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Abstract 
Uncertainty may result from (1) an impossibility to measure what we want to measure, or an 

impossibility to observe the system, (2) the limited precision of our measurement, (3) the measurement 

fundamentally disturbing the system and, as such, causing the information to be unreliable, (4) an 

uncertainty that is inherent to Nature. The latter position is referred to as the Copenhagen 

interpretation of quantum mechanics. We agree with Lorentz’s and Einstein’s viewpoint that there is no 

need to elevate indeterminism to a philosophical principle. Indeed, the more important question is: how 

does quantum physics model it? How does it deal with it?  

This paper wants to offer some thoughts on that and, in the process, highlight some contradictions 

which support Lorentz’s (and Einstein’s) position: we only have statistical indeterminism here and, 

hence, quantum physics is not a radical departure from classical physics. Hence, we will argue that 

quantum-mechanical uncertainty is nothing but statistical indeterminism. This is, effectively, the fifth 

interpretation of uncertainty which can be added to the list above, and we think it is the right one. We 

illustrate our position with a detailed discussion of the wavefunction(s) in the context of Schrödinger’s 

wave equation for the hydrogen atom. 

As we were getting into the nitty-gritty anyway, we also further explored the question in regard to the 

(possible) physical dimension of the real and imaginary part of the wavefunction. To paraphrase 

Feynman, we wonder what could be ‘sloshing back and forth’ between the real and imaginary part of 

the wavefunction? We think it is kinetic and potential energy. We, therefore, briefly present our two-

dimensional oscillator model again, but using the metaphor of a multi-piston radial engine as a 

metaphor this time. 
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The meaning of uncertainty  
and, possibly, the wavefunction 

Introduction 
Quantum mechanics is, essentially, a combination of Maxwell’s equations and the Planck-Einstein 

relation. The Planck-Einstein relation gives us Planck’s quantum of action, which appears to model an 

elementary oscillation: an electron is an oscillating charge, a photon, a ring current in a superconductor 

is an oscillation too, an atomic or molecular orbital obeys the same law, an oscillation in a two-state 

system, etcetera. Studying quantum physics is hard, very hard, because the formalism abstracts away 

from such specifics. We talk of quantum-mechanical states, but we abstract away from the physical 

reality underneath: we think of them as energy states only, but they must represent the system as a 

whole. The wavefunction must have all of the information on position and momentum (linear or 

angular): otherwise we would not be able to apply the relevant operators and get (average) values (or 

probabilities) for these observables (or measurables) out of it.1 

The main difference between classical physics and quantum physics is that, in quantum physics, we have 

only limited knowledge of the state of the system: there is uncertainty. The exact nature of this 

uncertainty is the subject of philosophical discussion. Uncertainty may result from: 

1. An impossibility to measure what we want to measure, or an impossibility to observe the 

system: we might, perhaps, refer to this as an Ungewissheit.2 

2. The limited precision of our measurement: this is what Heisenberg originally referred to as an 

Ungenauigkeit, i.e. before it became some metaphysical or epistemological principle. 

3. The measurement might fundamentally disturb the system and, as such, cause the information 

to be unreliable. 

4. The uncertainty is, perhaps, inherent to Nature. This philosophical position is referred to as the 

Copenhagen interpretation of quantum mechanics, and Heisenberg referred to it as the 

Unbestimmtheitsprinzip.   

Bell’s theorem is supposed to prove the latter position but a theorem depends on its assumptions – and 

these assumptions may be challenged. We basically agree with the remarks of the Dutch physicist H.A. 

Lorentz at the occasion of the 1927 Solvay Conference: there is no need to elevate indeterminism to a 

philosophical principle.3 The more important question is: how does quantum physics model it? How 

