quantifies how well the polarization direction v̂ψ aligns with the
direction v̂H toward H from S.

In general, astronomical sources are candidates for an alignment test if there is an observed asymmetry
such as linear polarization or some other feature like a jet or an axis of rotation. The alignment of linear
polarization directions is discussed here, but the test is easily adapted to other features.

At each point H on the Celestial sphere, given a position angle ψ, the angle η in Fig. 1 is the basis for
an alignment angle function η(H). For a sample with many sources, the angles η from the sources can be
averaged and that gives an alignment angle function η̄(H) for the sample.

At points H where the function η̄(H) is small, the great circles in the direction of the polarizations
converge. Conversely, points H where η̄(H) is high indicate divergence. The extremes are located at “hubs”,
alignment hubs Hmin and −Hmin where the function η̄(H) takes its minimum value and avoidance hubs
Hmax and −Hmax where the alignment angle is at a maximum.

The discussion in Sec. 2 includes the derivation of formulas needed to calculate the alignment angle
function η̄(H) for a given sample. The function can be mapped on the Celestial Sphere to give a visual
display. See Figs. 5 and 7 in Sec. 4.

The ‘significance’ of an alignment result means the fraction of random runs that would give the same or
a better result. Hence, significance can be estimated by evaluating the results of many runs with random
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polarization data. The process and the significance formulas are presented in Sec. 3. Similarly, to gauge the
effects of experimental uncertainty, one runs many sets of data, each set slightly off the catalog values in a
way that reflects measurement uncertainties. This topic is also discussed in Sec. 3.

Two very significantly aligned samples are analyzed with the Hub test in Sec. 4. The first sample analyzes
data found in two catalogs of polarized starlight, Heiles 2000 and Berdyugin 2014, [11,12]. The second sample
analyzes data from Pelgrims 2014, which is identifies QSO radio sources in the large JVAS/CLASS 8.4Ghz
catalog Jackson 2007. [10,13]

The first sample discussed in Sec. 4 aligns with a point Hmin that is far from the sources, while the
second sample’s alignment hub Hmin is very close to the sample. Thus the two cases show the extremes of
possible alignments and the type of information retrieved by the Hub test.

2 The Hub Test

The data required to run the Hub test consists of the locations of ‘sources’ Si, each with a ‘polarization
position angle’ PPA ψi.

The basic quantity calculated with the Hub Test is the “alignment angle” η of a polarization direction
and the direction to a point H on the Celestial Sphere. As shown in Fig. 1, the “alignment angle” η separates
the tangents to two Great Circles where they cross at S. One Great Circle moves away from S along the
polarization direction and the other Great Circle connects S and H. In (b) one sees that the alignment angle
η is measured at the source in the tangent plane of the source.

One should note some basic geometry. The angle η is the same for all points H ′ on the great circle
connecting S and H. However, the angle η is undefined where either H or −H coincides with the source S
or −S. Aside from the few points where it cannot be defined, the angle η has the same value at −H as it
does at H. Also, all great circles through H contain the diametrically opposite point −H. Only H and −H
are common to all the Great Circles through H. It follows that, as a function of H, the alignment angle
η(H) is symmetric across diameters, η(H) = η(−H). Now for some math.

Given a point on the unit sphere with known longitude, latitude angles, one can determine the radial
unit vector from the origin to the point in rectangular coordinates (x, y, z). One has

r̂ = (x, y, z) = (cosα cos δ, sinα cos δ, sin δ) . (1)

The formula works whether we are in Equatorial Coordinates with (Right Ascension,Declination) = (RA,dec)
= (α, δ) or Galactic coordinates with galactic longitude and latitude (l, b) replacing (α, δ) in (1).

Writing the same equations with the different notations of two different coordinate systems must not
be confused with the problem of transforming coordinates from one system to the other. In this and the
following sections, we continue to write formulas with the (α, δ) longitude and latitude notation for the
Equatorial Coordinate System, while recognizing the same equations are valid with the (l, b) longitude and
latitude of the Galactic Coordinate System.

In Cartesian coordinates, the unit vectors, v̂N and v̂E, in the direction of local North and local East in
the plane tangent to the sphere at S are given by

v̂N = (− cosα sin δ, − sinα sin δ, cos δ) ; v̂E = (− sinα, cosα, 0) . (2)

The three vectors r̂S , v̂N, and v̂E form an orthonormal set.
All vectors in the tangent plane at S, see Fig. 1(b), are linear combinations of local North v̂N and local

East v̂E. Both the unit vector v̂ψ in the direction of ψ and its cross product with the radial unit vector r̂S
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are vectors in the tangent plane at S and we have

v̂ψ = cosψ v̂N + sinψ v̂E ; n̂S×ψ = r̂S × v̂ψ = sinψ v̂N − cosψ v̂E , (3)

where the cross product n̂S×ψ is perpendicular to v̂ψ. One can show that the three vectors r̂S , v̂ψ, n̂S×ψ
form an orthonormal set.

