The meaning of uncertainty and, possibly, of the wavefunction

Jean Louis Van Belle, Drs, MAEc, BAEc, BPhil
22 October 2020
Email: jeanlouisvanbelle@outlook.com

Abstract

Uncertainty may result from (1) an impossibility to measure what we want to measure, or an impossibility to observe the system, (2) the limited precision of our measurement, (3) the measurement fundamentally disturbing the system and, as such, causing the information to be unreliable, (4) an uncertainty that is inherent to Nature. The latter position is referred to as the Copenhagen interpretation of quantum mechanics. We agree with Lorentz’s and Einstein’s viewpoint that there is no need to elevate indeterminism to a philosophical principle. Indeed, the more important question is: how does quantum physics model it? How does it deal with it?

This paper wants to offer some thoughts on that and, in the process, highlight some contradictions which support Lorentz’s (and Einstein’s) position: we only have statistical indeterminism here and, hence, quantum physics is not a radical departure from classical physics. Hence, we will argue that quantum-mechanical uncertainty is nothing but statistical indeterminism. This is, effectively, the fifth interpretation of uncertainty which can be added to the list above, and we think it is the right one. We illustrate our position with a detailed discussion of the wavefunction(s) in the context of Schrödinger’s wave equation for the hydrogen atom.

As we were getting into the nitty-gritty anyway, we also further explored the question in regard to the (possible) physical dimension of the real and imaginary part of the wavefunction. To paraphrase Feynman, we wonder what could be ‘sloshing back and forth’ between the real and imaginary part of the wavefunction? We think it is kinetic and potential energy. We, therefore, briefly present our two-dimensional oscillator model again, but using the metaphor of a multi-piston radial engine as a metaphor this time.

Contents

Introduction ... 1
Functions and physical dimensions .. 2
What does it all mean? .. 5
The oscillator model and the possible meaning of the wavefunction .. 8
Annex: Spin and the imaginary unit .. 10
The meaning of uncertainty and, possibly, the wavefunction

Introduction
Quantum mechanics is, essentially, a combination of Maxwell’s equations and the Planck-Einstein relation. The Planck-Einstein relation gives us Planck’s quantum of action, which appears to model an elementary oscillation: an electron is an oscillating charge, a photon, a ring current in a superconductor is an oscillation too, an atomic or molecular orbital obeys the same law, an oscillation in a two-state system, etcetera. Studying quantum physics is hard, very hard, because the formalism abstracts away from such specifics. We talk of quantum-mechanical states, but we abstract away from the physical reality underneath: we think of them as energy states only, but they must represent the system as a whole. The wavefunction must have all of the information on position and momentum (linear or angular): otherwise we would not be able to apply the relevant operators and get (average) values (or probabilities) for these observables (or measurables) out of it.¹

The main difference between classical physics and quantum physics is that, in quantum physics, we have only limited knowledge of the state of the system: there is uncertainty. The exact nature of this uncertainty is the subject of philosophical discussion. Uncertainty may result from:

1. An impossibility to measure what we want to measure, or an impossibility to observe the system: we might, perhaps, refer to this as an Ungewissheit.²
2. The limited precision of our measurement: this is what Heisenberg originally referred to as an Ungenauigkeit, i.e. before it became some metaphysical or epistemological principle.
3. The measurement might fundamentally disturb the system and, as such, cause the information to be unreliable.
4. The uncertainty is, perhaps, inherent to Nature. This philosophical position is referred to as the Copenhagen interpretation of quantum mechanics, and Heisenberg referred to it as the Unbestimmtheitsprinzip.