 
1 Physicists prefer the term observable: a physical quantity that can be measured. This definition shows we could 
also refer to it as a measurable. Both nouns have the same meaning. 
2 We did not check with the philosophers here, so our terminology suggestions are just what they are: suggestions. 
Words do not matter, but the distinctions might. 
3 The full quote is this : “Je pense que cette notion de probabilité [Heisenberg-Bohr] serait à mettre à la fin, et 
comme conclusion, des considérations théoriques, et non pas comme axiome a priori, quoique je veuille bien 
admettre que cette indétermination correspond aux possibilités expérimentales. Je pourrais toujours garder ma foi 
déterministe pour les phénomènes fondamentaux, dont je n’ai pas parlé. Est-ce qu’un esprit plus profond ne 
pourrait pas se rendre compte des mouvements de ces électrons. Ne pourrait-on pas garder le déterminisme en en 
faisant l’objet d’une croyance? Faut-il nécessairement ériger l’ indéterminisme en principe?" 
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does it deal with it? This paper wants to offer some thoughts on that and, in the process, highlight some 

contradictions which support Lorentz’s (and Einstein’s) position: we only have statistical indeterminism 

here and, hence, quantum physics is not a radical departure from classical physics. Hence, we will argue 

that quantum-mechanical uncertainty is nothing but statistical indeterminism. This is, effectively, a fifth 

interpretation which can be added to the list above, and we think it is the right one. 

However, the more interesting question is whether or not we can show that quantum-mechanical 

amplitudes and the wavefunction4 – think of Schrödinger’s equation and the solutions to it – have 

physical meaning. Can we do that? Let us try and see where we get. 

Functions and physical dimensions 
A dimensional analysis is always a good place to start, but what equations should we use? Feynman’s 

canonical examples include the maser (the ammonia molecule as a two-state system), an electron 

moving in a lattice (n-state system modeling position), electron orbitals (Schrödinger’s equation in a 

central field5), and many others. Where do we start? We will probably want to start from the simplest 

and let us, therefore, analyze the two-state system. However, our short list already triggers an obvious 

remark: the formalism of quantum mechanics talks about the states of system but, in practice, the state 

is often reduced to one aspect only: the position state, the momentum state, the energy state, etcetera. 

Using Dirac’s bra-ket notation, we may formally write this as: 

⎯  x = n − 1,  x = n ,  x = n + 1, etc. (position states in an n-state system6) 

⎯  mom = p  (momentum state7) 

⎯  E = −ER/n2  (energy states8)  

Hence, we should be cautious and, at each stage, clearly identify what exactly we are talking about. 

These states will all be represented by a complex-valued function (the wavefunction) or a complex 

number (a quantum-mechanical amplitude) but, a priori, we should expect that the interpretation of 

what the real and imaginary part of the wavefunction or amplitude might actually be, might depend on 

the situation at hand. 

As we are talking terminology here, we should warn the reader for another potentially confusing thing: 

the term amplitude may refer to the complex number as a whole (let us, as per the convention9, write it 

 
4 The two are not necessarily the same, and their meaning may also depend on the situation that is being 
modelled. 
5 A central field depends on r only: the distance from the pointlike charge which, in the case of electron orbitals, is 
the nucleus (the proton inside of the hydrogen atom). 
6 Think of a lattice on a line (a linear array of atoms or molecules). 
7 The mom abbreviation is Feynman’s, and the example here is linear momentum. If we are interested in the 
direction, we should probably write the momentum as a vector: p. We could also have given an example of an 
angular momentum state, in which case we should also distinguish between the magnitude and the direction of 
spin. Linear momentum is a polar vector (aka a true vector). Angular momentum is an axial vector (aka a 
pseudovector). Both are equally real – in a physical sense, that is. 
8 The energies here are the energy levels of the nth orbital. ER is the Rydberg energy (ionization energy). 
9 The use of a plus or a minus sign for the phase (+θ or −θ) in the complex exponential – hence, writing eiθ or e−iθ – 
is a matter of mathematical convention. In our papers, we have consistently argued the two mathematical 
possibilities may represent two different states: if, for some reason, the wavefunction would actually represent a 
physical rotation (of charge or whatever), then the two possibilities obviously represent opposite spin directions.    
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as r = a·e−iθ) or to the coefficient in front of it (a only). Because the reader may doubt this statement, we 

will immediately give an example out of one of the more advanced models: the wavefunctions for the 

state with an angular dependence to Schrödinger’s equation for the hydrogen atom. These 

wavefunctions are written as10: 

ψ𝑛,𝑙,𝑚 = Y𝑙,𝑚(θ, ϕ)F𝑛,𝑙(ρ) 

with: ρF𝑛,𝑙(ρ) = 𝑒−αρ ∑ 𝑎𝑘ρ𝑙𝑛
𝑘=𝑙+1   

and:  Y𝑙,𝑚(θ, ϕ) = P𝑙
𝑚(cosθ)𝑒𝑖mϕ   

These wavefunctions are, in fact, only the coefficient of the actual wavefunction because the whole 

derivation is based on a separation of the time-dependent and the spatial part of the wavefunction. 