Let the point H on the sphere in Fig. 1 be located at (RA,dec) = (αH , δH). The point H must not be
S or −S. Clearly, the Great Circle containing H and S lies in the plane spanned by r̂H and r̂S . Since the
unit vector tangent to the great circle at the source S, v̂H , lies in the plane of the great circle, the tangent
vector v̂H must be a linear combination of r̂H and r̂S .

Since v̂H is tangent to the sphere at S, we know that v̂H is perpendicular to r̂S . By applying the Gram-
Schmidt process to r̂H and r̂S , we get v̂H from r̂H by subtracting off the part of r̂H that is parallel to r̂S .
The result is

v̂H =
r̂H − (r̂S · r̂H)r̂S
| r̂H − (r̂S · r̂H)r̂S |

, (4)

where the dot product r̂S · r̂H = cos θ is the cosine of the angle between unit vectors r̂H and r̂S . Since the
denominator is the length of the vector in the numerator, the result is a unit vector.

The fundamental quantity in the Hub test is the alignment angle η between the polarization direction ψ
and the direction toward the point H, as illustrated in Fig. 1. One can determine η from the dot product of
unit vectors v̂H and v̂ψ,

cos η = | v̂H · v̂ψ | . (5)

We want the acute angle between the two directions. Since the absolute value makes cos η non-negative, the
alignment angle η can be acute, restricted to the range 0◦ ≤ η ≤ 90◦.

The angle η can be chosen to be acute because the electric field polarization direction and the tangent
to the great circle from S to H are not oriented: the electric field oscillates back and forth along ±v̂ψ and
both directions ±v̂H connect S to H.

Consider the unit vector n̂S×H that is perpendicular to the plane of the great circle through H and S,

n̂S×H =
r̂S × r̂H
| r̂S × r̂H |

. (6)

By the properties of cross products, the unit vector n̂S×H is perpendicular to both r̂S and r̂H . Thus n̂S×H is
in the plane tangent to the sphere at S. By (4), v̂H is a linear combination of r̂S and r̂H , it follows that n̂S×H
is perpendicular to v̂H . Thus the vector n̂S×H lies in the plane tangent to the sphere at S in a direction
perpendicular to v̂H . To avoid overcrowding, the vector n̂S×H is not drawn in Fig. 1(b).

In the plane tangent to the sphere at S, the perpendicular directions n̂S×H ⊥ v̂H and n̂S×ψ ⊥ v̂ψ differ
by the same angle as v̂H and v̂ψ. Thus, as an alternate to (5) one can also determine η from

cos η = | n̂S×ψ · n̂S×H | . (7)

Whether one uses (5) or (7), the formulas (1) through (7) allow the alignment angle η to be calculated given
the PPA ψ and the locations (αS , δS) and (αH , δH) of the source S and point H on the sphere.

To be useful, the Hub test must be applied to a sample, a collection of many sources Si, i ∈ 1, ..., N,
where N is the number of sources. Each source Si has a given location on the sphere, (αi, δi), that is part of
the original data. Each source has a polarization direction determined by a polarization position angle PPA
denoted ψi. Then, for each point H on the sphere, there is an alignment angle ηiH , as pictured in Fig. 1 and
calculated with either Eq. (5) or (7), but now for each of N sources.
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For almost all points H on the sphere, one can define an average alignment angle function η̄(H) repre-
senting how well aligned with H, on average, are the polarization directions of the collection of sources Si.
Let the function η̄(H) be defined as

η̄(H) = η̄(α, δ) =
1

N

∑
i

ηiH , (8)

where (RA,dec) = (α, δ) is the location of H. To be more precise, this is the arithmetic mean. Plots of the
function η̄(α, δ) for the samples in Sec. 4 are displayed in Figs. 5 and 7.

Since all the alignment angles ηiH are acute angles, as noted after Eq. (5), it follows that their average,
the function η̄(H), is also an acute angle, 0◦ ≤ η̄(H) ≤ 90◦.