Bell’s theorem is supposed to prove the latter position but a theorem depends on its assumptions – and these assumptions may be challenged. We basically agree with the remarks of the Dutch physicist H.A. Lorentz at the occasion of the 1927 Solvay Conference: there is no need to elevate indeterminism to a philosophical principle.³ The more important question is: how does quantum physics model it? How

¹ Physicists prefer the term observable: a physical quantity that can be measured. This definition shows we could also refer to it as a measurable. Both nouns have the same meaning.
² We did not check with the philosophers here, so our terminology suggestions are just what they are: suggestions. Words do not matter, but the distinctions might.
³ The full quote is this: “Je pense que cette notion de probabilité [Heisenberg-Bohr] serait à mettre à la fin, et comme conclusion, des considérations théoriques, et non pas comme axiome a priori, quoique je veuille bien admettre que cette indétermination correspond aux possibilités expérimentales. Je pourrais toujours garder ma foi déterministe pour les phénomènes fondamentaux, dont je n’ai pas parlé. Est-ce qu’un esprit plus profond ne pourrait pas se rendre compte des mouvements de ces électrons. Ne pourrait-on pas garder le déterminisme en en faisant l’objet d’une croyance? Faut-il nécessairement ériger l’ indéterminisme en principe?”
does it deal with it? This paper wants to offer some thoughts on that and, in the process, highlight some contradictions which support Lorentz’s (and Einstein’s) position: we only have statistical indeterminism here and, hence, quantum physics is not a radical departure from classical physics. Hence, we will argue that quantum-mechanical uncertainty is nothing but statistical indeterminism. This is, effectively, a fifth interpretation which can be added to the list above, and we think it is the right one.

However, the more interesting question is whether or not we can show that quantum-mechanical amplitudes and the wavefunction\(^4\) – think of Schrödinger’s equation and the solutions to it – have physical meaning. Can we do that? Let us try and see where we get.

Functions and physical dimensions

A dimensional analysis is always a good place to start, but what equations should we use? Feynman’s canonical examples include the maser (the ammonia molecule as a two-state system), an electron moving in a lattice (\(n\)-state system modeling position), electron orbitals (Schrödinger’s equation in a central field\(^5\)), and many others. Where do we start? We will probably want to start from the simplest and let us, therefore, analyze the two-state system. However, our short list already triggers an obvious remark: the formalism of quantum mechanics talks about the states of system but, in practice, the state is often reduced to one aspect only: the position state, the momentum state, the energy state, etcetera. Using Dirac’s bra-ket notation, we may formally write this as:

- \(| x = n - 1 \rangle, | x = n \rangle, | x = n + 1 \rangle\), etc. (position states in an \(n\)-state system\(^6\))
- \(| \text{mom} = p \rangle \) (momentum state\(^7\))
- \(| E = -E_R/n^2 \rangle \) (energy states\(^8\))

Hence, we should be cautious and, at each stage, clearly identify what exactly we are talking about. These states will all be represented by a complex-valued function (the wavefunction) or a complex number (a quantum-mechanical amplitude) but, a priori, we should expect that the interpretation of what the real and imaginary part of the wavefunction or amplitude might actually be, might depend on the situation at hand.

As we are talking terminology here, we should warn the reader for another potentially confusing thing: the term amplitude may refer to the complex number as a whole (let us, as per the convention\(^9\), write it

\[^4\] The two are not necessarily the same, and their meaning may also depend on the situation that is being modelled.

\[^5\] A central field depends on \(r\) only: the distance from the pointlike charge which, in the case of electron orbitals, is the nucleus (the proton inside of the hydrogen atom).

\[^6\] Think of a lattice on a line (a linear array of atoms or molecules).

\[^7\] The mom abbreviation is Feynman’s, and the example here is linear momentum. If we are interested in the direction, we should probably write the momentum as a vector: \(p\). We could also have given an example of an angular momentum state, in which case we should also distinguish between the magnitude and the direction of spin. Linear momentum is a polar vector (aka a true vector). Angular momentum is an axial vector (aka a pseudovector). Both are equally real in a physical sense, that is.

\[^8\] The energies here are the energy levels of the \(n\)th orbital. \(E_R\) is the Rydberg energy (ionization energy).

