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Abstract 
This paper applies our realist interpretation of quantum mechanics to an analysis of the mechanics of 

electron propagation through a crystal. We derive a formula for the effective mass of an electron which 

differs by a factor 2 from Feynman’s. We think this solves his rather weird remark on the relation 

between the effective and free-space mass of an electron, which says the effective mass turns out to be 

2 to 20 times the free-space mass of the electron. Our calculations imply the effective mass equals the 

free-space mass in the absence of a potential barrier between successive atoms in an lattice, which is 

what is to be expected.  

In the next version of this paper, we will comment on Feynman’s development of the Schrödinger 

equation in the context of simple linear motion. 
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Electron propagation in a lattice 
Introduction 
Feynman’s lectures on how an electron – or an excitation or some other irregularity1 – might move 

through a one-, two- or three-dimensional array of atoms (a lattice, in other words2) yield the right 

formulas but – even after multiple readings – leave me completely bewildered because of the 

imprecision in concepts and the chaotic heuristic arguments. Let us try to do better by exploring possible 

definitions of the various concepts that are used, and also by injecting some realism in the description: 

what is that we are trying to talk about, exactly?3 

The results of Feynman’s analysis can be summarized in one or two formulas, and so let us try to find 

out how we get these. The formula we want to understand is the formula for the (kinetic) energy of an 

electron as it is moving through the lattice: 

E = E𝑣 =
1

2
𝑚eff𝑣

2 =
𝑝𝑣

2
 

with 𝑚eff =
𝑝

𝑣
=
ℏ𝑘

𝑣
=

ℏ2

2Ab2
⟺ 𝑘 =

ℏ𝑣

2Ab2
 

The meff is the effective mass of the electron as it moves through the lattice. Feynman tells us that “meff 

has nothing to do with the real mass of an electron”, although in “commonly used metals and 

semiconductors it often happens to turn out to be the same general order of magnitude, about 0.1 to 30 

times the free-space mass of the electron.”4 We do not agree with that. There must be some relation 

between the two mass concepts because, otherwise, the concept of a momentum (p = meff·v) and a 

wavenumber k = p/ħ would not make any sense and should, therefore, not be used. We will come back 

to this later.  

We know the value of this energy is constrained to a band which is usually referred to as the conduction 

band. This band is defined by a minimum and a maximum energy level which Feynman writes as a 

function of some (average) energy level E0 and some energy difference A (or 4A: we will discuss this 4-

factor in a minute). The graph below (Figure 1) plots E as a function of the mentioned wave number k = 

p/ħ = meffv/ħ = ħv/2Ab2. Needless to say, v is the (classical) velocity of the electron in material: quantum 

physicists think of it as a group velocity of a wave packet, but we think it is the actual drift velocity of the 

pointlike electron.5 As for b and A, b is the linear distance between two atoms (or molecules) in the 

array and A is… A requires some more explaining, so let us start. 

 
1 We deliberately avoid the use of terms like excitons or phonons for the time being – until we are ready to define 
them more precisely. 
2 The term crystal is usual added (crystal lattice) to emphasize we are talking a regular or repetitive atomic or 
molecular structure, as opposed to say, a nuclear lattice. We think the context is clear enough. 
3 We refer to Feynman’s Lectures, Volume III, Chapter 13 and – to a much lesser extent – Chapter 14. We assume 
the reader is more or less familiar with them, if only because many modern textbooks basically copy Feynman’s 
treatment of the subject – even if it was written in the early 1960s. 
4 Feynman’s Lectures, Vol. III, p. 13-7. The original 1963 print edition talks about “real crystals” (instead of 
commonly used metals and semiconductors) and gives a range of “2 to 20 times the (free) electron mass.” 
5 See our paper on de Broglie’s matter-wave. 

https://www.feynmanlectures.caltech.edu/III_13.html#Ch13-S3
https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
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Figure 1: The energy band E0 − 2A  E  E0 + 2A as a function of k = p/ħ = ħv/2Ab2  

The amplitude A 
We should first note that A and b (and ħ too, of course) are given constants, so k varies with the drift 

velocity v. We should probably expect this drift velocity to vary with the voltage (potential difference) 

that is being applied, but let us think about this later. Also note we have a rather annoying factor 2 in 

the k = ħv/2Ab2 formula: the energy difference in a simple two-state system is usually defined as the 

difference between an E0 + A and E0 − A level. Hence, the energy difference is usually defined as twice A, 

whatever A might represent. So here we have an energy difference that is equal to four times that 

ubiquitous factor A. We are not sure why right now but we might find out later.  