The function η̄(H) cannot be defined where H or −H is coincident with any of the sources, ±H 6= ±Si.
From Fig. 1, when S and H are the same point, infinitely many great circles ‘connect’ them, so there is no
well defined angle η. There is a corresponding effect in the formulas; v̂H in (4) is indeterminate, 0/0, when
r̂H and r̂S coincide.

As noted earlier, the angle η in Fig. 1 is a diametrically symmetric function of H, so the average of many
ηs, the alignment function η̄(H) in (8) obeys

η̄(H) = η̄(−H) , (9)

showing that the alignment function η̄(H) is symmetric across diameters.
The maximum and minimum values of η̄(H) have special meanings. The Hub test provides numerical

results η̄min and η̄max that can be used to judge how strongly the sources’ polarization directions are correlated
with Hmin and Hmax. The locations of the max and min points on the sphere, ±Hmin and ±Hmax, that the
polarization directions tend to point towards or away from are also potentially useful information determined
by the test.

Once one has determined the smallest alignment angle η̄min and the largest avoidance angle η̄max for
the observed data, it is important to know how likely it is that random polarization directions would have
returned equivalent or better results. The problem of significance is treated next.

3 Significance Level and Uncertainty

How do we know if the alignment is significant? What is the likelihood that sources with random PPA
polarization angles would produce a lower η̄min or a higher η̄max?

To find out, we make many random runs, repeating the process in Sec. 2, but with sources that have
randomly polarized PPA data. The random run results produce raw probability distributions that can be
approximated with functions. Functions that fit the distributions of random run results can be used to
estimate the significance of observed alignments.

It is found that useful parameters include the angular extent of a sample as well as the number of sources
in the sample. Runs with a small number of sources are found to be more likely to have lower η̄min and
higher η̄max when compared to runs with large numbers of sources. The dependence on sample extent is less
pronounced than the dependence on the number of sources.

A random run starts by choosing the number N of sources and the radius ρ of the sample region. Then
choose N sources at random locations in the region and assign random PPA ψ polarization angles to each.
The alignment angle ηiH between the ith source and the grid point H is calculated as in Sec. 2. The average
(arithmetic mean) η̄H of the N alignment angles ηiH at each grid point H is calculated. The largest and
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smallest average alignment angles, η̄min and η̄max, are determined as well as the hub locations Hmin and
Hmax where the extreme angles occur. The locations of the sources, their PPA angles ψ, the location Hmin,
the smallest average alignment angle η̄min, the location Hmax, and the largest average alignment angle η̄max

are collected and stored. That completes the random run.
The sources were confined to regions of radii ρ = {0◦, 5◦, 12◦, 24◦, 48◦, 90◦}. By diametrical symmetry,

the 90◦ region effectively covers the entire sphere. The number N of sources in each region were assigned to
be N = {8, 16, 32, 64, 128, 181, 256, 512}. All cases were run R = 2000 times.

One should not interpret the results for a region with radius ρ= 0◦ as results for an unpolarized source. An
unpolarized or circularly polarized source has its linear polarization randomly or uniformly cycling though all
directions perpendicular to the line of sight. Here we have N definite and unchanging polarization directions
from independent sources that happen to be located in a tiny region.

Region radius: 24°
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Figure 2: (Color online) R = 2000 runs for N = 181 sources with random polarization PPA ψ. For each
run, the sources were assigned random polarization directions ψ. The best alignment angle η̄min for each of
the R runs was collected and the results analyzed. In (a), the histogram of η̄min plots the number of runs
∆R in each bin of width ∆η̄ = 0.0025π radians. The total number of runs is the sum of the bar heights, R
=
∑

∆R. Thus, by dividing by R∆η̄, the sum of the areas of the bars in (b) is unity, an approximation to
the probability distribution. In the foreground is the distribution, (10), that fits the data, slightly steeper
on the η = π/4 = 0.25π high side than on the low side.

The random runs use a 2◦ × 2◦ grid, or mesh. Since location is irrelevant for the random runs, the
sources are confined to a single region for most of the runs, a region centered near the grid point at (RA,dec)
= (71.9◦, 59.4◦). Sources are chosen at random from the grid points within the region and moved slightly
off-grid to avoid resonances. However, for point-like regions with null radii, ρ = 0◦, the math was simpler
with the sources at the North pole.

In symbols, for R(N) runs with a given number of sources N, there are a total of R(N) values of η̄min

and η̄max. By counting the number ∆Rmin
i of values of η̄min that are found in an interval ∆η centered on ηi,

one obtains a histogram, the collection {ηi,∆Rmin
i }. Since the total number of runs is the sum, R =

∑
∆Ri,

the fraction of random results η̄min that are in the ith bin is ∆Ri/R. The fraction ∆Ri/R approximates the
probability of finding η̄min with a value in the ith bin.

