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Abstract 
Uncertainty may result from (1) an impossibility to measure what we want to measure, i.e. an 

impossibility to observe the system, (2) the limited precision of our measurement, (3) the measurement 

fundamentally disturbing the system and, as such, causing the information to be unreliable, (4) an 

uncertainty that is inherent to Nature. The latter position is referred to as the Copenhagen 

interpretation of quantum mechanics. We agree with Lorentz’s and Einstein’s viewpoint that there is no 

need to elevate indeterminism to a philosophical principle. The more important question is: how does 

quantum physics model it? How does it deal with it?  

This paper offers some thoughts on that and, in the process, highlights some contradictions which 

support Lorentz’s (and Einstein’s) position: we only have statistical indeterminism in quantum physics 

and, as such, quantum physics is not a radical departure from classical physics. Statistical indeterminism 

is, effectively, the fifth interpretation of uncertainty which can be added to the list above, and we think 

it is the right one. We illustrate our position with a detailed discussion of the wavefunction(s) in the 

context of Schrödinger’s wave equation for the hydrogen atom. The same example also further explores 

the question in regard to the (possible) physical dimension of the real and imaginary part of the 

wavefunction. To paraphrase Feynman, we wonder what could be ‘sloshing back and forth’ between the 

real and imaginary part of the wavefunction? We think it is kinetic and potential energy. We, therefore, 

briefly present our two-dimensional oscillator model again, but using the metaphor of a multi-piston 

radial engine as a metaphor this time, and augmented by an analysis of the quantum-mechanical energy 

operator. 
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The Meaning of Uncertainty and  
the Geometry of the Wavefunction 

Introduction 
Quantum mechanics combines Maxwell’s equations and the Planck-Einstein relation. The Planck-

Einstein relation gives us Planck’s quantum of action, which models an elementary oscillation: an 

electron is an oscillating charge, a photon, a ring current in a superconductor is an oscillation too, an 

atomic or molecular orbital obeys the same law, an oscillation in a two-state system, etcetera. 

Understanding quantum is difficult because the mathematical formalism abstracts away from such 

specifics. We talk of quantum-mechanical states, but we abstract away from the physical reality 

underneath: we think of them as energy states only, but they must represent the system as a whole. The 

wavefunction must have all of the information on position and momentum (linear or angular): otherwise 

we would not be able to apply the relevant operators and get (average) values (or probabilities) for all of 

the observables (or measurables) out of it.1 

The main difference between classical physics and quantum physics is that, in quantum physics, we have 

only limited knowledge of the state of the system: there is uncertainty. The exact nature of this 

uncertainty is the subject of philosophical discussion. Uncertainty may result from: 

1. An impossibility to measure what we want to measure, or an impossibility to observe the 

system: we might, perhaps, refer to this as an Ungewissheit.2 

2. The limited precision of our measurement: this is what Heisenberg originally referred to as an 

Ungenauigkeit, i.e. before it became some metaphysical or epistemological principle. 

3. The measurement might fundamentally disturb the system and, as such, cause the information 

to be unreliable. 

4. The uncertainty is, perhaps, inherent to Nature. This philosophical position is referred to as the 

Copenhagen interpretation of quantum mechanics, and Heisenberg referred to it as the 

Unbestimmtheitsprinzip.   

Bell’s theorem is supposed to prove the latter position but a theorem depends on its assumptions – and 

these assumptions may be challenged. We basically agree with the remarks of the Dutch physicist H.A. 

Lorentz at the occasion of the 1927 Solvay Conference: there is no need to elevate indeterminism to a 

philosophical principle.3 The more important question is: how does quantum physics model it? How 

 
1 Physicists prefer the term observable: a physical quantity that can be measured. This definition shows we could 
also refer to it as a measurable. Both nouns have the same meaning. 
2 We did not check with the philosophers here, so our terminology suggestions are just what they are: suggestions. 
Words do not matter, but the distinctions might. 
3 The full quote is this : “Je pense que cette notion de probabilité [Heisenberg-Bohr] serait à mettre à la fin, et 
comme conclusion, des considérations théoriques, et non pas comme axiome a priori, quoique je veuille bien 
admettre que cette indétermination correspond aux possibilités expérimentales. Je pourrais toujours garder ma foi 
déterministe pour les phénomènes fondamentaux, dont je n’ai pas parlé. Est-ce qu’un esprit plus profond ne 
pourrait pas se rendre compte des mouvements de ces électrons. Ne pourrait-on pas garder le déterminisme en en 
faisant l’objet d’une croyance? Faut-il nécessairement ériger l’ indéterminisme en principe?" 
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does it deal with it? This paper wants to offer some thoughts on that and, in the process, highlights 

some contradictions which support Lorentz’s (and Einstein’s) position: we only have statistical 

indeterminism here and, hence, quantum physics is not a radical departure from classical physics. 

Hence, we will argue that quantum-mechanical uncertainty is nothing but statistical indeterminism. This 

is, effectively, a fifth interpretation which can be added to the list above, and we think it is the right one. 

The more interesting – but related – question is whether or not we can show that quantum-mechanical 

amplitudes and the wavefunction4 – think of Schrödinger’s equation and the solutions to it – have 

physical meaning. We think we can. 

Functions and physical dimensions 
A dimensional analysis is always a good place to start when trying to understand the equations 

describing a physical situation, but what equations should we use? Feynman’s canonical examples 

include the maser (the ammonia molecule as a two-state system), an electron moving in a lattice (n-

state system modeling position), electron orbitals (Schrödinger’s equation in a central field5), and many 

others. So where exactly should we start? We will probably want to start from the simplest and let us, 

therefore, analyze the two-state system. In fact, our short list already triggers an obvious remark: the 

formalism of quantum mechanics talks about the states of system but, in practice, the state is often 

reduced to one aspect only: the position state, the momentum state, the energy state, etcetera. Using 

Dirac’s bra-ket notation, we may formally write this as: 

⎯  x = n − 1,  x = n ,  x = n + 1, etc. (position states in an n-state system6) 

⎯  mom = p  (momentum state7) 

⎯  E = −ER/n2  (energy states8)  

Hence, we should be cautious and, at each stage, clearly identify what exactly we are talking about. 

These states will all be represented by a complex-valued function (the wavefunction) or a complex 

number (a quantum-mechanical amplitude) but, a priori, we should expect that the interpretation of 

what the real and imaginary part of the wavefunction or amplitude might actually be, might depend on 

the situation at hand and, while developing the argument, we should carefully watch out to not widen 

or narrow the meaning of the symbols we are using. 