Somewhat confusingly, the same symbol (psi) is used to denote both, so the difference is only obvious 

when one writes the argument (independent variables) of the function in full: 

ψ(𝒓, 𝑡) = 𝑒
−

E
ℏ

𝑡
ψ(𝒓) = 𝑒

−
E
ℏ

𝑡
ψ𝑛,𝑙,𝑚(ρ, θ, ϕ) 

This all looks rather monstrous – it is ! – so let us break it down piece by piece. You should first note the 

switch from Cartesian coordinates r = (x, y, z) to polar (or spherical11) coordinates r = (ρ, θ, ϕ), because 

that is easier when talking circular or orbital motion.12 In addition, the distance from the center (the 

radial coordinate r) is now measured in a natural unit that goes with the system – the Bohr radius rB, to 

be precise13:  

ρ =
𝑟

𝑟𝐵
=

αme𝑐

ℏ
𝑟 

As we are talking natural units, we may also note that, as per the Planck-Einstein relation (E = ħ·ω  ω = 

E/ ħ), the time-dependent part of the wavefunction (e−ω·t) may be thought of as a clock ticking at the 

 
10 We follow the notation from Feynman’s Lectures, from which we borrow a lot of the material. We trust that the 
reader will be able to look up the original Lectures and distinguish between Feynman’s formulas and text and our 
presentation and interpretation of it. 
11 Polar coordinates usually refer to a two-dimensional coordinate system, so a spherical coordinate system is then 
its three-dimensional version. 
12 We still need to prove we are actually talking circular or orbital motion of some charge here, but we think the 
circumstantial evidence is fairly convincing.  
13 We wrote the Bohr radius as a fraction of the Compton radius here. The reader can verify the substitutions, 
including Feynman’s use of e2 (the squared charge of an electron divided by 4πε0), by substituting the fine-
structure constant (α) for its definition: 

𝑟𝐵 =
ℏ

αme𝑐
= ℏ

2ℇ0ℎ𝑐

q
e
2me𝑐

=
4ℇ0ℏ2

meq
e
2

=
ℏ2

mee2
 

Talking natural units, as part of solving the (Schrödinger wave) equation(s), Feynman also writes energies E in 

terms of the Rydberg energy: E = ER·ϵ, with E𝑅 =
α2me𝑐2

2
=

qe
4me𝑐2

8ℇ0
2ℎ2𝑐2 =

qe
4me

2∙(4π)2ℇ0
2ℏ2 =

mee4

2ℏ2 . Hence, ϵ is like ρ, but it is 

used to measure energy. 
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natural frequency of this oscillation.14 The (other) functions and symbols may be briefly explained as 

follows: 

⎯ The Fn,l(ρ) function is a (finite) power series and is, obviously, just some real-valued function of 

the radial distance ρ. 

⎯ The Pl
m(cosθ) functions are known as the ‘associated Legendre polynomials’ (or functions). You 

should note that the superscript is an order number: it is not an exponential (it is not a power of 

Pl, in other words). They are usually written in terms of derivatives of ordinary Legendre 

polynomials. We must refer the reader to readily accessible material here15   

The Yl,m(θ, Φ) functions as a whole are known as the spherical harmonics (beautiful name, isn’t it?) and 

they are a function of the polar and azimuthal angles θ and Φ.16 You should note that the ψn,l,m 

amplitude (the coefficient of the actual wavefunction, really) would be real-valued, always, if we would 

not have that eimΦ factor, which is equal to 1 (and, therefore, equally real-valued) if m = 0. And, of 

course, if we would multiply it through with the time-dependent part of the wavefunction (e−i·(E/ħ)·t): 

e−i·(E/ħ)·t·ei·m·Φ = e−i·ω·t + m·Φ 

Hence, this factor is just a phase shift and, therefore, should not matter at all in terms of the physics of 

the situation (it is just a matter of choosing our t = 0 point). So let us quickly look at that quantum 

number: what does it stand for? It is the magnetic quantum number, and it is usually denoted as mz and 

referred to as the z-component of the angular momentum. This sounds very mysterious, and it is: it is 

related to the weird 720-degree symmetry of the wavefunction which, in turn, results from mainstream 

academics not using the plus or minus sign of the imaginary unit to distinguish between the direction of 

spin. 