As an example, the histogram for random runs in a 24◦ radius region with N = 181 sources is presented
in Fig. 2(a). In part (b), the histogram is rescaled so that its total area is unity, just like a probability
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distribution.
By trying various formulas, we find one that fits the random data well. We choose

Pmin(η) =
1.220

σ
√

2π

(
1 + e4(

η−η0
σ −1)

)−1

e−
1
2 ( η−η0

σ )
2

, (10)

where 1.220 =
√

2π/
∫

[e−y
2/2/(1 + e4(y−1))]dy. Since P (η0 + 0.706σ) = P (η0 − 1.018σ) = e−1/2P (η0), the

‘width’ is the quantity 0.706σ + 1.018σ = 1.72σ. The label “min” in Pmin(η) indicates “alignment.”
The probability distribution P (η) is the product of a normal distribution with a unit step, an ‘S-curve’.

The S-curve is unity for small η and vanishes for large η, with a transition on the π/4 side of the histogram.
The S-curve makes the η = π/4 side of the distribution steeper. See Fig. 2. Making the π/4 side steeper
pushes probability to the other side. However the step function nears unity on the side of interest, the small
η side opposite the η = π/4 side. Since the step function is unity, the side of interest behaves as a normal
distribution with mean η0 and half-width σ, but with an altered normalization constant, 1.220 in place of
1.000 .

To judge avoidance, the maximum angles η̄max of the random runs were collected. All such angles exceed
π/4; one has η̄max > π/4. Similar to the alignment cases, the side of an avoidance histogram toward η =
π/4 is steeper than the far side toward η = π/2. Making the necessary adjustment to the formula, two
sign changes compared with (10), the random results can be fit with an avoidance probability distribution
Pmax(η) given by

Pmax(η) =
1.220

σ
√

2π

(
1 + e−4(

η−η0
σ +1)

)−1

e−
1
2 ( η−η0

σ )
2

. (11)

As with alignment, the side of interest, the high side toward η = π/2 is where the step function becomes
unity and the function is a normal distribution but with a scaling factor of 1.220 in place of 1.000 .

For both alignment and avoidance, the likelihood that a random result η̄ is in an interval δη centered on
η is approximated by P (η)δη. Choose Pmin(η) for alignment and Pmax(η) for avoidance.

By fitting probability distributions (10) and (11) to histograms for R(N) random runs with N sources in
a region of radius ρ and N = {8, 16,32, 64, 128, 181, 256, 512}, one finds a mean value η0(N) and a half-width
σ(N) for each N. It turns out that the various η0(N) and σ(N) are well described by simple functions of√
N,

ηmin
0 (N) =

π

4
− c1(√

N
)a1 ≈ π

4
− 1√

N
; σmin(N) =

c2

4
(√

N
)a2 ≈ 1

4
√
N

(12)

ηmax
0 (N) =

π

4
+

c1(√
N
)a1 ≈ π

4
+

1√
N

; σmax(N) =
c2

4
(√

N
)a2 ≈ 1

4
√
N

,

where the parameters ci and ai for ηmin
0 and ηmax

0 have values near unity, depending on the radius ρ of the
region. See Table 1. The simpler expressions in (12) apply when the parameters ai and ci are equal to one.

Note that, for random runs at ρ = 5◦ and especially for ρ = 0◦ with any given number N of sources, the
alignment and avoidance angles approach the midway value π/4 much closer than they do for larger regions.
See Table 1, where c1 is noticeably smaller for ρ = 5◦ and 0◦ than it is for regions with larger radii ρ.

With random data, the sum on the right in (8) is a sum of random numbers constrained to the interval
[0, π/2] with a mean value of π/4. One can show that the dependence on

√
N of ηmin

0 (N) and ηmax
0 (N) in
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24 °Region radius:
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Figure 3: (Color online) For ρ = 24◦ radius regions, the mean η0 and half-width σ parameters for random
runs as functions of the number of sources N in (12) and Table 1. (a) Note that avoidance (max) and
alignment (min) are symmetric about the dashed line at the angle 0.25π = 45◦. (b) Since, for ρ > 5◦, all
of the parameters in Table 1 are roughly unity, ci, ai ≈ 1, the half-widths σ are about 1/(4

√
N), which, by

(12), is a quarter of the separation of the η0 curves in (a) from the dashed centerline η0 = π/4.