\[^9\] The use of a plus or a minus sign for the phase \((+\theta\) or \(-\theta\)) in the complex exponential – hence, writing \(e^{i\theta}\) or \(e^{-i\theta}\) – is a matter of mathematical convention. In our papers, we have consistently argued the two mathematical possibilities may represent two different states: if, for some reason, the wavefunction would actually represent a physical rotation (of charge or whatever), then the two possibilities obviously represent opposite spin directions.
as \(r = a \cdot e^{-i \theta} \) or to the coefficient in front of it (\(a \) only). Because the reader may doubt this statement, we will immediately give an example out of one of the more advanced models: the wavefunctions for the state with an angular dependence to Schrödinger’s equation for the hydrogen atom. These wavefunctions are written as:

\[
\psi_{n,l,m} = Y_{l,m}(\theta, \phi) F_{n,l}(\rho)
\]

with:

\[
\rho F_{n,l}(\rho) = e^{-\alpha \rho} \sum_{k=l+1}^{\infty} a_k \rho^l
\]

and:

\[
Y_{l,m}(\theta, \phi) = P^m_l(\cos \theta) e^{im\phi}
\]

These wavefunctions are, in fact, only the coefficient of the actual wavefunction because the whole derivation is based on a separation of the time-dependent and the spatial part of the wavefunction. Somewhat confusingly, the same symbol (\(\psi \)) is used to denote both, so the difference is only obvious when one writes the argument (independent variables) of the function in full:

\[
\psi(r, t) = e^{-\frac{E}{\hbar} t} \psi(r) = e^{-\frac{E}{\hbar}} \psi_{n,l,m}(\rho, \theta, \phi)
\]

This all looks rather monstrous – it is! – so let us break it down piece by piece. You should first note the switch from Cartesian coordinates \(r = (x, y, z) \) to polar (or spherical\(^{11} \)) coordinates \(r = (\rho, \theta, \phi) \), because that is easier when talking circular or orbital motion.\(^{12} \) In addition, the distance from the center (the radial coordinate \(r \)) is now measured in a natural unit that goes with the system – the Bohr radius \(r_B \), to be precise:\(^{13} \):

\[
\rho = \frac{r}{r_B} = \frac{\alpha m_e c}{\hbar} r
\]

As we are talking natural units, we may also note that, as per the Planck-Einstein relation \(E = h \cdot \omega \Leftrightarrow \omega = E/\hbar \), the time-dependent part of the wavefunction \((e^{-\omega t}) \) may be thought of as a clock ticking at the

\(^{10} \) We follow the notation from Feynman’s Lectures, from which we borrow a lot of the material. We trust that the reader will be able to look up the original Lectures and distinguish between Feynman’s formulas and text and our presentation and interpretation of it.

\(^{11} \) Polar coordinates usually refer to a two-dimensional coordinate system, so a spherical coordinate system is then its three-dimensional version.

\(^{12} \) We still need to prove we are actually talking circular or orbital motion of some charge here, but we think the circumstantial evidence is fairly convincing.

\(^{13} \) We wrote the Bohr radius as a fraction of the Compton radius here. The reader can verify the substitutions, including Feynman’s use of \(e^2 \) (the squared charge of an electron divided by \(4\pi \varepsilon_0 \)), by substituting the fine-structure constant (\(\alpha \)) for its definition:

\[
r_B = \frac{\hbar}{\alpha m_e c} = \frac{\hbar}{\alpha} \frac{2 \varepsilon_0 \hbar c}{q_e^2 m_e c} = \frac{4 \varepsilon_0 \hbar^2}{m_e q_e^2} = \frac{\hbar^2}{m_e c^2 \
\]

Talking natural units, as part of solving the (Schrödinger wave) equation(s), Feynman also writes energies \(E \) in terms of the Rydberg energy: \(E = E_R \varepsilon \), with \(E_R = \frac{\alpha^2 m_e c^2}{2} = \frac{q_e^2 m_e c^2}{8 \varepsilon_0 \hbar^2 c^2} = \frac{q_e^4 m_e c}{2 (4\pi)^2 \varepsilon_0^2 \hbar^2} = \frac{m_e \varepsilon^4}{2 \hbar^2} \). Hence, \(\varepsilon \) is like \(\rho \), but it is used to measure energy.
natural frequency of this oscillation. The (other) functions and symbols may be briefly explained as follows:

— The $F_{n,l}(\rho)$ function is a (finite) power series and is, obviously, just some real-valued function of the radial distance ρ.

