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Riemann's hypothesis, formulated in 1859, concerns the location of the zeros of Riemann's Zeta 
function. The history of the Riemann hypothesis is well known. In 1859, the German mathematician B. 
Riemann presented a paper to the Berlin  Academy of Mathematic. In that paper, he proposed that this 
function, called Riemann-zeta function takes values  0 on the complex plane when s=0.5+it. This 
hypothesis has great significance for the world of mathematics and physics. This solutions would lead 
to innumerable completions of theorems that rely upon its truth. Over a billion zeros of the function 
have been calculated by computers and shown that all are on this line s = 0.5+it. In this paper, we 
initially show that Riemann's   (Zêta) function and the analytical extension of this function called ℵ (Aleph)) are distinct. After extending this function in the complex plane except the point s=1, we will 
show the existence and then the uniqueness  of real part zeros equal to 1/2. 
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INTRODUCTION 
 

Riemann's hypothesis is expressed as following: 
 

All non-trivial zeros of the function  are located on 

the complex line  
 
 
INTRODUCTION - ON THE ANALYTICAL 

EXTENSION OF THE FUNCTION  
 

The analytical extension of the function #($)   on ℂ will 
be called ℵ($) in order to distinguish it from the function 
of Riemann. Riemann's Zeta function is written:   
 

 
 

For all complex numbers  

The function 
&'* for + ∈  ℝ and $ ∈  ℂ is differentiable p 

times. The p-th derivative of this function is written: 
 

 
 
Applying  Euler Mac-Laurin's (Havil, 2003; Poels, 2011) 
formula to the function: 
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Where >@AB&∗ (+) = >@AB&(+ − D(+)) is a 1-periodic 
function >E(+), called the p-th Bernoulli polynome and :E = >E(0), called the p-th number of Bernoulli. 

For 7 → +∞ the left member of the Equation 1 leans 
towards #($) and the development of Euler MacLaurin, 
a right sided part of the equation is defined by: 
 

 
 
With 
 

 
 IA being a convergent  integral for ℜ($) > 1 −2<  ∀< ∈ ℕ∗  , converges for all s of the complex plan 

except in $ =1. 
The other members of MacLaurin's development 

being polynomes, the analytical extension of the Zeta  
function  is defined  by the entire complex plan except in 
1. The analytical extension (Edwards, 1974; Lachaud, 
2001) of Riemann's function is expressed by the 
following formula: 
 

                   
                                                                              (2) 
 

It is clear that calculating the value of #($) for values 
such as 0 or -1 with the following  formula, 
 

 
 
is impossible. So, 

 

 
 
is nonsense. 

On the other ℵ(−1) does exist  through the 
converging integral IA(−1). 

The function #($) does not admit zeroson its domain.  ℜ($) > 1. 
On the other hand ℵ($) being holomorphic on ℂ/{1} 

there  are  zeroes  for ℜ($) ≤ 1. 

 
 
 
 

ON THE ZEROS OF THE FUNCTION ℵ(R) 
 
According to Fourier's (Andreas, 1987) analysis, the 

function + → STU'V
that belongs to Schwartz's (Schwartz, 

1966) space of fast decay functions to infinity, coincides 
with his transformed Fourier, that is: 
 

 
 

By making the variable change of + → '√X in this integral, 

the Fourier transformation of the function  
 

 
 
And all functions of Schwartz's space  we have the 
following relationship:   
 

 
 
which  implies that 
 

   (3) 
 ℧ and Z functions meet  the following functional 
equations 
 

 
 Z checks: 
 

 
 
That is, 
 

          (4) 
 

 
 
To calculate the full one below by posing the variable 
change,  
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By summing n, we obtain: 
 

 
 
The inversion between infinite summation and 
integration is  justified by the convergence properties   

of  the function  STUEVn  . So we  obtain: 
 

 
 
That is, 
 

                  (5) 
 

With ζ(s) is the function of Riemann for      
 

The integral 5 is developed on the intervals,  [0; 1] ∪[1; +∞]. We have: 
 

 
 
as 

 

 
 
So on the interval [0; 1] we can write: 
 

 
 

By placing g = &u  in the first part of the integral we have: 
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Therefore 
 

                                                                                     (6) 
 

This integral is converging for any complex except 0 

and 1. #($) function is defined  by continuity  on ℂ/{0; 1} 
 

as 
 

 
 

by multiplying Equation 6 by  $($ − 1)  we have: 
   