(12) can be made plausible by adapting random walk ideas. [14] In random walk language, at each point H
on the sphere, except at sources or opposite sources, define the “distance” function DN by

DN ≡ N
(
η̄(H)− π

4

)
=

N∑
i

(
ηiH −

π

4

)
= DN−1 + s , (13)

where we use (8) and where s is a ‘step’, the change that gives DN from DN−1.
From Fig. 1, with a random polarization direction ψ for the N th source, the alignment angle η is as likely

to be greater than π/4 as it is to be less than π/4. Thus each step s = (ηiH − π/4) is as likely to be positive
as it is to be negative. By repeating over many trials, we infer that the average step s would vanish, 〈s〉 = 0.

However, the square of s, i.e. s2, is always positive or zero. Let us assume that the average of s2 is a
constant, 〈s2〉 = d2, while maintaining 〈s〉 = 0. Then the average of D2

N increases with N,

〈D2
N 〉 = 〈(DN−1 + s)

2〉 = 〈D2
N−1〉+ 〈s2〉 = 〈D2

1〉+ (N − 1)d2 = Nd2 , (14)

where we assume that 〈D2
1〉 = d2. The root-mean-square value Drms

N ≡
√
〈D2

N 〉 = ±d
√
N and, by (13), we

have

η̄rms(H) =
π

4
± d√

N
, (15)

which is much like (12).
To make (15) equivalent to (12), the extreme value of the constant d would need to be one radian. This

means that the added source contributes an amount d2 = 〈(ηNH − π/4)
2〉 = 1 to 〈D2

N 〉 in (14), on average
for max avoidance or best alignment. Justifying that conclusion is a more complicated problem than I want
to consider here. So, let us settle for having shown that the dependence of ηmin

0 (N) and ηmax
0 (N) on

√
N in

(12) is made plausible by the coincidence of (12) and (15).
Fig. 3 plots the functions in (12) and the means η0(N) and the half-widths σ(N) from random runs with

sources in a ρ = 24◦ region.
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Region Radius ρ cmin
1 amin

1 cmin
2 amin

2

90◦ 0.9423± 0.0050 1.0046± 0.0036 1.061± 0.026 0.954± 0.016
48◦ 0.9505± 0.0079 1.0156± 0.0057 1.166± 0.016 0.9956± 0.0095
24◦ 0.9235± 0.0024 1.0069± 0.0018 1.127± 0.022 0.964± 0.013
12◦ 0.8912± 0.0034 1.0054± 0.0026 1.238± 0.039 1.021± 0.021
5◦ 0.8363± 0.0035 1.0088± 0.0028 1.076± 0.030 0.940± 0.019
0◦ 0.5031± 0.0059 1.0153± 0.0080 1.522± 0.052 1.053± 0.024

Region Radius cmax
1 amax

1 cmax
2 amax

2

90◦ 0.9441± 0.0061 1.0055± 0.0044 1.000± 0.038 0.931± 0.025
48◦ 0.9572± 0.0063 1.0165± 0.0045 1.090± 0.026 0.958± 0.016
24◦ 0.927± 0.011 1.0068± 0.0079 1.101± 0.019 0.964 ±0.011
12◦ 0.9049± 0.0069 1.0090± 0.0052 1.228± 0.039 1.018± 0.022
5◦ 0.8424± 0.0038 1.0062± 0.0031 1.168± 0.022 0.992± 0.013
0◦ 0.4982± 0.0058 1.0093± 0.0080 1.543± 0.057 1.060± 0.025

Table 1: Parameters ci and ai, i = 1,2 in (12) for regions with various radii ρ. By the symmetry across
diameters, the region with a radius of 90◦ covers the whole sphere. The parameters ci for ρ > 5◦ and ai for
any ρ are close to unity, some equal to one within the plus/minus standard error.

Let us use Fig. 3 to visualize the probability distributions in (10), (11), and (12). The bulk of the most
likely alignment angles η̄min and avoidance angles η̄max extend vertically a little above and a little below the
η0 curves drawn in (a). The half-widths σ in (b) are a quarter of the separation, i.e. 1/

√
N = | π/4− η0 |,

in (a) between the angle π/4 to the η0 curves. So the max and min avoidance and alignment angles η̄ of a
given random run will most likely fall in two bands centered on the η0 curves, bands whose half-widths σ
are about a quarter of the separation from π/4 to the η0 curves. With that pictured, we leave random runs
and return to observations.