[…] You should read the latter phrase again, slowly. And because you will not understand what we are 

saying here, we talk about this in the annex. Here, we will just note what you know already: m is a 

number between −l and +l ( −l  mz  +l) and it gives us the (possible) orientations of the subshell. Here, 

we should quickly add that l is the quantum number that gives us the subshell within a given energy 

 
14 We will let the reader think this through, and just remind him of the obvious formula for the cycle time (T): ω = 

2π·f  T = 1/f = 2π/ω. This shows the cycle time T is equal to T = ω/2π = E/2πħ = E/h. The natural (angular) 
frequency is nothing but the natural time measured in radians: ω = 2π/T. It is a somewhat weird idea to measure 
time in radians but, on the unit circle, the radian may be thought of as a natural distance as well as a natural time 
unit. It helps to literally think of an old-fashioned clock (with a hand for the seconds) ticking time away, with the tip 
of the hand doing the (circular) distance. Another, more abstract way, of thinking is this: we count the time in 
terms of the cycle of this oscillation (1, 2,…, n,…) but, if we would want to subdivide these cycles any further, we 
would divide them 2π (radians) rather than 12 (hours) or 60 (minutes or seconds).  
15 We used the Wikipedia article on these mathematical functions for more detail. 
16 We use Feynman’s notation here, and so he uses θ (theta) instead of some other letter (e.g. , phi) for the polar 
angle, which is slightly confusing because, in physics, θ is also used to denote the phase of the wavefunction, like in 

ψ = e−θ = e−ωt. Wikipedia says the mathematical convention is to use θ (theta) and  (phi) for the polar and 
azimuthal angle respectively. Our phi (Φ) for the azimuthal angle is the capital letter phi. We may, therefore, use 

the lowercase phi () if we would need to denote a phase, which is what we might do. As long as we know what 
we are talking about, it is all good, right?  

https://en.wikipedia.org/wiki/Associated_Legendre_polynomials
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state n. This n is the principal quantum number, and l = 0, 1, 2,… n − 1. Hence, if we have one energy 

state only, then we have only state: l = 0.17 

What is the point? The point is that, when thinking about the physics of the situation, we can forget 

about that that eimΦ factor. Think of it as being part of the time-dependent part of the wavefunction: we 

just shift the origin of time. That amounts to looking at the system – the oscillation, that is – a tiny bit 

earlier or later, and that does not matter because it is a perfectly regular oscillation. What we are 

interested in the shape of the physical orbitals, their energies, and other physical variables. Hence, for 

all practical purposes, we should think of the coefficient of our wavefunction – or the amplitude sensu 

stricto, or the spatial (position-dependent) part of the wavefunction, or whatever you want to call it – as 

a real number ! 

Is that important? Yes, it is. Knowing that a wavefunction – any wavefunction, really – can always be 

written as the product of a time-dependent and a spatial or time-independent function is huge, and it is 

equally huge to know that the time-dependent part will always look like e−i·ω·t + , and that the  here is 

just some random phase shift which does not matter because we can always shift the t = 0 point 

however we would want to shift it: the physics of the situation won’t change ! This is reflected in the 

fact that the absolute square18 of a complex exponential (when its coefficient a is 1, of course) is always 

equal to 1. We apologize for writing this out but it is, perhaps, good to remind ourselves of what a 

complex number really is: the vector sum of a sine and a cosine. 

|𝑒𝑖θ|
2

= |cosθ + 𝑖sinθ|2 = √cos2θ + sin2θ
2

= √1
2

= 1 

Let us continue our search of some physical meaning of the real and imaginary parts of the 

wavefunction by continuing our example. 