— The $P^m_l(\cos\theta)$ functions are known as the ‘associated Legendre polynomials’ (or functions). You should note that the superscript is an order number: it is not an exponential (it is not a power of P_l, in other words). They are usually written in terms of derivatives of ordinary Legendre polynomials. We must refer the reader to readily accessible material here.

The $Y_{l,m}(\theta, \Phi)$ functions as a whole are known as the spherical harmonics (beautiful name, isn’t it?) and they are a function of the polar and azimuthal angles θ and Φ. You should note that the $\psi_{n,l,m}$ amplitude (the coefficient of the actual wavefunction, really) would be real-valued, always, if we would not have that $e^{im\Phi}$ factor, which is equal to 1 (and, therefore, equally real-valued) if $m = 0$. And, of course, if we would multiply it through with the time-dependent part of the wavefunction ($e^{-i(E/\hbar)t}$):

$$e^{-i(E/\hbar)t}e^{i m\Phi} = e^{-i\omega t + m\Phi}$$

Hence, this factor is just a phase shift and, therefore, should not matter at all in terms of the physics of the situation (it is just a matter of choosing our $t = 0$ point). So let us quickly look at that quantum number: what does it stand for? It is the magnetic quantum number, and it is usually denoted as m_z and referred to as the z component of the angular momentum. This sounds very mysterious, and it is: it is related to the weird 720-degree symmetry of the wavefunction which, in turn, results from mainstream academics not using the plus or minus sign of the imaginary unit to distinguish between the direction of spin.

[...] You should read the latter phrase again, slowly. And because you will not understand what we are saying here, we talk about this in the annex. Here, we will just note what you know already: m is a number between $-l$ and $+l$ ($-l \leq m, \leq +l$) and it gives us the (possible) orientations of the subshell. Here, we should quickly add that l is the quantum number that gives us the (possible) orientations of the subshell within a given energy.

14 We will let the reader think this through, and just remind him of the obvious formula for the cycle time (T): $\omega = 2\pi f \Leftrightarrow T = 1/f = 2\pi/\omega$. This shows the cycle time T is equal to $T = \omega/2\pi = E/2\pi\hbar = E/\hbar$. The natural (angular) frequency is nothing but the natural time measured in radians: $\omega = 2\pi/T$. It is a somewhat weird idea to measure time in radians but, on the unit circle, the radian may be thought of as a natural distance as well as a natural time unit. It helps to literally think of an old-fashioned clock (with a hand for the seconds) ticking time away, with the tip of the hand doing the (circular) distance. Another, more abstract way, of thinking is this: we count the time in terms of the cycle of this oscillation (1, 2,..., n,...) but, if we would want to subdivide these cycles any further, we would divide them 2π (radians) rather than 12 (hours) or 60 (minutes or seconds).

15 We used the Wikipedia article on these mathematical functions for more detail.

16 We use Feynman’s notation here, and so he uses θ (theta) instead of some other letter (e.g. φ, ϕ) for the polar angle, which is slightly confusing because, in physics, θ is also used to denote the phase of the wavefunction, like in $\psi = e^{i\theta} = e^{i\varphi}$. Wikipedia says the mathematical convention is to use θ (theta) and φ (phi) for the polar and azimuthal angle respectively. Our ϕ (Φ) for the azimuthal angle is the capital letter phi. We may, therefore, use the lowercase phi (ϕ) if we would need to denote a phase, which is what we might do. As long as we know what we are talking about, it is all good, right?
state \(n \). This \(n \) is the principal quantum number, and \(l = 0, 1, 2, \ldots n - 1 \). Hence, if we have one energy state only, then we have only state: \(l = 0 \).\(^\text{17}\)

What is the point? The point is that, when thinking about the physics of the situation, we can forget about that that \(e^{i\omega t} \) factor. Think of it as being part of the time-dependent part of the wavefunction: we just shift the origin of time. That amounts to looking at the system – the oscillation, that is – a tiny bit earlier or later, and that does not matter because it is a perfectly regular oscillation. What we are interested in the shape of the physical orbitals, their energies, and other physical variables. Hence, for all practical purposes, we should think of the coefficient of our wavefunction – or the amplitude \textit{sensu stricto}, or the spatial (position-dependent) part of the wavefunction, or whatever you want to call it – as a real number!