As we are talking terminology here, we should warn the reader for another potentially confusing thing: 

the term amplitude may refer to (i) the complex number as a whole (let us, as per the convention9, write 

 
4 The two are not necessarily the same, and their meaning may also depend on the situation that is being 
modelled. 
5 A central field depends on r only: the distance from the pointlike charge which, in the case of electron orbitals, is 
the nucleus (the proton inside of the hydrogen atom). 
6 Think of a lattice on a line (a linear array of atoms or molecules). 
7 The mom abbreviation is Feynman’s, and the example here is linear momentum. If we are interested in the 
direction, we should probably write the momentum as a vector: p. We could also have given an example of an 
angular momentum state, in which case we should also distinguish between the magnitude and the direction of 
spin. Linear momentum is a polar vector (aka a true vector). Angular momentum is an axial vector (aka a 
pseudovector). Both are equally real – in a physical sense, that is. 
8 The energies here are the energy levels of the nth orbital. ER is the Rydberg energy (ionization energy). 
9 The use of a plus or a minus sign for the phase (+θ or −θ) in the complex exponential – hence, writing eiθ or e−iθ – 
is a matter of mathematical convention. In our papers, we have consistently argued the two mathematical 
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it as r = a·e−iθ) or (ii) to the coefficient in front of it (a only). Because the reader may doubt this 

statement, we will immediately give an example out of one of the more advanced models10: the 

wavefunctions for the state with an angular dependence to Schrödinger’s equation for the hydrogen 

atom. These wavefunctions are written as11: 

ψ𝑛,𝑙,𝑚 = Y𝑙,𝑚(θ, ϕ)F𝑛,𝑙(ρ) 

with: ρF𝑛,𝑙(ρ) = 𝑒−αρ ∑ 𝑎𝑘ρ𝑙𝑛
𝑘=𝑙+1   

and:  Y𝑙,𝑚(θ, ϕ) = P𝑙
𝑚(cosθ)𝑒𝑖mϕ   

These wavefunctions are, in fact, only the coefficient of the actual wavefunction because the whole 

derivation is based on a separation of the time-dependent and the spatial part of the wavefunction. 

Somewhat confusingly, the same symbol (psi) is used to denote both, so the difference is only obvious 

when one writes the argument (independent variables) of the function in full: 

ψ(𝒓, 𝑡) = 𝑒
−𝑖

E
ℏ

𝑡
ψ(𝒓) = 𝑒

−
E
ℏ

𝑖𝑡
ψ𝑛,𝑙,𝑚(ρ, θ, ϕ) 

This all looks rather monstrous – because it is ! – so let us break it down piece by piece. You should first 

note the switch from Cartesian coordinates r = (x, y, z) to polar (or spherical12) coordinates r = (ρ, θ, ϕ), 

because that is easier when talking circular or orbital motion.13 In addition, the distance from the center 

(the radial coordinate r) is now measured in a natural unit that goes with the system – the Bohr radius 

rB, to be precise14:  

ρ =
𝑟

𝑟𝐵
=

αme𝑐

ℏ
𝑟 

 
possibilities may represent two different states: if, for some reason, the wavefunction would actually represent a 
physical rotation (of charge or whatever), then the two possibilities obviously represent opposite spin directions.    
10 So we will not start with the simplest of models (the two-state system), then.       We think we have analyzed the 
two-state system – and why and how probabilities (and, therefore, amplitudes) ‘slosh back and forth’ (as Feynman 
puts it) between two states – ad nauseam already. See, for example, our rewrite of Feynman’s theory of 
probability amplitudes. 
11 We follow the notation from Feynman’s Lectures, from which we borrow a lot of the material. We trust that the 
reader will be able to look up the original Lectures and distinguish between Feynman’s formulas and text and our 
presentation and interpretation of it. 
12 Polar coordinates usually refer to a two-dimensional coordinate system, so a spherical coordinate system is then 
its three-dimensional version. 
13 We still need to prove we are actually talking circular or orbital motion of some charge here, but we think the 
circumstantial evidence is fairly convincing.  
14 We wrote the Bohr radius as a fraction of the Compton radius here. The reader can verify the substitutions, 
including Feynman’s use of e2 (the squared charge of an electron divided by 4πε0), by substituting the fine-
structure constant (α) for its definition: 

𝑟𝐵 =
ℏ

αme𝑐
= ℏ

2ℇ0ℎ𝑐

q
e
2me𝑐

=
4ℇ0ℏ2

meq
e
2

=
ℏ2

mee2
 

Talking natural units, as part of solving the (Schrödinger wave) equation(s), Feynman also writes energies E in 

terms of the Rydberg energy: E = ER·ϵ, with E𝑅 =
α2me𝑐2

2
=

qe
4me𝑐2

8ℇ0
2ℎ2𝑐2 =

qe
4me

2∙(4π)2ℇ0
2ℏ2 =

mee4

2ℏ2 . Hence, ϵ is like ρ, but it is 

used to measure energy. 

https://www.researchgate.net/publication/342282888_Lectures_on_Physics_Chapter_II_Probability_Amplitudes
https://www.researchgate.net/publication/342282888_Lectures_on_Physics_Chapter_II_Probability_Amplitudes


4 
 

As we are talking natural units, we may also note that, as per the Planck-Einstein relation (E = ħ·ω  ω = 

E/ ħ), the time-dependent part of the wavefunction (e−ω·t) may be thought of as a clock ticking at the 

natural frequency of this oscillation.15 The (other) functions and symbols may be briefly explained as 

follows: 

⎯ The Fn,l(ρ) function is a (finite) power series and is, obviously, just some real-valued function of 

the radial distance ρ. 

⎯ The Pl
m(cosθ) functions are known as the ‘associated Legendre polynomials’ (or functions). They 

are usually written in terms of derivatives of ordinary Legendre polynomials. We must refer the 

reader to readily accessible material here16   

The Yl,m(θ, Φ) functions as a whole are known as the spherical harmonics (beautiful name, isn’t it?17) and 

they are a function of the polar and azimuthal angles θ and Φ.18 You should note that the ψn,l,m 

amplitude (the coefficient of the actual wavefunction, really) would be real-valued, always, if we would 

not have that eimΦ factor, which is equal to 1 (and, therefore, equally real-valued) if m = 0. And, of 

course, if we would multiply it through with the time-dependent part of the wavefunction (e−i·(E/ħ)·t): 

e−i·(E/ħ)·t·ei·m·Φ = e−i·[(E/ħ)·t + m·Φ] = e−i·(ω·t + m·Φ) 

Hence, this factor is just a phase shift and, therefore, should not matter at all in terms of the physics of 

the situation (it is just a matter of choosing our t = 0 point). So let us quickly look at that quantum 

number: what does it stand for? It is the magnetic quantum number, and it is usually denoted as mz and 

referred to as the z-component of the angular momentum. This sounds very mysterious, and it is: it is 

related to the weird 720-degree symmetry of the wavefunction of spin-1/2 particles which, in turn, 

results from mainstream academics not using the plus or minus sign of the imaginary unit to distinguish 

between the direction of spin. 