What does it all mean? 
Below we copy table 19.1 out of Feynman’s Lectures, which gives us the functional form of those 

spherical harmonics: they combine sine and cosine functions. Now, we are interested in the probability 

to find the electron at point x = (x, y, z)19, and quantum mechanics tells us we can calculate these 

probabilities by taking the absolute square of the ψ(x) wavefunction. To be precise, the theory of 

operators – and of the position operator, in particular – tells us the probability density P(x) will be equal 

to P(x) = ψ(x)2 = ψ(x)·ψ*(x) = ψ*(x)·ψ(x), with ψ*(x) the complex conjugate of ψ(x).20   

 
17 We should refer to standard textbooks here, but we think our own presentation in our classical explanation of 
the Lamb shift has the advantage of (1) being succinct and (2) relating it to what we said on these weird 720-

degree symmetries vanishing if one would use the  sign in front of the imaginary unit to incorporate the two 
possible spin directions in the analysis straight from the start. 
18 This term is a (slightly confusing, perhaps) shorthand for the square of the absolute value of a (complex- or real-
valued) number. It is also referred to as the square of the modulus of the complex sum (sum of the real and 
imaginary part of the number). 
19 We have a bad habit of switching from r to x, or vice versa, for no reason whatsoever – except that you will find 
x is more common than r in the literature. A bold letter is a vector, in any case, and you may think r suggests we 
are working in polar rather than Cartesian coordinates, and vice versa. 
20 We assume the extension of ideas and formulas from one-dimensional space (a line) to three dimensions is as 
straightforward as Feynman (III-20-4) says it is. We will carefully check – but probably (much) later. 
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 Figure 1: Spherical harmonics (source: Feynman III-19-3) 

That gives us these wonderful polar graphs which, literally, depict the shape of those electron orbitals.21 

We may note here that we are taking the square of the absolute value of a real-valued amplitude here. 

Hence, what matters is the magnitude only: positive or negative amplitudes give the same probability. 

Take, for example, the p-orbital (l = 1) for m = 0. The spherical harmonic is a simple cosθ function and, 

yes, cosθ2 = cos2θ = cos(−θ)2 = cos2(−θ). 

So, yes, interpreting the math is not all that difficult. We are effectively talking the physical orbitals of 

the pointlike electron charge here, and the uncertainty is a mere statistical indeterminism. So it is really 

just like the propeller of that airplane: we do not know where it is, exactly, but we know it is always 

somewhere, at any given point in time. Please note this is not your usual crackpot interpretation of 

quantum physics. We may usefully quote Richard Feynman here: 

“The wave function ψ(r) for an electron in an atom does not describe a smeared-out electron 

with a smooth charge density. The electron is either here, or there, or somewhere else, but 

wherever it is, it is a point charge.” (Feynman’s Lectures, III-21-4) 

 
21 To show we do google other textbooks from time to time, we refer the reader to a chapter of a course (in 
physical chemistry) at the University of Michigan: instructive, no hocus-pocus and good graphs.  

http://www.umich.edu/~chem461/QMChap7.pdf
http://www.umich.edu/~chem461/QMChap7.pdf
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Figure 2: Where is the propeller, exactly?22 

However, these reflections do not solve the question we started out with: what is the physical meaning 

of the real and imaginary parts of the wavefunction? Would they have a physical dimension, like a field – 

something like newton per coulomb (N/C), like the electric field, for example? In addition, Feynman’s 

take on it leaves other interpretational issues: Schrödinger’s orbitals imply the electron spends most of 

its time right on top of the proton, so how should we think of that? We could, perhaps, imagine some 

short-range repulsive force here but such solution would inject entirely new dynamics and, therefore, 

looks pretty unacceptable: assuming the electron, somehow, does go straight through the center or, 

else, bounces back – fully elastically, because momentum and energy should be conserved – is the only 

solution but raises other questions (which we will try to examine later, perhaps). Back to the question of 

a physical dimension for the wavefunction.  

Should it have one? The argument is time and position – simple numbers, right? – so the wavefunction 

might just project these numbers onto a two-dimensional mathematical space only, right? Maybe. 

Maybe not. Could the operators give us a clue? Unfortunately not23. Their physical dimensions are OK 

already24: 

⎯ The energy operator H = −
ℏ2

2𝑚
∇2 + 𝑉(𝒓) comes with the 

N2m2s2

m2kg
+ N ∙ m =

N2m2s2

m2Ns2

m

+ N ∙ m =

N ∙ m dimension, so that is the physical dimension of energy alright. 

⎯ Likewise, the position operator x or and the momentum operator P𝑥 = −𝑖ℏ
𝜕

𝜕𝑥
 come with the 

physical dimension of distance (m) and momentum (
N∙m∙s

m
= N ∙ s) respectively. 