 
 

therefore we use   the term ℵ(s) instead  of #($) and 
define: 
 

 
 
as 
 

 
 
Then, 
 

                         
                                                                                   (7) 

This integral is  defined ∀ $ ∈  ℂ thanks to the rapid 
decay property of the Z function to infinity. It can be 

said that ℶ(s) is holomorphic in ℂ. 
So, ℶ(s) = Φ($)ℵ(R),  with meromorphic 

and ℶ(s) is 
holomorphic,  then ℵ(s) is meromorphic. 
On the other hand,   ℶ(s) = ℶ(1 − s) is  a functional 

relationship between ℵ(s) and ℵ(1 − s): 

y0 = 8 g$
2

−1
∞

0

S−e02g 9g = 8 e02

(e02)$
2

+1
h$

2
−1

∞
0

S−h9h 

=
1e$/2

10$ 8 h$
2

−1
∞

0

S−h9h 

y0 =
1e$/2

10$ Γ k$
2

l 

/ y0
0=∞
0=1

= / 8 g$
2

−1
∞

0

S−e02g 9g = / 1e$/2

10$ Γ k$
2

l∞
0=1

∞
0=1

 

8 g$
2

−1
∞

0

/ S−e02g 9g = e−$
2Γ k$

2
l / 10$ = e−$

2Γ k$
2

l #($)∞
0=1

∞
0=1

 

8 g$
2

−1Z(g)9g = e−$
2Γ k$

2
l #($)  

∞
0

 

        ℜ($) > 1 

e−$
2Γ k$

2
l #($) = 8 g$

2
−1Z(g)∞

0

9g = 8 g$
2

−1
1

0

Z(g)9g + 8 g$
2

−1
∞

1

Z(g)9g 

Z(g) =
1√g Z 21g3 +

1

2√g − 1

2
 

8 g$
2

−1
1

0

Z(g)9g = 8 g$
2

−1
1

0

2 1√g Z 21g3 +
1

2√g − 1

2
3 9g 

8 g$
2

−1
1

0

Z(g)9g = − 8 |−$
2

+1
1

∞ ~|1
2Z(|)� 1|2

9| + 8 g$
2

−1
1

0

2− 1

2
+

1

2√g3 9g 

8 g$
2

−1
1

0

Z(g)9g = 8 Z(|)|−$
2

+1−2+
1
2

∞
1

9| − g$
2

2 k$
2

l�
0

1

+
g$

2
−1

2

2 k$ − 1
2

l�
0

1

 

8 g$
2

−1
1

0

Z(g)9g = 8 Z(g)g−$
2

−1
2

∞
1

9g − 1$ +
1$ − 1

 

e−$
2Γ k$

2
l #($) = 8 2g$

2
−1

+ g−$−1
2 3 Z(g)9g − 1$ − 1

1 − $
∞

1

 

1$ +
1

1 − $ =
1$(1 − $)

 

e−$
2Γ k$

2
l #($)$($ − 1) = $($ − 1) 8 2g$

2
−1

+ g−$−1
2 3 Z(g)9g + 1

∞
1

 

ℶ(s) = e−$
2Γ k$

2
l ℵ(s)s($ − 1) = $($ − 1) 8 2g$

2
−1

+ g−$−1
2 3 Z(g)9g + 1

∞
1

 

$
2

Γ k$
2

l = Γ k$
2

+ 1l 

ℶ(s) = 2e−$
2Γ k$

2
+ 1l ℵ(s)($ − 1) = $($ − 1) 8 2g$

2
−1

+ g−$−1
2 3 Z(g)9g + 1

∞
1

 

Φ(s) = 2e−$
2Γ k$

2
+ 1l ($ − 1) 



88          Afr. J. Math. Comput. Sci. Res. 
 
 
 

 
That is, 
 

             (8) 
 

The function  ℶ is written on ℂ 
 

 
 
That is, 
 

                          
                                                                                  (9) 
 
verify that, 
 ℶ(s) = ℶ(1 − s) and   ℶ(0) = ℶ(1 − 0) = 1 
 
 
The trivial zeroes 
 

 
 

The function 
&�k*VB&l included as zeroes  

�@ + 1 = −� , � ∈ ℕ ;  $ = −2(� + 1). On ℂ/{1}  U*V@(�T&) ℶ(s) function is holomorphic. 

Therefore, the function ℵ(s) included the same trivial 

zeroes as the zeroes of function 
&�k*VB&l $ =  −2(1 + �), � ∈  ℕ  which are whole negative pairs. 