Given an ‘observed’ alignment angle η̄obs
min, i.e. one that is calculated from observed polarizations, there

is a chance that randomly directed polarizations can produce an equal or smaller alignment angle. The
“significance” S of a particular η̄obs

min is defined to be the likelihood that random runs will show better
alignment than indicated by the observed angle.

Similarly, there is a likelihood that the avoidance angle η̄obs
max could be less than the result of some

random run. We therefore define two significances Smin(η̄obs
min) and Smax(η̄obs

max), one for alignment and one
for avoidance.

Given the approximations P (η) in (10) and (11) to the probability distributions, the significance of an
alignment or avoidance angle η̄obs is the integral from/to infinity,

Smin(η̄obs
min) =

∫ η̄obs
min

−∞
Pmin(η)dη ; Smax(η̄obs

max) =

∫ ∞
η̄obsmax

Pmax(η)dη . (16)

The significance formula for an observed min alignment angle η̄obs
min is the fraction of random runs that would

yield better alignment, i.e. a smaller alignment angle η̄min. Similarly, the significance formula for an observed
max avoidance angle η̄obs

max in (16) indicates the likelihood that random runs would produce larger avoidance
angles than the angle η̄obs

max that is calculated from observed data.
The distributions in (10) and (11) approximate the scaled histograms of the results of random runs as in

Fig. 2. Note that the distributions have nonzero values for any real η, positive or negative, while alignment
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and avoidance angles η̄ are confined to a finite interval, i.e. they are nonnegative acute angles 0◦ ≤ η ≤ 90◦.
So, there might be a problem.

Probabilities and significances are meaningless for PPA angles that are negative, η̄ < 0◦, or larger than
a right angle, η̄ > 90◦ = π/2 rad. With only slight differences due to the parameters ci and ai, by (16),
we have Smin

N (0) ≈ Smax
N (π/2), which means that the significance of the disallowed angles smaller than 0

and larger than 90◦ = π/2 are about the same. For N = 4 sources in 24◦ radius regions, one calculates
Smin
N=4(0) ≈ Smax

N=4(π/2) = 0.014, which is more than 1% and is not negligible when determining significance.
Upon increasing number of sources to N = 7, one finds that Smin

N=7(0) ≈ Smax
N=7(π/2) = 4× 10−5 or 0.004%.

That may be considered negligible. For the examples discussed in the next section, only regions with seven
or more sources are considered.

4 Two applications of the Hub test

Figure 4: Survey of polarized Galactic starlight. The function h(l, b) is plotted, where h = − log10(S) and
S is the significance of the alignment for 5◦ radius regions centered on grid points. Only very significant
regions are shown in orange, h = − logS > 2. The largest peaks occur along the Galactic Disk. The hill
shaded Green is located off-Disk and Northeast of the Galactic Center and is composed of 35 of the 5◦ radius
regions. These 35 regions combine to make the 99-star sample considered in the text. The most significant
of the 35 regions has a height h = − logS ≈ 30, meaning that it is better aligned than all but one in 1030

randomly directed regions. (Galactic coordinates; (+180◦, 0◦) on the left; an Aitoff plot; Color online.)
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In this section, two samples are discussed. One has the polarization directions narrowly constrained and
the alignment hubs are far from the sources. The second sample has polarizations directions pointing to a
hub located near the sources and parallax forces the polarization directions to have a wide range of position
angles.

The first sample consists of Milky Way stars. To get a rough idea of the alignment of the polarized
starlight, we conduct a survey. The polarized starlight data is taken from two catalogs, Heiles 2000 and
Berdyugin 2014, [11, 12]. Each grid point on a 2◦ × 2◦ mesh serves as the center of a 5◦-radius region. The
regions are populated with stars from the catalogs. Requiring at least 7 stars per region ensures the formulas
of Sec. 3 will be sufficiently accurate.

A kind of “topographical” map of the Milky Way Galaxy is presented in Fig. 4. Fig. 4 shows the
topography of significance for polarized Galactic starlight, arranged so that higher elevations indicate more
significant alignment. Significance is difficult to plot, so the altitudes h in Fig. 4 are the negative log of
significance, h = − log10(S). The highest peak on the left tops off at − logS ≈ 270 and that means the
significance S ≈ 10−270, essentially nil.

It should be noted that the topographical map for the significance of avoidance is nearly identical to the
topographical map for alignment, i.e. both look like Fig. 4. It may be that the collections of small regions of
the Galaxy with significantly aligned polarized starlight imply that these are regions where the starlight passes
through essentially the same interstellar medium, giving a somewhat uniform result. Polarized starlight in
regions that do not align significantly may pass through incoherent ISM.