 
22 I downloaded this image from a website selling Christmas presents long time ago, and I have not been able to 
trace back from where I have got it. If someone recognizes this as their picture, please let us know and we will 
acknowledge the source or remove it. 
23 The energy operator – and the others as well, perhaps – depend on the problem at hand. The one here is 
derived from Schrödinger’s wave equation for electron orbitals, so we basically continue the analysis for the very 
same problem at hand. 
24 The symbols used for operators vary (with or without hat or special script). Ours are probably too simple. 
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⎯ Finally, the angular momentum operator L𝑧 = 𝑥
ℏ

𝑖

𝜕

𝜕𝑦
− 𝑦

ℏ

𝑖

𝜕

𝜕𝑧
 comes with the m

N∙m∙s

m
−

m
N∙m∙s

m
= N ∙ m ∙ s dimension, so that is, effectively the same as that of Plank’s quantum of 

action itself (in reduced or non-reduced form).  

The oscillator model and the possible meaning of the wavefunction 
We have been thinking about this for a while now, and we have no definite answer. However, the 

interplay between the real and imaginary part of the wavefunction reminds one of these probabilities 

‘sloshing back and forth’, as Feynman would say, as a function of time in a simple two-state system. So 

what would slosh back and forth between the real and imaginary part of the wavefunction? We see one 

obvious candidate – to be truthful: we do not see any others – and that is kinetic and potential energy. 

Here we need to revive, perhaps, our two-dimensional oscillator model, but extend it from circular 

orbitals to orbitals with fancier geometric shapes, such as those in Schrödinger’s model of an atom, 

indeed! 

Let us briefly recap the metaphorical idea.25 If we combine two oscillators in a 90-degree angle – think of 

two springs or two pistons attached to some crankshaft26 – then we get some perpetuum mobile which 

stores twice the energy of a single oscillator, and the motion of the pistons will reflect that of a mass on 

a spring: it is described by a sinusoidal function, with the zero point at the center of each cylinder. We 

detailed the math elsewhere27 and only note the model is relativistically correct. Indeed, the 

relativistically correct force equation for one oscillator is:  

F = dp/dt = F = –kx with p = mvv = γm0v 

The energy conservation equation can be derived from multiplying both sides with v = dx/dt. One can 

then verify the following28: 

𝑣
d(γm0𝑣)

dt
= −kx𝑣 ⟺

d(m𝑐2)

dt
= −

d

dt
[
1

2
k𝑥2] ⟺

dE

dt
=

d

dt
[
1

2
k𝑥2 + m𝑐2] = 0 

For the potential energy, one gets the same kx2/2 formula one gets for the non-relativistic oscillator. 

That is no surprise: potential energy depends on position only, not on velocity, and there is nothing 

relative about position. However, the (½)m0v2 term that we would get when using the non-relativistic 

formulation of Newton’s Law is now replaced by the mc2 = γm0c2 term. Both energies vary – with 

position and with velocity respectively – but the equation above tells us their sum is some constant. 

 
25 These ideas will probably intrigue us for the rest of our life, and we are not sure if we will ever get beyond 
metaphorical ideas only in regard to these deep questions. 
26 Academics seem to prefer springs, but I like engines. In fact, the metaphor was inspired by a discussion with my 
son on the efficiency of a Ducati engine, which effectively has a 90-degree bank angle. The 90° angle of the V-2 
makes it possible to perfectly balance the counterweight and the pistons, ensuring smooth travel always. With 
permanently closed valves, the air inside the cylinder compresses and decompresses as the pistons move up and 
down. It provides, therefore, a restoring force. As such, it will store potential energy, just like a spring. 
27 See: The Wavefunction as an Energy Propagation Mechanism. 
28 I am grateful to an unknown undergraduate student for posting this solution. Unfortunately, I lost the reference. 
Whomever recognizes this, please do email as I would like to properly credit the good work. 

https://vixra.org/abs/1806.0106
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Hence, the game with two oscillators working in tandem should work here too.29 In addition, the 

analogy can be extended to include two pairs of springs or pistons, in which case the springs or pistons 

in each pair would help drive each other. Even more interestingly, we may imagine a multi-piston radial 

engine (Figure 3)30, as illustrated 

 

Figure 3: The metaphor of the radial engine (source: Wikipedia) 