So what is that factor A? Feynman does not say all that much about it. He defines it as part of iA/ħ, 

which is “the amplitude for the electron to jump from one atom to the next (per unit time)”, and them 

simply states that: 

“There is not much more to be said about the various coefficients, such as the amplitude A, 

which appear in the theory. Generally they are very hard to calculate, so in practical cases very 

little is known theoretically about these parameters and for any particular real situation we can 

only take values determined experimentally.”6  

The factor that gives us the actual probability of the electron going from here to there is A, of course. 

The division by ħ just scales the energy and gives us a value expressed per unit time. Because we cannot 

assume the reader read our other papers on these matters, it is useful to rewrite the Planck-Einstein 

relation (E = h·f = ħ·ω) as ω = E/ħ. In this particular case, this is to be written as ω = A/ħ, which reminds 

us of the cycle time between two quantum-mechanical states: T = 1/f = 2π/ω = 2πħ/A = h/A. We remind 

the reader of Feynman’s illustration of two probabilities ‘sloshing back and forth’, as he famously 

phrased it, as a function of time: 

 
6 Feynman’s Lectures, Vol. III, p. 13-2 and 13-9. It is customary to include the imaginary unit (i) in the amplitude, 
but we think this is not justified: the Kij coefficients in the original Hamiltonian equations are real-valued numbers. 
See our paper on Feynman’s Time Machine, June 2020. 

https://www.researchgate.net/publication/342424980_Feynman's_Time_Machine
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Figure 2: Probabilities sloshing back and forth7 

The illustration triggers an obvious question: how do we know we are in state 1 at t = 0, π, 2π,… as 

measured in the relevant unit here, which is ħ/A? Or – what amounts to the same – state 2 at t = π/2, 

3π/2,…  

The answer is: we do not. That is the point of quantum mechanics: we do not know − not exactly, at 

least. Quantum mechanics models statistical indeterminacy: we do not know the initial conditions and, 

therefore, we do not know when or how our electron is going to move from one electron to another. 

However, we should be able to say some more about that value A − more than what the quantum 

physicists want to give us, in any case.    

We may assume the electron lowers it energy when joining an atom (or a molecule8) so as to create an 

ion.9 To move from one atom to another, it must, therefore, go through a potential barrier. This is 

nothing mysterious: potential barriers – or their corollary: potential wells – should not be thought of as 

static fields: they vary in time. They result from various charges moving around and creating some joint 

or superposed field which varies in time. Hence, a particle breaking through a ‘potential wall’ or coming 

out of a potential ‘well’ just uses a temporary opening corresponding to a very classical trajectory in 

space and in time: think of it being in the right place at the right time – with one addition, perhaps: the 

direction of the (linear or angular) momentum needs to be right too. 

Because we are modeling regular motion – something with a cycle time (period) or, what amounts to 

the same, a frequency – we know the electron must move at some point in time: otherwise we would 

not be able to calculate probabilities. Now that we are mentioning the calculation of probabilities, how 

does that work, exactly? Let us continue the example of the two-state system before going back to our 

semiconductor. We said we could not know for sure that the electron is in state 1 at t = 0, h/2A, 

h/A,...10 but the graph obviously assume we knew at point t = 0, at least! Perhaps we had switched on 

some strong electric field for a while so as to polarize the ammonia molecule⎯and then we switched it 

 
7 We gratefully acknowledge the online edition of Feynman’s Lectures for this illustration too. The graph measures 
time in radians, as opposed to seconds. Indeed, cycle times – in seconds, that is – are measured in units of h/A. It is 
a deep philosophical point which we could – but do not want to – enter into at this point of the narrative. 
8 It is usually an atom but molecular orbitals are theoretically possible too.  
9 As you know, we may also have electron holes, in which case the ion is positive instead of negative. 
10 We are measuring time in proper seconds now, rather than in units of ħ/A. We do so by effectively multiplying 0, 
π, 2π, etc. by ħ/A. For example, 2π becomes 2πħ/A = h/A. It is always useful to recheck the physical dimension: h 
(or ħ) is expressed in N·m·s, while A is an energy and, hence, is expressed in N·m. Hence, the division of h by A does 
yield seconds.  