[…] You should read the latter phrase again, slowly. And because you may not understand what we are 

talking about here, we added an annex to this paper which briefly talks about spin and the mathematical 

convention(s) in regard to the sign of the imaginary unit in the wavefunction. So here we will only 

 
15 We will let the reader think this through, and just remind him of the obvious formula for the cycle time (T): ω = 

2π·f  T = 1/f = 2π/ω. This shows the cycle time T is equal to T = ω/2π = E/2πħ = E/h. The natural (angular) 
frequency is nothing but the natural time measured in radians: ω = 2π/T. It is a somewhat weird idea to measure 
time in radians but, on the unit circle, the radian may be thought of as a natural distance as well as a natural time 
unit. It helps to literally think of an old-fashioned clock (with a hand for the seconds) ticking time away, with the tip 
of the hand doing the (circular) distance. Another, more abstract way, of thinking is this: we count the time in 
terms of the cycle of this oscillation (1, 2,…, n,…) but, if we would want to subdivide these cycles any further, we 
would divide them 2π (radians) rather than 12 (hours) or 60 (minutes or seconds).  
16 The superscript m is an order number here: it is not an exponential. It is not a power of Pl, in other words. We 
used the Wikipedia article on these mathematical functions for more detail. 
17 The remark is not cynical. One of my early blog pieces is titled Music and Math, and it is one of the blog pieces I 
still like: simple, logical and, therefore, beautiful. 
18 We use Feynman’s notation here, and so he uses θ (theta) instead of some other letter (e.g. , phi) for the polar 
angle, which is slightly confusing because, in physics, θ is also used to denote the phase of the wavefunction, like in 

ψ = e−θ = e−ωt. Wikipedia says the mathematical convention is to use θ (theta) and  (phi) for the polar and 
azimuthal angle respectively. Our phi (Φ) for the azimuthal angle is the capital letter phi. We may, therefore, use 

the lowercase phi () if we would need to denote a phase, which is what we might do. As long as we know what 
we are talking about, it is all good, right?  

https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
https://readingfeynman.org/2015/08/10/music-and-math/
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remind you of what you know already: m is a number between −l and +l ( −l  mz  +l) and it gives us the 

(possible) orientations of the subshell. As a further reminder of the basics, we should quickly add that l is 

the quantum number that gives us the subshell within a given energy state n. This n is the principal 

quantum number, and l = 0, 1, 2,… n − 1. Hence, if we have one energy state only, then we have only 

state: l = 0.19 

What is the point? The point is that, when thinking about the physics of the situation, we can forget 

about that that eimΦ factor. Think of it as being part of the time-dependent part of the wavefunction: we 

just shift the origin of time. That amounts to looking at the system – the oscillation, that is – a tiny bit 

earlier or later, and that does not matter because it is a perfectly regular oscillation. What we are 

interested in the shape of the physical orbitals, their energies, and other physical variables. Hence, for 

all practical purposes, we should think of the coefficient of our wavefunction – or the amplitude sensu 

stricto, or the spatial (position-dependent) part of the wavefunction, or whatever you want to call it – as 

a real number ! 

Is that important? Yes, it is. Knowing that a wavefunction – any wavefunction, really – can always be 

written as the product of a time-dependent and a spatial or time-independent function is huge, and it is 

equally huge to know that the time-dependent part will always look like e−i·ω·t + , and that the  here is 

just some random phase shift which does not matter because we can always shift the t = 0 point 

however we would want to shift it: the physics of the situation won’t change ! This is reflected in the 

fact that the absolute square20 of a complex exponential (when its coefficient a is 1, of course) is always 

equal to 121: 

|𝑒𝑖θ|
2

= |cosθ + 𝑖sinθ|2 = √cos2θ + sin2θ
2

= √1
2

= 1 

Let us continue our search of some physical meaning of the real and imaginary parts of the 

wavefunction by continuing our example. 

What does it all mean? 
Below we copy table 19.1 out of Feynman’s Lectures, which gives us the functional form of those 

spherical harmonics: they combine sine and cosine functions. Now, we are interested in the probability 

to find the electron at point x = (x, y, z)22, and quantum mechanics tells us we can calculate these 

probabilities by taking the absolute square of the ψ(x) wavefunction. To be precise, the theory of 

 
19 We should refer to standard textbooks here, but we think our own presentation in our classical explanation of 
the Lamb shift has the advantage of (1) being succinct and (2) relating it to what we said on these weird 720-

degree symmetries vanishing if one would use the  sign in front of the imaginary unit to incorporate the two 
possible spin directions in the analysis straight from the start. 
20 This term is a (slightly confusing, perhaps) shorthand for the square of the absolute value of a (complex- or real-
valued) number. It is also referred to as the square of the modulus of the complex sum (sum of the real and 
imaginary part of the number). 
21 We apologize for writing such simple things but it is, perhaps, good to remind ourselves of what a complex 
number really is (the vector sum of a sine and a cosine) and, hence, that they are nothing but just one of the many 
logical expressions of Pythagoras’s Theorem.  
22 We have a bad habit of switching from r to x, or vice versa, for no reason whatsoever – except that you will find 
x is more common than r in the literature. A bold letter is a vector, in any case, and you may think r suggests we 
are working in polar rather than Cartesian coordinates, and vice versa. 
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operators – and of the position operator, in particular – tells us the probability density P(x) will be equal 

to P(x) = ψ(x)2 = ψ(x)·ψ*(x) = ψ*(x)·ψ(x), with ψ*(x) the complex conjugate of ψ(x).23   

 

 Figure 1: Spherical harmonics (source: Feynman III-19-3) 

That gives us these wonderful polar graphs which, literally, depict the shape of those electron orbitals.24 

We may note here that we are taking the square of the absolute value of a real-valued amplitude here. 

Hence, what matters is the magnitude only: positive or negative amplitudes give the same probability. 

Take, for example, the p-orbital (l = 1) for m = 0. The spherical harmonic is a simple cosθ function and, 

yes, cosθ2 = cos2θ = cos(−θ)2 = cos2(−θ). 