The point is this: somehow, in this beautiful interplay between linear and circular motion, energy is 

borrowed from one place and then returns to the other, cycle after cycle. While transferring kinetic 

energy from one piston to the other, the crankshaft will rotate with a constant angular velocity: linear 

motion becomes circular motion, and vice versa. Most importantly, we can add the total energy of the 

oscillators to get the total energy of the whole system to get the E = ma2ω2 formula. The only thing that 

remains to be done then, is to substitute for the tangential velocity vt = aω. In fact, substituting aω for c 

= aω gives us Einstein’s mass-energy equivalence relation (E = mc2) is what inspired our mass without 

mass model of an electron. 

In short, the idea here is that the oscillations of the real and imaginary part of the wavefunction would, 

somehow, incorporate the energy conservation law. Is this interpretation compatible with operator 

theory? It should be: if we know the potential and kinetic energy – at any point in time – we should be 

able to derive position, momentum, and all other relevant physical observables from it, isn’t it? Of 

course, we admit we should formally show this by reexamining the textbook derivations of operators so 

as to prove the point. If someone would be able to do it for us, please do email! We would be very 

happy to see such result – because, frankly, we still do not really get this squaring business. It must be 

something with Pythagoras’ Theorem. Something obvious involving the addition of two orthogonal 

vectors, but I just cannot see it yet.       

Jean Louis Van Belle, 22 October 2020 

  

 
29 The analogy can be extended to include two pairs of springs or pistons, in which case the springs or pistons in 
each pair would help drive each other. 
30 We did not google references here, but the Wikipedia article on radial engines looks like a good start. 

https://commons.wikimedia.org/w/index.php?curid=41611824
https://en.wikipedia.org/wiki/Radial_engine
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Annex: Spin and the imaginary unit  
When thinking of spin as physical angular momentum, one can easily integrate the concept of spin in the 

elementary wavefunction by thinking about the direction of motion, as illustrated below  (Figure 4): we 

can go from the +1 to the −1 position on the unit circle taking opposite directions.  

 

Figure 4: e+iπ  e−iπ 

Hence, combining the + and − sign for the imaginary unit with the direction of travel, we get four 

mutually exclusive structures for our electron wavefunction (see Table 1).  

Spin and direction of travel Spin up (J = +ħ/2) Spin down (J = −ħ/2) 

Positive x-direction  = exp[i(kx−t)] * = exp[−i(kx−t)] = exp[i(t−kx)] 

Negative x-direction χ = exp[−i(kx+t)] = exp[i(t−kx)] χ* = exp[i(kx+t)]  

Table 1: Occam’s Razor: mathematical possibilities versus physical realities 

Unfortunately, the mainstream interpretation of quantum mechanics does not integrate the concept of 

particle spin from the outset because the + or − sign in front of the imaginary unit (i) in the elementary 

wavefunction (a·e−i· or a·e+i·) is thought as a mathematical convention only. This non-used degree of 

freedom in the mathematical description then leads to the false argument that the wavefunction of 

spin-½ particles has a 720-degree symmetry. Indeed, physicists treat −1 as a common phase factor in the 

argument of the wavefunction.31 However, we should think of −1 as a complex number itself: the phase 

factor may be +π or, alternatively, −π: when going from +1 to −1 (or vice versa), it matters how you get 

there⎯as illustrated below.32  

 
31 Mainstream physicists therefore think one can just multiply a set of amplitudes – let us say two amplitudes, to 

focus our mind (think of a beam splitter or alternative paths here) – with −1 and get the same physical states. 
32 The quantum-mechanical argument is technical, and so I am not going to reproduce it here. I do encourage the 

reader to glance through it, though. See: Euler’s Wavefunction: The Double Life of – 1. Note that the e+iπ  e−iπ 
expression may look like horror to a mathematician! However, if he or she has a bit of a sense for geometry and 
the difference between identity and equivalence relations, there should be no surprise. If you are an amateur 
physicist, you should be excited: it is, effectively, the secret key to unlocking the so-called mystery of quantum 
mechanics. Remember Aquinas’ warning: quia parvus error in principio magnus est in fine. A small error in the 
beginning can lead to great errors in the conclusions, and we think of this as a rather serious error in the 
beginning! 

http://vixra.org/abs/1810.0339