https://www.feynmanlectures.caltech.edu/III_09.html
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off at t = 0. But then we do not know. All we know is that the cycle time is equal to πħ/A = h/2A. Hence, 

we may expect it will have swapped from state 1 to state 2 and then back again in the time interval 

h/2A. That is a full cycle. If we are interested only in it swapping from one state to the other, we may 

consider that to be the cycle, perhaps, and then the cycle time will be πħ/2A = h/4A. The frequency of 

swapping is just the inverse of the cycle time, of course: f = 1/T = 4A/h. We will usually write that as an 

angular frequency – ω = 2πf = 4A/ħ – and, just to confuse the uninformed reader and introduce 

mysterious quantum-mechanical language, we will call that the quantum-mechanical probability 

amplitude for the electron to swap states. 

Let us go back to the conduction band of our semiconductor: that factor 4 is no longer so annoying 

because, yes, an amplitude that is equal to ω = A/ħ reads nicer than an amplitude that is equal to ω = 

4A/ħ. So the factor 4 is there – it refers to a quarter (1/4) of a cycle – but you can choose where you put 

it: in your definition of the potential barrier (which is the conduction band, in this particular case) or in 

the definition of the amplitude. Thanks for not telling us these things, Mr. Feynman: I guess it is part of 

you challenging your students by not telling them everything, right? :-/ 

What about normalization? We may think this is normalized already, because it is real, right? An 

amplitude is something per unit time, so its value is equal the angular frequency but it is actually a 

fraction: the amplitude is A/ħ seconds per second. Hence, this quantum-mechanical amplitude is, 

effectively, a dimensionless number. How can we relate this to the concept of probabilities or – to be 

precise – to probability densities? We need to take an absolute square somewhere, right? To be precise: 

we need to square the absolute value of a complex-valued amplitude or wavefunction, right? Not here. 

It is, again, part of the utterly confusing language quantum physicists like to use to mystify things. The 

concept of an amplitude may refer to three different things: 

1. A complex-valued wavefunction which, for all practical purposes, can always be written as the 

product of a spatial and time-dependent part − something like this11:  

ψ(𝒙, 𝑡) = 𝑎 ∙ 𝑒  𝑖θ = 𝑎 ∙ 𝑒
𝑖(
E∙𝑡
ℏ
−
𝐩∙𝒙
ℏ
)
 

2. The (real-valued) coefficient in front of the complex exponential(s) in the wavefunction, so that is the 

a of the a·eiθ function.  

3. The amplitude to go from one state to another, which is given by the fraction of (1) a cycle time (or 

half or a quarter of it) and (2) the time unit.  

These concepts are effectively very different. The complex-valued wavefunction describes a state and is 

used in a system of Hamiltonian equations which describes all possible states. The amplitude to go from 

one state to another is a related concept but its nature is very different: it is like a probability. Indeed, 

you should note that the concept of a probability (usually) also involves some fraction of a period or a 

time unit: if we say that the probability of being in either of two states is 1/2, then we mean to say that 

it is in this or that state either of the two states about half of the time. Also, if we would know that the 

 
11 Having a plus or a minus sign in the (complex-valued) exponential (e−iθ) is a mere matter of convention for most 
physicists. We think that is a grave mistake: the plus or minus sign is related to the two possible directions of spin 

of a particle. See our paper on Euler’s wavefunction and the double life of −1. We will also see the sign in front of 
the p·x/ħ term represents the direction of travel, which can be positive or negative. The plus or minus sign is, 
therefore, not random. That is also why we prefer to write p·x as a vector (dot) product. 

https://vixra.org/abs/1810.0339
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electron is in one of two possible states, then the probability of it going into the other state would be 

calculated as a function of (1) the time that has elapsed already, and (2) the (normal or average) cycle 

time. So, yes, it would involve that amplitude to go from one state to another!    

Let us not worry about these concepts too much right now. We might come back to it. Let us continue to 

try to describe what might be happening in a semiconductor. 