The first sample consists of one of the lower hills Northeast of the Galactic Center, shaded green in Fig.
4. The sample has 99 stars. The 99 stars are shared by the 5◦-radius regions that have centers (l, b) with
17◦ ≤ l ≤ 34◦, 23◦ ≤ b ≤ 35◦ and b < 23◦ − 1.5(l − 36◦). The last inequality separates the sample from an
adjacent hill. All of these 5◦-radius regions have Smin ≤ 10−9, so, in Fig. 4 their altitude h is at least 9, h ≥
9.

N

Hmin Hmax

Hmax Hmin
η(H), °

8
18
28
38
48
58
68
78

Figure 5: The alignment function η̄(H), Eq. 8. The sources are located at the green dots. To guide the
eye, two Great Circles are drawn, one through the sources’ center and the avoidance hubs ±Hmax, while
the other connects the sources’ center with the alignment hubs ±Hmin. The two Great Circles are shaded
Gray and, within experimental uncertainty, they are perpendicular where they cross at the sources’ center.
(Galactic coordinates with (+180◦, 0◦) on the left and (−180◦, 0◦) on the right, an Aitoff plot, Color online.)
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Sample Coordinates N η̄min Hmin Significance of η̄min

Stars Galactic 99 7.25◦ ± 0.27◦ (77.9◦,−50.6◦)± (6.9◦, 4.0◦) < 10−71 ≈ 0

QSOs Equatorial 27 21.77◦ ± 0.88◦ (9.7◦, 1.5◦)± (2.4◦, 2.6◦) 1.2+3.0
−0.9 × 10−5

Table 2: Alignment metrics.

Sample Coordinates N η̄max Hmax Significance of η̄max

Stars Galactic 99 82.80◦ ± 0.27◦. (120.9◦, 31.0◦)± (4.8◦, 2.3◦) < 10−71 ≈ 0

QSOs Equatorial 27 66.07◦ ± 0.96◦ (144.◦,−25.◦)± (20.◦, 14.◦) 2.0+3.6
−1.4 × 10−4

Table 3: Avoidance metrics.

Combining these 5◦-radius regions into a single sample makes a combined sample that is even more
significantly aligned, combined, the significance becomes Smin ≈ 10−71. The significance and other metrics
for the sample can be found on the first line in Tables 2 and 3.

N

Selected
-Log10S

2.0

2.5

3.0

3.5

Figure 6: Survey of polarized radio QSOs. The 1450 QSOs were grouped into 5◦ radius regions centered
on grid points. Those regions having at least 7 QSOs are plotted as gray dots at the central grid point. Just
35 regions showed very significant alignment, i.e. S ≤ 0.01 = 10−2, or, equivalently, − log10 S ≥ 2.0, and
these are plotted as color dots. The indicated clump of 14 regions was selected for the analysis. There are
27 QSOs in the combined area of the 14 regions. (Equatorial coordinates centered on (α, δ) = (180◦, 0◦),
with (360◦, 0◦) on the right, an Aitoff plot, Color online.)

The angular separation of the furthest star from the sample center is 11.84◦. Accordingly, we choose the
statistics constants ai and ci for sources confined to regions with radii ρ = 12◦ in Table 1. By (12), one

finds that, with randomly directed polarizations, the expected smallest alignment angle η̄min is η̄Randomψ
min
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N

Hmax Hmin

Hmin Hmax

η(H), °

22

32

42

52

62

Figure 7: The alignment function η̄(H) for the QSO sample. The sources are located at the green dots.
As in Fig. 4, the two Great Circles are perpendicular where they meet. Unlike the Star sample in Fig.
5, the QSO sample has an alignment hub Hmin that is so close to the sources that parallax is important.
(Equatorial coordinates with (0◦, 0◦) on the left and (360◦, 0◦) on the right, an Aitoff plot, Color online.)

= ηmin
0 ± σmin = 40.0◦ ± 1.7◦, (Random ψ). The expected largest avoidance angle η̄max is η̄Random ψ

max =
ηmax

0 ± σmax = 50.1◦ ± 1.7◦, (Random ψ).
By applying Eq. (8) to the observed data for the sample, one finds the alignment function η̄(H) depicted

in Fig. 5. The smallest alignment angle η̄min is about 7◦ and the largest avoidance angle η̄max is 83◦. Both are
about 19σs from the mean results, 40◦ and 50◦, with randomly directed polarizations. One can reasonably
conclude that the alignment and avoidance correlations are not due to chance.