So, yes, interpreting the math is not all that difficult. We are effectively talking the physical orbitals of 

the pointlike electron charge here, and the uncertainty is a mere statistical indeterminism. So it is really 

just like the propeller of that airplane: we do not know where it is, exactly, but we know it is always 

somewhere, at any given point in time. Please note this is not your usual crackpot interpretation of 

quantum physics. We may usefully quote Richard Feynman here: 

“The wave function ψ(r) for an electron in an atom does not describe a smeared-out electron 

with a smooth charge density. The electron is either here, or there, or somewhere else, but 

wherever it is, it is a point charge.” (Feynman’s Lectures, III-21-4) 

 
23 The extension of quantum-mechanical ideas and formulas from one-dimensional space (a line) to three 
dimensions is not always as straightforward (Feynman, III-20-4) but, in this case, it surely is! 
24 To show we do google other textbooks from time to time, we refer the reader to a chapter of a course (in 
physical chemistry) at the University of Michigan: instructive, no hocus-pocus and good graphs.  

http://www.umich.edu/~chem461/QMChap7.pdf
http://www.umich.edu/~chem461/QMChap7.pdf
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Figure 2: Where is the propeller, exactly?25 

The point is this: because of the high velocity26, we are not able to precisely define the position (x, y, z) 

at time t, because we are not able to precisely define the initial (x0, y0, z0, t0) condition(s). Hence, we can 

only talk about cycles, averages, and probabilities. This rather primitive comparison with the physics of 

an airplane propeller triggers two more useful associations. One is the metaphor of an old-fashioned 

radial airplane engine, in which linear and circular motion come together (we will come back to this). 

The other is an analogy with the synchronization gear that was used in WW I for machineguns firing 

their bullets through the propeller: if there was no synchronization gear, some of the bullets would 

actually hit and considerably damage the propeller: the analogy with light (consisting of photons) going 

through a three-dimensional lattice with electrons in all kinds of orbitals readily comes to mind. We 

invite readers to also google scatter plots of electron position measurements for hydrogen and other 

atoms.27  

However, these reflections do not solve the question we started out with: what is the physical meaning 

of the real and imaginary parts of the wavefunction? Would they have a physical dimension, like a field – 

something like newton per coulomb (N/C), like the electric field, for example? In addition, we should, 

perhaps also raise some other interpretational issues: Schrödinger’s orbitals imply the electron spends 

most of its time right on top of the proton, so how should we think of that? We could, perhaps, imagine 

some short-range repulsive force here but such solution would inject entirely new dynamics and, 

therefore, looks pretty unacceptable: assuming the electron, somehow, does go straight through the 

center or, else, bounces back – fully elastically, because momentum and energy should be conserved – is 

the only solution but raises other questions (which we will try to examine later, perhaps28). Back to the 

question of a physical dimension for the wavefunction.  

 
25 I downloaded this image from a website selling Christmas presents long time ago, and I have not been able to 
trace back from where I have got it. If someone recognizes this as their picture, please let us know and we will 
acknowledge the source or remove it. 
26 The classical analysis (Bohr orbitals) tells us the velocity of the electron in an atomic orbital is of the order of v = 
α·c, with α the fine-structure constant (approximately 1/137 or 0.73%) and c the speed of light. Velocities further 
decrease as a fraction of this velocity in outer orbitals. To be precise, v = (α/n)·c with n = 1, 2, 3,… the (main) orbital 
number. 
27 The above-mentioned basic physical chemistry course of the University of Michigan offers one, but here is 
another one from Chemistry LibreTexts. 
28 Our more speculative papers – such as the one on what protons and neutrons might actually be – made a start in 
exploring these. 

http://www.umich.edu/~chem461/QMChap7.pdf
https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3A_Quantum_Chemistry_(Blinder)/01%3A_Chapters/1.07%3A_Hydrogen_Atom
https://vixra.org/abs/2001.0104
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Should it have one? The argument is time and position – simple numbers, right? – so the wavefunction 

might just project these numbers onto a two-dimensional mathematical space only, right? Maybe. 

Maybe not. Perhaps the operators can give us a clue? Unfortunately not. Their physical dimensions are 

OK already29: 

⎯ The energy operator H = −
ℏ2

2𝑚
∇2 + 𝑉(𝒓) comes with the 

N2m2s2

m2kg
+ N ∙ m =

N2m2s2

m2Ns2

m

+ N ∙ m =

N ∙ m dimension, so that is the physical dimension of energy alright. 

⎯ Likewise, the position operator x or and the momentum operator P𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
 come with the 

physical dimension of distance (m) and momentum (
N∙m∙s

m
= N ∙ s) respectively. 

⎯ Finally, the angular momentum operator L𝑧 = 𝑥
ℏ

𝑖

𝜕

𝜕𝑦
− 𝑦

ℏ

𝑖

𝜕

𝜕𝑧
 comes with the m

N∙m∙s

m
−

m
N∙m∙s

m
= N ∙ m ∙ s dimension, so that is, effectively the same as that of Plank’s quantum of 

action itself (in reduced or non-reduced form).  

So there is nothing lacking here: there seems to be no need to associate a physical dimension with the 

real and imaginary part of the wavefunction. However, we need to be able explain these probabilities in 

terms of the physics, right? Right. So let us soldier on. Can we think of a physical dimension that would 

suit the P(x) = ψ(x)2 equation? Thinking of our airplane propeller again, we may think probabilities or – 

to be precise – probability densities – should match energy or mass densities, right? Hence, we are 

talking kg/m3 or N·m/m3 = N/m2, and we can now take a square root or something, right?30  

Correct, but note that the wavefunction here does not have the time-dependent part.31 In fact, this 

wavefunction – the wavefunction for Schrödinger’s electron orbitals – is a real-valued wavefunction: it is 

the amplitude sensu stricto and, hence, talking of the meaning of the real or imaginary part of this 

wavefunction makes no sense: there is only a real part to it. If we want to talk about the whole thing, 

then we should put the time-dependent part (the complex-valued function that gives the whole its real 

and imaginary mathematical dimension) back in. 

So, again, what are we talking about, really? 