 
 
Non-trivial zeroes 
 
If there are non-trivial  zeroes  in the complex plan for 
this function ℶ , 

We expressed them as �� = �� + f:�   � ∈ ℕ and 
these are the same zeroes as the function  ℵ(s).  Note ℜ(. ) the real part and ℑ(. ) the imaginary part. 

These zeroes check the next relationship for the  ℶ 
function. 
 

        (10) 
 
By writing  the real and imaginary part  of  the integral  9 

 
 
 
 

for $ = ��  we obtain: 
 

                                                                               (11) 
 

We seek to identify  complex �� values that verify the 
Equation 11 as, 
 

 
 
and, 
 

 
We note =���,:�, g� the real part of the product ��(�� − 1)�`$ℎ �k�� − &@l �� (n)@ � 
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system  11 we have:   
 

 
 
That is, 
 

              (14) 
 
Are there couples (��, :�) such as Equation  14 equals 
zero? 
Because of  the convergence characteristics of the 
integral,  we have the following property:   
 

 
 
That is, 
 

 
 
Applying the properties of the full continuous and 
positive function, and the squeeze theorem, 
 
 we have: 
 

 
 
The existence of the couples (��, :�) such as: 
 

 
 
The system is reduced to three pairs of solutions: 
 

  
 
We're checking that: 
 �¥ = (0,0) `g �& = (1,0) are des  trivial solutions   ℑ�ℶ(0)� = ℑ�ℶ(1)� = 0  because 

 ℶ(0) = ℶ(1) = 1 
 

And � �� = &@:�  ∈  ℝ  are non-trivial zeroes. As a result, we 

have  shown  that  there are   non-trivial  zeroes  on  the 
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critical axis ℜ($) = &@ . 

The imaginary part :� of these zeroes is identified 
using the first integral of the equation system  11 
expressed: 
 

                  (15) 
 
That is, 
 

 
 
Taking into consideration the result found for the 
imaginary part of the integral,  the following couples:   
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We check that the ��and ��  are  zeros of, ℶ(�), the 
function verifies 
 

 
 

Suppose that ¹� = �� + ®�Sº»¼  and   ¹� = �� + ®�STº»¼ 

are  also  zeros of  ℶ(�), so we have:  
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And £∗ is holomorphic and does not cancel out for  ¹�, ��, and their conjugates. 
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Which is impossible since  ®� ≠ 0 

Therefore the hypothesis  of zeros outside  the critical 
axis leads to a contradiction in relation to the 

symmetries of function ℶ(¾) in the critical band.  

There are no zeroes outside the axis ℜ(��) = 1/2. 
 
 
Conclusion 
 
We have demonstrated: 
 

(i) that the holomorphic function ℶ($) had the same 
zeros as the function ℵ(s) which  is an analytical  

extension of Riemann's #($) function because ℵ(s) =&�k*VB&l  U*V@(�T&) ℶ(s). 

This result well known by the mathematical world, 
served us to find a holomorphic function simpler to 
exploit at the roots. 
(ii) using the squeeze theorem on the integral form of 
the Riemann function, we show that there are a pairs  ���,:�� that are zeros of the Riemann function and 

these zeros are on the line $ = &@ + fh   

 
 
 
 
(iii) as Hadamard (1896) Charles-Jean (1916) have 
each proved that no zero of the analytical extension of 
the Zeta function could be found on the line Re(s)= 1, 
and therefore that all non-trivial zeroes must be in the 
interior of the critical band. 
(iv) we have been hypothesis that if  there were zeros,  ¹� =  �� + ®�Sº»¼ , in the critical band,  with  0 < ®� < &@ , 

then this hypothesis leads to a contradiction. We used 
the Weierstrass’s factorization theorem of holomorphic 

functions for ℶ($), and applying functional relationship 
of symmetry, ℶ(1 − �) = ℶ(�) , to demonstrate 

contradiction. Therefore, all non-trivial zeroes of  ℶ  are 
non-trivial zeroes of the analytical extension of the 

function #  and have a real part  
&@ .These zeroes, noted �� = �� + f:� check the equation systems below: 

  

           
                                                                                  (19) 
 
A simple digital example   
 
A numerical integration by Rombert's method with order 
precision 5 and 20 iterations, we find the  results of the 

complete system 16 with an error of 10T¿. 
 

=14.13472 :2 =21.02203 :3 =25.01085 :4 =30.42487 

=32.93506 
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