Is that important? Yes, it is. Knowing that a wavefunction – any wavefunction, really – can always be written as the product of a time-dependent and a spatial or time-independent function is huge, and it is equally huge to know that the time-dependent part will always look like \(e^{-i\omega t + \phi} \), and that the \(\phi \) here is just some random phase shift which does not matter because we can always shift the \(t = 0 \) point however we would want to shift it: the physics of the situation won’t change! This is reflected in the fact that the absolute square\(^\text{18}\) of a complex exponential (when its coefficient \(a \) is 1, of course) is always equal to 1. We apologize for writing this out but it is, perhaps, good to remind ourselves of what a complex number really is: the vector sum of a sine and a cosine.

\[
|e^{i\theta}|^2 = |\cos \theta + i \sin \theta|^2 = \sqrt{\cos^2 \theta + \sin^2 \theta}^2 = \sqrt{1}^2 = 1
\]

Let us continue our search of some physical meaning of the real and imaginary parts of the wavefunction by continuing our example.

What does it all mean?

Below we copy table 19.1 out of Feynman’s Lectures, which gives us the functional form of those spherical harmonics: they combine sine and cosine functions. Now, we are interested in the probability to find the electron at point \(\mathbf{x} = (x, y, z) \)\(^\text{19}\), and quantum mechanics tells us we can calculate these probabilities by taking the absolute square of the \(\psi(\mathbf{x}) \) wavefunction. To be precise, the theory of operators – and of the position operator, in particular – tells us the probability density \(P(\mathbf{x}) \) will be equal to \(P(\mathbf{x}) = |\psi(\mathbf{x})|^2 = \psi(\mathbf{x}) \cdot \psi^*(\mathbf{x}) = \psi^*(\mathbf{x}) \cdot \psi(\mathbf{x}) \), with \(\psi^*(\mathbf{x}) \) the complex conjugate of \(\psi(\mathbf{x}) \).\(^\text{20}\)

\(^{17}\) We should refer to standard textbooks here, but we think our own presentation in our classical explanation of the Lamb shift has the advantage of (1) being succinct and (2) relating it to what we said on these weird 720-degree symmetries vanishing if one would use the \(\pm \) sign in front of the imaginary unit to incorporate the two possible spin directions in the analysis straight from the start.

\(^{18}\) This term is a (slightly confusing, perhaps) shorthand for the square of the absolute value of a (complex- or real-valued) number. It is also referred to as the square of the modulus of the complex sum (sum of the real and imaginary part of the number).

\(^{19}\) We have a bad habit of switching from \(r \) to \(\mathbf{x} \), or vice versa, for no reason whatsoever – except that you will find \(\mathbf{x} \) is more common than \(r \) in the literature. A bold letter is a vector, in any case, and you may think \(r \) suggests we are working in polar rather than Cartesian coordinates, and vice versa.

\(^{20}\) We assume the extension of ideas and formulas from one-dimensional space (a line) to three dimensions is as straightforward as Feynman (III-20-4) says it is. We will carefully check – but probably (much) later.
That gives us these wonderful polar graphs which, literally, depict the shape of those electron orbitals.21 We may note here that we are taking the square of the absolute value of a real-valued amplitude here. Hence, what matters is the magnitude only: positive or negative amplitudes give the same probability. Take, for example, the p-orbital ($l = 1$) for $m = 0$. The spherical harmonic is a simple $\cos\theta$ function and, yes, $|\cos\theta|^2 = \cos^2\theta = |\cos(-\theta)|^2 = \cos^2(-\theta)$.