 
29 The energy operator – and the others as well, perhaps – depend on the problem at hand. The one here is 
derived from Schrödinger’s wave equation for electron orbitals, so we basically continue the analysis for the very 
same problem at hand. Note that the symbols used for operators vary (with or without hat or special script). Ours 
are probably too simple. 
30 Note that we can often switch from energy to mass units and vice versa without too much trouble, but units 
matter here, and kg/m3 or J/m3 are different units. The physical dimension of the c2 in the mass-energy 
equivalence relation (E = mc2) matters here. It is not just some constant. Converting kg to N·s2/m units yields the 
kg/m3 = N·s2/m4 unit. We have no idea what we could possibly do with that. In contrast, the N/m2 is much more 
natural: force per unit surface. Easy, right? 
31 The reader should also carefully check on what the listed operators are operating on: as mentioned, physicists 
often conveniently forget about the time-dependent when doing their math. It is usually not a problem but when 
trying to carefully interpret what is what – as we are trying to do here – it is. 
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The oscillator model 
We have been thinking about these things for a while now, and we have no definite answer. However, 

the interplay between the real and imaginary part of the wavefunction does remind one of these 

probabilities ‘sloshing back and forth’, as Feynman would say, as a function of time in a simple two-state 

system. So what would slosh back and forth between the real and imaginary part of the wavefunction in 

an n-state system, or in a more complicated analysis such as this one (Schrödinger orbitals)? We see 

only one obvious candidate and that is kinetic and potential energy.32 Here we need to revive, perhaps, 

our two-dimensional oscillator model, but extend it from circular orbitals to orbitals with fancier 

geometric shapes, such as those in Schrödinger’s model of an atom, indeed! 

Let us briefly recap the metaphorical idea.33 If we combine two oscillators in a 90-degree angle – think of 

two springs or two pistons attached to some crankshaft34 – then we get some perpetuum mobile which 

stores twice the energy of a single oscillator, and the motion of the pistons will reflect that of a mass on 

a spring: it is described by a sinusoidal function, with the zero point at the center of each cylinder. We 

detailed the math elsewhere35 and only note the model is relativistically correct. Indeed, the 

relativistically correct force equation for one oscillator is:  

F = dp/dt = F = –kx with p = mvv = γm0v 

The energy conservation equation can be derived from multiplying both sides with v = dx/dt. One can 

then verify the following36: 

𝑣
d(γm0𝑣)

dt
= −kx𝑣 ⟺

d(m𝑐2)

dt
= −

d

dt
[
1

2
k𝑥2] ⟺

dE

dt
=

d

dt
[
1

2
k𝑥2 + m𝑐2] = 0 

For the potential energy, one gets the same kx2/2 formula one gets for the non-relativistic oscillator. 

That is no surprise: potential energy depends on position only, not on velocity, and there is nothing 

relative about position. However, the (½)m0v2 term that we would get when using the non-relativistic 

formulation of Newton’s Law is now replaced by the mc2 = γm0c2 term. Both energies vary – with 

position and with velocity respectively – but the equation above tells us their sum is some constant. 

Hence, the game with two oscillators working in tandem should work here too.37 In addition, the 

analogy can be extended to include two pairs of springs or pistons, in which case the springs or pistons 

 
32 To be truthful: we do not see any other candidates. The reader may suggest other suitable complementary 
variables (our use of complementary here has nothing to do with Bohr’s concept of complementary or conjugate 
pairs, of course), but so we do not have any. 
33 These ideas will probably intrigue us for the rest of our life, and we are not sure if we will ever get beyond 
metaphorical ideas only in regard to these deep questions. 
34 Academics seem to prefer springs, but I like engines. In fact, the metaphor was inspired by a discussion with my 
son on the efficiency of a Ducati engine, which effectively has a 90-degree bank angle. The 90° angle of the V-2 
makes it possible to perfectly balance the counterweight and the pistons, ensuring smooth travel always. With 
permanently closed valves, the air inside the cylinder compresses and decompresses as the pistons move up and 
down. It provides, therefore, a restoring force. As such, it will store potential energy, just like a spring. 
35 See: The Wavefunction as an Energy Propagation Mechanism. 
36 I am grateful to an unknown undergraduate student for posting this solution. Unfortunately, I lost the reference. 
Whomever recognizes this, please do email as I would like to properly credit the good work. 
37 The analogy can be extended to include two pairs of springs or pistons, in which case the springs or pistons in 
each pair would help drive each other. 

https://vixra.org/abs/1806.0106
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in each pair would help drive each other. Even more interestingly, we may imagine a multi-piston radial 

engine (Figure 3)38. 

 

Figure 3: The metaphor of the radial engine (source: Wikipedia) 

The point is this: somehow, in this beautiful interplay between linear and circular motion, energy is 

borrowed from one place and then returns to the other, cycle after cycle. While transferring kinetic 

energy from one piston to the other(s), the crankshaft will rotate with a constant angular velocity: linear 

motion becomes circular motion, and vice versa. Most importantly, we can add the total energy of all of 

the oscillators to get the total energy of the whole system to get the E = ma2ω2 formula. The only thing 

that remains to be done then, is to substitute for the tangential velocity vt = aω. In fact, substituting aω 

for c = aω gives us Einstein’s mass-energy equivalence relation (E = mc2) is what inspired our mass 

without mass model of an electron. 

Back to the question: how can this metaphor shed any light on it? 

The meaning of the wavefunction 
So we have this general idea that the oscillations of the real and imaginary part of the wavefunction, 

somehow, incorporate the energy conservation law. This interpretation is quite consistent with 

Feynman’s characterization of the wave equation as an energy diffusion equation, of course. Let us 

quote him once more:  

“We can think of Schrödinger’s equation as describing the diffusion of the probability amplitude 

from one point to the next. […] But the imaginary coefficient in front of the derivative makes the 

behavior completely different from the ordinary diffusion such as you would have for a gas 

spreading out along a thin tube. Ordinary diffusion gives rise to real exponential solutions, 

whereas the solutions of Schrödinger’s equation are complex waves.”39 (Feynman, III-16-1) 

So, yes, we get this, sort of: the ‘complex waves’ are just local cyclical things – like circular or elliptical or 

other regular non-linear waves. Stuff that goes around and around or, when it starts moving linearly, 

 
38 We did not google references here, but the Wikipedia article on radial engines looks like a good start. 
39 Feynman further formalizes this in his Lecture on Superconductivity (Feynman, III-21-2), in which he refers to 
Schrödinger’s equation as the “equation for continuity of probabilities”. However, the analysis here is really 
centered on the local conservation of energy, which confirms the interpretation of Schrödinger’s equation as an 
energy diffusion equation. 

https://commons.wikimedia.org/w/index.php?curid=41611824
https://en.wikipedia.org/wiki/Radial_engine
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combines linear and circular motion.40 For linear waves – think of sound waves, water waves, radio 

waves or whatever wave that moves from here to there in space – we have real-valued wave equations, 

but for this circular stuff we have complex-valued wave equations because… Well… Because Euler 

invented complex numbers and they magically fit the bill when trying to model all of this. So that is clear 

and obvious enough, but is this interpretation compatible with all of the formalism of quantum 

mechanics, and with operator theory in particular? It should be: if we know the potential and kinetic 

energy – at any point in time – we should be able to derive position, momentum, and all other relevant 

physical observables from it, isn’t it?  