In Fig. 5, one sees that the closest alignment hub Hmin sits in a convergence region on the sphere well
away from the sources. The angular separation is 89◦ from the sample’s center, which is almost as far away
as possible. By the symmetry across diameters, anything beyond 90◦ would force −Hmin to be closer than
Hmin.

This sample, with its hubs located so far away, is a prototype for samples whose sources have nearly
equal polarization directions, making their alignment evident. The alignment is evident from the position
angle histogram in Fig. 8(a).

To test the agreement of the Hub test with the S and Z tests, we calculate the position angle PA for the
direction from the center of the region in Fig. 7 to the hub Hmin. We find that the PA is 151◦. The value
sits midway in the clump of observed PPA ψs Fig. 8(a). The agreement confirms that the Hub test and the
S and Z tests can yield similar conclusions about whether or not polarization directions align.

At the other extreme, a sample’s sources can converge on a hub Hmin that is very close to the sample.
In such a case the polarization directions from different parts of the sample are different. The position angle
histogram shows a spread out distribution of position angles, even if the polarization directions all aimed
toward a single point.

As an example, we consider a sample of Quasi-Stellar Objects, QSOs. The data is found in Pelgrims
2014, [10], a catalog of 1450 QSOs that have been identified as QSOs in the earlier JVAS/CLASS 8.4Ghz
catalog Jackson 2007 that has 12700 records. [13] These are sources of linearly polarized radio emissions.

As above with starlight from Galactic sources, we first conduct a survey. The 1450 extra-galactic radio
sources populate 5◦-radius regions each centered on a grid point of a whole-sky 2◦ × 2◦ grid. The sample
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Figure 8: Histograms of the polarization position angles ψ for (a) Stars and (b) QSOs. (a) Stars. The
position angles of the polarization directions cluster around ψ = 151◦, which is the position angle to the
alignment hub Hmin in Fig. 5. Alignment is clear and the hub is far from the sources. (b) For the QSO
sample, the position angle from the sample’s center toward the hub Hmin is 133◦. But here, parallax produces
many position angles and alignment is not clear from the ψ histogram. However, the Hub test looks for
convergence and has no trouble detecting the alignment of the polarization directions in the sample.

studied here combines the QSO sources in a cluster of 14 very significantly aligned 5◦-radius regions near
the North Galactic Pole. The most significantly aligned 5◦-radius region is one of the regions in the cluster.

The sample of partially polarized QSOs consists of 27 sources. With formulas from Sec. 2, one can
calculate the alignment function η̄(H) for this sample. The function is depicted in Fig. 7. Metrics of the
alignment can be found in Tables 2 and 3. The significance of the smallest alignment angle η̄min puts the
27-source sample better aligned than 8 random samples in a million.

In Fig. 7, the great circles in the polarization directions converge at the alignment hub Hmin which is just
14◦ from the sample center. That means the polarization directions are not equal, but spread out in value
so that they can point to Hmin from any location in the sample, i.e. parallax. The histogram of the position
angles in Fig. 8(b) shows that the PAs are evenly spread out over about 60◦. This type of well-correlated
alignment would be difficult to detect with tests that look for a cluster of PAs centered on a unique value.

5 Conclusions

The extreme case of alignment of the polarized starlight evident in Figs. 5 has parallel polarization directions
converging on a distant hub Hmin. The perpendiculars to the polarization directions likewise clump and the
avoidance hub Hmax is likewise distant. Distant hubs, far from the sources, characterize one extreme of
highly significant alignment.

The other extreme of alignment occurs when the polarization directions focus down on a point near
the sources. There is parallax. When the point of best alignment is close to the sources, the polarization
directions are correlated, but they are not parallel, since they tend to point in different directions from
different locations in the sample.

The samples also differ by the significance of the alignments. The survey of QSO alignment tendencies
finds correlated alignments that are much weaker than polarized Galactic starlight. The most significantly
aligned 5◦-radius QSO region is better aligned than one in 5000 randomly polarized similar samples. That



REFERENCES 15

level of significance makes it unlikely that it is due to chance. Yet, with the starlight survey, there are many
regions in Fig. 4 that are better aligned than millions of randomly polarized samples.

Finally, one can see that there is much more interest in the literature devoted to alignment as opposed
to avoidance, perhaps because avoidance is not measured. The notion of ‘avoidance’ is measurable with
the Hub test. The surveys reveal samples of starlight and QSOs that significantly avoid their hub points
Hmax, while their alignments are lax. Perhaps highly significant avoidance may be an indicator of different
polarization mechanisms than those indicated by alignment. The topic needs further investigation.
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