The elementary wavefunction 
Planck’s quantum of action (h or, in its reduced form, ħ) models an elementary cycle in Nature. What’s 

an elementary cycle? It can be anything: we think of an electron itself as an oscillating charge12, a 

photon, a ring current in a superconductor is an oscillation too, an atomic or molecular orbital obeys the 

same law, an oscillation in a two-state system, etcetera. Regardless of the specifics of the situation, the 

frequency of these oscillations is always given by the Planck-Einstein relation: E = h·f  f = 1/T = E/h. 

The specifics of the situation here may look very different: we are, effectively, not looking at some 

stationary system here. Our electron moves, in either of two directions depending on the potential 

difference that is being applied. However, all motion is relative and so we might consider using relativity 

theory to analyze what may or may not be going on in the frame of reference of the electron itself.  

Huh? Yes. Just hang in there. It will be alright. Let us consider the idea of a particle (it is our electron, of 

course) traveling in the positive x-direction at constant speed v. This idea implies a pointlike concept of 

position: we think the electron will be somewhere at some point in time. The somewhere in this 

expression does not mean that we think the particle itself is dimensionless or pointlike. In fact, we think 

it is not. In this particular case, we think of the electron as orbiting around a nucleus13, so it takes up a 

rather large space. To be precise, the order of magnitude of the radius of this oscillation will be that of 

the Bohr radius of an atom, so that is about 150 times the electron’s Compton radius.14 Hence, the idea 

of position here only implies that we can think of some center of this oscillation, which we think of as 

being physical: a pointlike charge going round and round in a rather regular fashion (otherwise our idea 

of a cycle time and an orbital would not make no sense whatsoever). Hence, we have a quantization of 

space here but it is very different from, say, the quantization of space that results from applying the 

Planck-Einstein relation to the idea of a free pointlike charge (i.e. the Zitterbewegung or ring current 

model of an electron). 

OK. We get this. Let us now go back to the motion of our electron. Two extreme situations may be 

envisaged: v = 0 or v = c. However, let us consider the more general case inbetween. In our reference 

 
12 We refer to our interpretation of the Zitterbewegung theory of an electron here, which we believe to be true 
because it explains all of the properties of an electron: its energy (and, hence, its equivalent mass), its magnetic 
moment (including the small anomaly which, therefore, is not an anomaly at all), and, last but not least, its angular 
momentum (spin). 
13 It is an extra electron so we have a negative ion instead of a neutral atom. However, this does not fundamentally 
alter the analysis. 
14 We say 150 because that is close enough to the 1/α  137 factor that relates the Bohr radius to the Compton 
radius of an electron. The reader may not be familiar with the idea of a Compton radius (as opposed to the 
Compton wavelength) but we refer him or her to the above-mentioned Zitterbewegung (ring current) model of an 
electron. 

https://vixra.org/abs/2003.0094
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frame15, we will have a position – a mathematical point in space, that is16 – which is a function of time: 

x(t) = v·t. Let us now denote the position and time in the reference frame of the particle itself by x’ and 

t’. Of course, the position of the particle in its own reference frame will be equal to x’(t’) = 0 for all t’, 

and the position and time in the two reference frames will be related by Lorentz’s equations17: 

𝑥′ =
𝑥 − 𝑣𝑡

√1 −
𝑣2

𝑐2

=
𝑣𝑡 − 𝑣𝑡

√1 −
𝑣2

𝑐2

= 0 

𝑡′ =
𝑡 −

𝑣𝑥
𝑐2

√1 −
𝑣2

𝑐2

 

Hence, if we denote the energy and the momentum of the electron in our reference frame as Ev and p = 

m0v, then the argument of the (elementary) wavefunction a·ei can be re-written as follows18: 

θ =
1

ℏ
(E𝑣𝑡 − p𝑥) =

1

ℏ

(

 
E0

√1−
𝑣2

𝑐2

𝑡 −
E0𝑣

𝑐2√1−
𝑣2

𝑐2

𝑥

)

 =
1

ℏ
E0

(

 
𝑡

√1 −
𝑣2

𝑐2

−

𝑣𝑥
𝑐2

√1−
𝑣2

𝑐2)

 =
E0
ℏ
𝑡′ 

This is rather nice. We have just shown that the argument of the wavefunction is relativistically 

invariant: E0 is, obviously, the rest energy and, because p’ =  0 in the reference frame of the electron, the 

argument of the wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself. 