Of course, we admit we should formally show this by reexamining the textbook derivations of operators 

so as to prove the point. So how can we proceed then? We know we can extract the real and imaginary 

part using the general Re(z) = (z+z*)/2 and Im(z) = (z-z*)/2i for a complex-valued number (and, hence, 

for a function as well) and, hence, we could use this operators and then try to see whether we find 

anything more interesting than what we already wrote above. Let us quickly do the first step, continuing 

the electron orbital example. The ψ(r) function is the ψn,l,m(ρ, θ, Φ) function without the complex 

exponential and is, therefore, the real-valued spatial (time-independent) part of the wavefunction. We, 

therefore, just get the obvious result that we started out with41:  

𝑅𝑒[ψ(𝒓, 𝑡)] = 𝑅𝑒 [𝑒
−𝑖(

E
ℏ

𝑡+ φ)
∙ ψ(𝒓)] =

𝑒
−𝑖(

E
ℏ

𝑡+ φ)
∙ ψ(𝒓) + 𝑒

𝑖(
E
ℏ

𝑡+ φ)
∙ ψ(𝒓)

2
 

=
𝑒−𝑖(

E
ℏ

𝑡+ φ) ∙ ψ(𝒓) + 𝑒𝑖(
E
ℏ

𝑡+ φ)

2
∙ ψ(𝒓) = cos (

E

ℏ
𝑡 +  φ) ∙ ψ(𝒓) = cos(ω𝑡 +  φ) ∙ ψ(𝒓) 

 

𝐼𝑚[ψ(𝒓, 𝑡)] = 𝐼𝑚 [𝑒
−𝑖(

E
ℏ

𝑡+ φ)
∙ ψ(𝒓)] =

𝑒−𝑖(
E
ℏ

𝑡+ φ) ∙ ψ(𝒓) − 𝑒𝑖(
E
ℏ

𝑡+ φ) ∙ ψ(𝒓)

2𝑖
 

=
𝑒

−𝑖(
E
ℏ

𝑡+ φ)
∙ ψ(𝒓) − 𝑒

𝑖(
E
ℏ

𝑡+ φ)

2𝑖
∙ ψ(𝒓) = sin (

E

ℏ
𝑡 +  φ) ∙ ψ(𝒓) = sin(ω𝑡 +  φ) ∙ ψ(𝒓) 

This just shows, once again, that the real and imaginary part of our wavefunction  (r, t) – yes, we are 

talking this very complicated functional form which combines power series and derivatives of Legendre 

polynomials! – varies as a simple sine and cosine at any point r in space. A sine and cosine function of 

what? Time. So what do we have here? It is a clock, once more, but this time it is a clock with a hand 

whose length varies as a function of the position. An elliptical clock, perhaps?42 What is the formula for 

an ellipse again? 

 
40 If there is one other paper of ours that we would recommend reading, it is the one that attracts the most 
attention on ResearchGate – for the right reasons, we think: De Broglie’s Matter-Wave: Concept and Issues. We 
describe the (possible) geometry of the matter-wave in full detail there, including a geometric interpretation of the 
de Broglie wavelength. 
41 We took the eimΦ factor out of the  and replaced the m·Φ term by an arbitrary phase shift . 
42 We are talking the shape of the clock as carved out in space by the tip of the hand of the clock, of course. 

https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
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𝑥2

𝑎
+

𝑦2

𝑏
= 1 

That is too simple, obviously! This equation is not going to get us anywhere: our x and y here, so to 

speak, are the cos(ω·t + )·ψ(r) and sin(ω·t + )·ψ(r) functions and they are very different beasts! Real-

valued functions, yes, but complicated functions: just look at those polar graphs once more, or the 

wonderful shapes of those subshells in 3D illustrations!43 However, jotting the functional form for an 

ellipse down usefully reminds of what a function actually is: a (mathematical) constraint on a set of 

variables. So what constraints do we have here? 

Well… The wavefunction is a solution for a definite energy state, right? Hence, we should get the energy 

out the wavefunction and then we get an equation E = En with ψ(r) in it, and then… Well… Then what? 

We should just apply our energy operator H = −
ℏ2

2𝑚
∇2 + 𝑉(𝒓), right? And we should just get 

Schrödinger’s wave equation again – which we started out with, right? Let us check, though, just to 

make sure we are not finding anything new or doing something wrong here. In fact, let us recap where 

those formulas for the energy operator come from, so we know what is what – not approximately, but 

exactly? These operators are actually used to calculate average or expected values44  . So we are not 

assuming anything about the value for the energy, and we just take the value for the average energy of 

the system. This means we are going to start off by not assuming that the system (read: the state of our 

electron in its orbital – whatever that may be) should be in a definite energy state. The formula45 is an 

integral, taken over the whole volume of the atom: 

〈E〉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 = ∫⟨ψ|H|ψ⟩ 𝑑Vol = ∫ ψ∗Hψ 𝑑Vol = ∫ Hψ∗ψ 𝑑Vol = ∫ H|ψ|2𝑑Vol  

with: H = −
ℏ2

2𝑚
∇2 + 𝑉(𝒓) 

Are we allowed to write that Hamiltonian in front of the H expression? Good question. It is, but you 

should double-check: note that ψ is, once again, the ψ(r) function only: it does not include the time-

dependent part. How should we think of this? You will want to think we have averaged the energy over 

a cycle of the oscillation. Sorry for mixing high-class math with simple illustrations once again, but 

inserting an easy reminder of how potential and kinetic energy vary and add up over a full cycle of an 

oscillation might help here (Figure 4).  

 
43 That is the reason why we keep putting the  factor in: it is just a phase shift, but we need the quantum number 
m also for our derivatives (as an order number) of the Legendre polynomials: we can neatly separate out the time-
dependent part but – for the time being, at least – we cannot simply forget about it! 
44 We use both as synonyms. To be precise, the expected value is the average value which a variable will take 
when an experiment (so that is a measurement) is repeated a large or (theoretically) an infinite number of times 
even, and so the mean (or weighted average) of all the values is calculated along the way. 
45 In case the reader would like to check the formulas we are using (or our consistency in terms of definitions), we 
refer to Feynman’s treatment of operators and more in particular, Feynman’s Lectures, section III-20-3 (average 
energy of an atom). 

https://www.feynmanlectures.caltech.edu/III_20.html#Ch20-S3
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Figure 4: Kinetic (K) and potential energy (U) of an oscillator46 

So what do we have here? The absolute square of the wavefunction is the probability of finding our 

electron at x, so when integrating ψ(r)2 over the volume, we get 1, right? All probabilities add up to 1: 

ψ(r)2dVol = 1. Yes. For normalized wavefunctions. If we do not normalize our wavefunction, we should 

use this formula for the energy: 

〈E〉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
∫ ψ∗Hψ 𝑑Vol

∫ ψ∗ψ 𝑑Vol
 

But what are we talking about here? How would we go about normalizing, anyway? The ψ(r)2dVol = 1 

condition amounts to: 

∫ ψ∗ψ 𝑑Vol = 1 ⟺
∫ ψ∗Hψ 𝑑Vol

〈E〉𝑎𝑣𝑒𝑟𝑎𝑔𝑒
= 1 ⟺ ∫ ψ∗Hψ 𝑑Vol = ∫ H|ψ|2𝑑Vol = 〈E〉𝑎𝑣𝑒𝑟𝑎𝑔𝑒 

And what is all that talk about averaging energy if we are talking definite energy states and we know we 

are averaging energy over a full cycle of the oscillation? Because that is what we are doing when 

separating out the time-dependent part of the wavefunction, right? Right. So we can just write this:  

E = ∫ H|ψ|2𝑑Vol = ∫ H|ψ|2𝑑Vol = ∫ −
ℏ2

2𝑚
∇2|ψ|2 + 𝑉(𝒓)|ψ|2 𝑑Vol = ∫ T|ψ|2 + V|ψ|2 𝑑Vol 

So what are we doing here? We are applying our energy operators – total energy (H), kinetic energy (T) 

and potential energy (V)47 – to the probability P(x) = ψ(x)2. But the energy of what? It must be the 

energy of our pointlike electron if and when it would happen to be at x, right? And then we multiply that 

value with the probability of the electron being there. So what we are doing is this: we do sum all of the 

energy densities – a sum of an infinite number of infinitesimally small volume elements (I am just 

reminding you of the definition of a 3D integral) – and, no surprise, we get the total energy E which – in 

turn – is used to normalize the probabilities that we are using. We can illustrate this physical 

normalization condition by writing: 

 
46 You will find this diagram in many texts, but we took this one from the https://phys.libretexts.org/ site—
excellent hub for open-access textbooks.  
47 We apologize once again for not using fancier hat or script notation. We think it is not necessary: the meaning of 
the symbols is clear from the context. 

https://phys.libretexts.org/
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∫ ψ∗ψ 𝑑Vol = 1 ⟺ ∫ H|ψ|2𝑑Vol = ∫ H P(𝒓) 𝑑Vol = E 

Is this a circular argument? It is, but we think it is a useful one (in the sense that it helps us 

understanding what is what here48). So where are we now? We now understand how potential and 

kinetic energy slosh back and forth in this system, always adding up to some constant, but we forgot 

about the original question: the real and imaginary parts of the wavefunction. We abstracted away from 

that by looking at the spatial part of the wavefunction only. So let us look at the whole thing by plugging 

the time-dependence back in. So we have a wavefunction which we can not only split into a time bit and 

a space bit – a simple scalar product of both, to be precise: 

ψ(r, t) = ψ(r)·e−i·[(E/ħ)·t + ] 

Now, the time-dependent thing is the simplest of complex exponentials and allow us to also nicely 

separate everything out into a real and an imaginary bit: 

𝑅𝑒[ψ(𝒓, 𝑡)] = cos(ω𝑡 +  φ) ∙ ψ(𝒓) 

𝐼𝑚[ψ(𝒓, 𝑡)] = sin(ω𝑡 +  φ) ∙ ψ(𝒓) 

These are two orthogonal vectors in the complex plane49 and we can, therefore, apply Pythagoras’s 

Theorem: 

[cos(ω𝑡 +  φ) ∙ ψ(𝒓)]2 + [sin ∙ ψ(𝒓)]2 = [cos2(ω𝑡 +  φ) + sin2(ω𝑡 +  φ)]ψ2(𝒓) = ψ2(𝒓) = |ψ(𝒓)|2 

However, this just reminds us of the fact that the square of the modulus of a real number (the absolute 

square) is just the squared number itself. And taking the square root back allows for positive or negative 

(but always real-valued) amplitudes (spatial bit only), of course. But this does not add anything to our 

interpretation of the wavefunction. Can we add anything to the interpretation by trying to find some 

latus rectum formula? It might be possible, but we do not think so.50 So that is it, then. We have:  

1. Kinetic and potential energy sloshing back and forth and, obviously, adding up to the total 

energy; and 

 
48 We hope it helps the understanding of the nature of the wavefunction for the reader too, but that is for him or 
her to judge, of course. 
49 A complex space is usually associated with complex-valued coordinates or may have some other meaning. The 
complex plane is just two-dimensional Cartesian space, with the x-axis representing the real part (the axis with the 
cosine values) and the y-axis representing the imaginary part (the axis with the sine values). 
50 The latus rectum formula is a·p = b2, with a, p and b the lengths as depicted below. 

 
The latus rectum formula popped up quite naturally in our geometric interpretation of the de Broglie wavelength, 
which was quite surprising and very interesting. However, our earlier attempt to interpret Schrödinger’s orbitals in 
terms of elliptical orbitals failed. We, therefore, regret this early paper remains popular, even if it gave us early 
ideas on the nature of Schrödinger’s wave equation (not wavefunction) as an energy diffusion equation. 

https://www.researchgate.net/publication/341269271_De_Broglie's_matter-wave_concept_and_issues
https://vixra.org/abs/1812.0202
https://vixra.org/abs/1812.0202
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2. The sum of squares of the real and imaginary part adding up to give us the energy density (non-

normalized wavefunction) at each point in space or, after normalization, a probability P(r) = 

ψ(r)2 to find the electron as a function of the position vector r. 

In short, the wavefunction is the pendant to the Planck-Einstein relation. To be precise, the example we 

explored showed how Schrödinger’s orbitals incorporate a Planck-Einstein cycle or, we should say, 

Planck’s quantum of action tout court: the energy, the frequency, the (linear and circular) momentum,… 

All comes out of the E = h·f = p·λ equation (or its reduced form51) combined with Maxwell’s equations 

written in terms of the scalar and vector potential.  

We should note that the indeterminacy in regard to the position is statistical only: it arises because of 

the high velocity of the pointlike charge, which makes it impossible to accurately determine its position 

at any point in time. It would disappear if we would be able to do so. In that case, we would be able to 

define a precise (x0, y0, z0, t0) point – or, in polar coordinates – a (ρ0, θ0, Φ0, t0) point – with the pointlike 

charge actually crossing position (x0, y0, z0) at time t = t0. In other words, we would be able to determine 

the initial condition of the system which, in turn, would allow us to go from indefinite integrals to 

definite integrals, and so we would have a completely defined system. 