However, you will say: this has nothing to do with the wavefunction of our electron in the lattice, right? 

Wrong.  

Feynman’s wavefunction for the electron in the lattice 
We will not repeat Feynman’s analysis here19 but so he develops a system of Hamiltonian equations, and 

the challenge is to find the amplitude (or wavefunction) for the electron to be at some atom or position 

n. He writes these amplitudes as C1, C2,…, Cn-1, Cn, Cn+1,… (you get the idea, right?) but we might as well 

write them as ψ1, ψ2,…, ψn-1, ψn, ψn+1,… Fancier, no? And guess what? Feynman shows these Cn or ψn 

functions must look like this: 

𝑒
𝑖[𝑘𝑥𝑛−(

E
ℏ
)𝑡]
= 𝑒−𝑖(

E
ℏ
∙𝑡−
p
ℏ
∙𝑥𝑛) 

 
15 We conveniently choose our x-axis so it coincides with the direction of travel. This does not have any impact on 
the generality of the argument. 
16 We may, of course, also think of it as a position vector by relating this point to the chosen origin of the reference 
frame: a point can, effectively, only be defined in terms of other points. 
17 These are the Lorentz equations in their simplest form. We may refer the reader to any textbook here but, as 
usual, we like Feynman’s lecture on it (chapters 15, 16 and 17 of the first volume of Feynman’s Lectures on 
Physics). 
18 One can use either the general E = mc2 or – if we would want to make it look somewhat fancier – the pc = Ev/c 
relation. The reader can verify they amount to the same. 
19 In case you would be doubting, we are still referring to Chapter 13 in Volume III. 

https://www.feynmanlectures.caltech.edu/III_13.html
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It is the same as the elementary wavefunction above. Not approximately, but exactly. The minus sign 

has got to do with the direction of travel, as Feynman readily acknowledges: “The wave can travel 

toward positive or negative x depending on the sign we have picked for k.” We fully agree, but so that 

wave is the electron. 

So far, so good, but we still do not have that formula for k = p/ħ = meffv/ħ = ħv/2Ab2, right? Right. But we 

have a much better view on what is what now, and so we can see that there is no need to explain k, 

really: k is just the regular wave number, which we get from the second de Broglie relation.20 What we 

need to explain is that formula for the effective mass: 

𝑚eff =
𝑝

𝑣
=
ℏ𝑘

𝑣
=

ℏ2

2Ab2
 

Let us first try to read it. The dimensional analysis comes out alright: [
ℏ2

2Ab2
] =

N2∙m2∙s2

N∙m∙m2
= N

s2

m
= kg.  

It also makes sense that meff is inversely proportional to A: if the amplitude for an electron to go from 

one atom to another is large – because the electron is only very loosely bound to the ionic atom so the 

potential barrier is very low – then the effective mass of the electron will appear to be small. And vice 

versa, of course.  

But what about that b2 factor? It is there because xn = n·b21 and, much more importantly, because 

solving that set of Hamiltonian equations gives us a formula for E. To be precise, it gives us the formula 

which is shown in Figure 1: 

E = E0 − 2A·cos(kb) 

What’s E0? It is the average of the maximum and minimum value of E. Are we joking? No. The exact 

values of E and E0 will depend on some reference point for the energy (the zero of energy, really), but E0 

itself is just the middle value between E0 + 2A and E0 − 2A.  

So far, so good. Now how do we get that meff formula out of that energy formula? Feynman gets it 

through (1) the use of the small angle approximation for the cosine factor (cosθ  1 − θ2/2) and (2) 

choosing E0 − 2A as the zero of energy (or, what amounts to the same, defining E0 as E0 = 2A). The 

formula above then effectively reduces to: 

E = E0 − 2A·(1−k2b2/2) = E0 − 2A + Ak2b2 = Ak2b2 

Is that legitimate? Let us first think about the second assumption: what is that energy E anyway? It is the 

extra energy which an electron gets as it moves through the lattice. The energy must, therefore, be 

kinetic (as opposed to potential), and we may effectively use the non-relativistic formula as an excellent 

approximation because we know those drift velocities are non-relativistic: we are talking like a 

millimeter per second, or even less. This may be surprising but it is what it is: the electric signal is 

lightning fast, but the electrons in the lattice themselves are covering very small distances only.22 Hence, 