Feynman once wrote this: “These philosophers are always with us, struggling in the periphery to try to 

tell us something, but they never really understand the subtleties and depths of the problem.” (Lectures 

on Physics, Vol. I, Ch. 19). I always found this remark rather disparaging, but he was right.  

Conclusions 
We think we found an awful lot of meaning but, yes, the question remains: do we really get this? 

Maybe. Maybe not. Can we do better – any more explaining that what we have done already? We do 

not think so but, of course, we invite the reader to think this through for him- or herself, and to check 

whether or not the bottom line is really this: the real and imaginary part of the wavefunction(s) – i.e. the 

solution(s) to the wave equation that applies to the situation at hand – combines not only the energy 

conservation law (potential and kinetic adding up to the (constant) total) but all of physics, plus 

Pythagoras’s (complex number theory, that is), operator theory and all of the math in-between.  

It may look like some miracle that, somehow, all laws of physics – and all of geometry, of course! – 

combine into Euler's function, but so that is it then: there is no further explanation, and we should just 

marvel at the fact that we sort of intuitively get this. And that is all of the mystery of quantum 

mechanics, then. No weird metaphysical uncertainty. And there is also no need for ‘hidden variables’ – 

because all is determined and any indeterminism that is there is of a statistical nature only: think of the 

airplane propeller again!  

 
51 The Compton wavelength is a linear concept, and the Compton radius of an electron is just its reduced form: rC = 
λC/2π. The fine-structure constant relates the various radii of the electron: radius of the pointlike charge (re = α·rC), 
radius of the free electron (rC = α·rB), and the Bohr radius (rB). It, therefore, makes sense that the fine-structure 
constant is not one of Nature’s (independent) constants but a combination of them: the electron charge, 
lightspeed, and Planck’s quantum of action. 
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And, yes, of course we should thank and remember Leonhard Euler for inventing the ei·θ = cosθ + sinθ 

formula52, without which physicists would have had an awful lot of trouble to concisely model and 

represent Nature’s fundamental cycle which – in turn – is represented by the Planck-Einstein relation.  

So what equations should we show a visiting alien as part of the earliest discussions when trying to 

communicate?53 The equations of modern physics, of course: Maxwell’s equations (preferably in four-

vector notation), Schrödinger’s wave (probably the more general one for an electron in an 

electromagnetic field54), and the Planck-Einstein relation. But I think we should scribble a few math 

formulas in the margin too, perhaps. Which ones? Pythagoras’s Theorem or – closely related – Euler’s 

formula.       

Jean Louis Van Belle, 25 October 2020 

  

 
52 We may usefully quote one of the other great polymaths of history here, Pierre-Simon Laplace, who is said to 
have said: "Read Euler, read Euler, he is the master of us all!" While he stood on the shoulders of other giants (the 
Wikipedia article on complex numbers offers a useful short historical introduction), such as Descartes and de 
Moivre, Euler’s formula remains Euler’s formula: “the most remarkable formula in mathematics”, according to 
Feynman, that is. 
53 We refer to Feynman’s story about the Martian, in the context of his very insightful discussion of (a)symmetries 
and matter-antimatter in the last chapter of his first volume of lectures. Needless to say, before talking, we should 
make sure he or she or it does not feel threatened, so it is not tempted to blow us away – literally ! 
54 As mentioned in other papers, we think Schrödinger’s wave equation might be relativistically correct, because 
the ½ factor does not refer to a (non-relativistic) concept of kinetic energy. The factor is there because we are 
basically modelling the motion of two electrons with opposite spin. And what Schrödinger wave equation or 

Hamiltonian should we show our Martian? The complete one: H = 𝑖ℏ
∂

∂t
= −

1

2m
(𝑖ℏ𝛁 + q𝑨)2 + q𝑨. 

https://en.wikipedia.org/wiki/Complex_number#History
https://www.feynmanlectures.caltech.edu/I_52.html
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Annex: Spin and the sign of the imaginary unit in the wavefunction  
When thinking of spin as physical angular momentum, one can easily integrate the concept of spin in the 

elementary wavefunction by thinking about the direction of motion, as illustrated below  (Figure 5): we 

can go from the +1 to the −1 position on the unit circle taking opposite directions.  

 

Figure 5: e+iπ  e−iπ 

Hence, combining the + and − sign for the imaginary unit with the direction of travel, we get four 

mutually exclusive structures for our electron wavefunction (see Table 1).  

Spin and direction of travel Spin up (J = +ħ/2) Spin down (J = −ħ/2) 

Positive x-direction  = exp[i(kx−t)] * = exp[−i(kx−t)] = exp[i(t−kx)] 

Negative x-direction χ = exp[−i(kx+t)] = exp[i(t−kx)] χ* = exp[i(kx+t)]  

Table 1: Occam’s Razor: mathematical possibilities versus physical realities 

Unfortunately, the mainstream interpretation of quantum mechanics does not integrate the concept of 

particle spin from the outset because the + or − sign in front of the imaginary unit (i) in the elementary 

wavefunction (a·e−i· or a·e+i·) is thought as a mathematical convention only. This non-used degree of 

freedom in the mathematical description then leads to the false argument that the wavefunction of 

spin-½ particles has a 720-degree symmetry. Indeed, physicists treat −1 as a common phase factor in the 

argument of the wavefunction.55 However, we should think of −1 as a complex number itself: the phase 

factor may be +π or, alternatively, −π: when going from +1 to −1 (or vice versa), it matters how you get 

there⎯as illustrated above.56 

What are the implications? Physicists should go about their calculations more carefully, drag a  sign 

along, and inverse it when appropriate. And they should carefully think about the physics when getting 

rid of a n·π factor: the concept of parity is important, and should be integrated in the analysis from the 

outset. 

 
55 Mainstream physicists therefore think one can just multiply a set of amplitudes – let us say two amplitudes, to 

focus our mind (think of a beam splitter or alternative paths here) – with −1 and get the same physical states. 
56 The quantum-mechanical argument is technical, and so I am not going to reproduce it here. I do encourage the 

reader to glance through it, though. See: Euler’s Wavefunction: The Double Life of – 1. Note that the e+iπ  e−iπ 
expression may look like horror to a mathematician! However, if he or she has a bit of a sense for geometry and 
the difference between identity and equivalence relations, there should be no surprise. If you are an amateur 
physicist, you should be excited: it is, effectively, the secret key to unlocking the so-called mystery of quantum 
mechanics. Remember Aquinas’ warning: quia parvus error in principio magnus est in fine. A small error in the 
beginning can lead to great errors in the conclusions, and we think of this as a rather serious error in the 
beginning! 

http://vixra.org/abs/1810.0339