 
20 In case you wonder what the first de Broglie relation might be: that is just the Planck-Einstein relation. See the 
de Broglie relations in the Wikipedia article on the matter wave. 
21 The b is the (linear) distance between two successive atoms: xn+1 = xn + b and x0 is defined as x0 = 0. 
22 You can google this, or check the Wikipedia article on drift velocities. If you want an analogy, think of the musical 
chairs game but with the chairs on a line and all players agreeing to kindly move to the next chair for the new 

https://en.wikipedia.org/wiki/Matter_wave
https://en.wikipedia.org/wiki/Drift_velocity
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E = mv2/2 and we can now also understand Feynman’s choice of the zero of energy: when v = 0, E will be 

zero. The minimum value for E must, therefore, be zero too! Hence, this is not just some random 

assumption: it is part and parcel of the reality of what we are modeling here. 

This is interesting. We should, of course, note that we are still not sure whether or not we can apply that 

small angle approximation, but let us revisit that later. Let us also quickly check the logic of the E = 

meffv2/2 = Ak2b2 and p = ħk = meffv equations: 

𝑚eff𝑣 = ℏk ⟺
2A𝑘2b2

𝑣
= 𝑚eff𝑣 ⟺ A𝑘2b2 = E =

𝑚eff𝑣
2

2
  

We still do not have that formula for meff, or for v. At this point, our realist interpretation of quantum 

mechanics differs again from Feynman’s. Feynman calculates the velocity v by applying the formula for 

the group velocity of a wave packet: 

𝑣 =
𝑑ω

𝑑𝑘
=
𝑑(
E
ℏ
)

𝑑𝑘
=
𝑑(A𝑘2b2)

ℏ𝑑𝑘
=
2A𝑏2

ℏ
𝑘 

We do not see a wave packet. We see one wave, representing one particle. The only velocity that 

matters is the phase velocity, which is given by the simple ratio of ω and k: 

𝑣 =
ω

𝑘
=
A𝑘2b2

ℏ𝑘
=
A𝑏2

ℏ
𝑘 

The difference is a factor 2. It gives a difference in the formula for the effective mass, of course. My 

formula does not have that factor 2: 

𝑚eff =
p

𝑣
=
ℏ𝑘

𝑣
=
ℏ2𝑘

A𝑏2𝑘
=
ℏ2

A𝑏2
 

Hence, my calculation of the effective mass gives a value which is twice that of Feynman: 

𝑚eff =
p

𝑣
=
ℏ𝑘

𝑣
=

ℏ2𝑘

2A𝑏2𝑘
=

ℏ2

2A𝑏2
 

Who is right? We think we are, of course! Why? Because the original 1963 print edition of Feynman’s 

Lectures says this: 

“Don’t forget that meff has nothing to do with the real mass of an electron. It may be quite 

different − although in real crystals it often happens to turn out to be the same general order of 

magnitude, about 2 to 20 times the free-space mass of the electron.”23 

In our realist interpretation of quantum physics, meff must be related to the free-space mass of the 

electron, and it must be 1 to 10 times (or more) the free-space mass of the electron.       

 
arrival and – importantly – the last person on the last chair agreeing to leave the game to get a beer. The signal 
moves fast, from start to end, but the persons themselves move only from one chair to the next.   
23 See footnote 4. We realize the reader may find this difficult to check, but we trust he or she will trust what we 
write here. 
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Conclusions 
This paper applied our realist interpretation of quantum mechanics to an analysis of the mechanics of 

electron propagation through a crystal. We derived a formula for the effective mass of an electron which 

differs by a factor 2 from Feynman’s. We think this solves his rather weird remark on the relation 

between the effective and free-space mass of an electron, which says the effective mass turns out to be 

2 to 20 times the free-space mass of the electron. Our calculations imply the effective mass equals the 

free-space mass in the absence of a potential barrier between successive atoms in an lattice, which is 

what is to be expected.  

In the next version of this paper, we will comment on Feynman’s development of the Schrödinger 

equation in the context of simple linear motion. 

Jean Louis Van Belle, 2 November 2020 