So, yes, interpreting the math is not all that difficult. We are effectively talking the physical orbitals of the pointlike electron charge here, and the uncertainty is a mere statistical indeterminism. So it is really just like the propeller of that airplane: we do not know where it is, exactly, but we know it is always somewhere, at any given point in time. Please note this is not your usual crackpot interpretation of quantum physics. We may usefully quote Richard Feynman here:

“The wave function $\psi(r)$ for an electron in an atom does not describe a smeared-out electron with a smooth charge density. The electron is either here, or there, or somewhere else, but wherever it is, it is a point charge.” (Feynman’s Lectures, III-21-4)

21 To show we do google other textbooks from time to time, we refer the reader to a chapter of a course (in physical chemistry) at the University of Michigan: instructive, no hocus-pocus and good graphs.
However, these reflections do not solve the question we started out with: what is the physical meaning of the real and imaginary parts of the wavefunction? Would they have a physical dimension, like a field – something like newton per coulomb (N/C), like the electric field, for example? In addition, Feynman’s take on it leaves other interpretational issues: Schrödinger’s orbitals imply the electron spends most of its time right on top of the proton, so how should we think of that? We could, perhaps, imagine some short-range repulsive force here but such solution would inject entirely new dynamics and, therefore, looks pretty unacceptable: assuming the electron, somehow, does go straight through the center or, else, bounces back – fully elastically, because momentum and energy should be conserved – is the only solution but raises other questions (which we will try to examine later, perhaps). Back to the question of a physical dimension for the wavefunction.

Should it have one? The argument is time and position – simple numbers, right? – so the wavefunction might just project these numbers onto a two-dimensional mathematical space only, right? Maybe. Maybe not. Could the operators give us a clue? Unfortunately not23. Their physical dimensions are OK already24:

\begin{itemize}
 \item The energy operator \(H = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \) comes with the \(\frac{N^2 m^2 s^2}{m^2 \text{kg}} + N \cdot m = \frac{N^2 m^2 s^2}{m^2 \text{N} \cdot \text{m}} + N \cdot m \), N \cdot m \text{ dimension, so that is the physical dimension of energy alright.}
 \item Likewise, the position operator \(x \) or and the momentum operator \(P_x = -i\hbar \frac{\partial}{\partial x} \) come with the physical dimension of distance (m) and momentum \(\left(\frac{N \cdot \text{m} \cdot \text{s}}{m} \right) = N \cdot s \) respectively.
\end{itemize}

22 I downloaded this image from a website selling Christmas presents long time ago, and I have not been able to trace back from where I have got it. If someone recognizes this as their picture, please let us know and we will acknowledge the source or remove it.

23 The energy operator – and the others as well, perhaps – depend on the problem at hand. The one here is derived from Schrödinger’s wave equation for electron orbitals, so we basically continue the analysis for the very same problem at hand.

24 The symbols used for operators vary (with or without hat or special script). Ours are probably too simple.
Finally, the angular momentum operator \(L_z = x \frac{\hbar}{i} \frac{\partial}{\partial y} - y \frac{\hbar}{i} \frac{\partial}{\partial z} \) comes with the \(m \frac{N \cdot m \cdot s}{m} \) dimension, so that is, effectively the same as that of Planck’s quantum of action itself (in reduced or non-reduced form).

The oscillator model and the possible meaning of the wavefunction

We have been thinking about this for a while now, and we have no definite answer. However, the interplay between the real and imaginary part of the wavefunction reminds one of these probabilities ‘sloshing back and forth’, as Feynman would say, as a function of time in a simple two-state system. So what would slosh back and forth between the real and imaginary part of the wavefunction? We see one obvious candidate – to be truthful: we do not see any others – and that is kinetic and potential energy.

Here we need to revive, perhaps, our two-dimensional oscillator model, but extend it from circular orbitals to orbitals with fancier geometric shapes, such as those in Schrödinger’s model of an atom, indeed!

Let us briefly recap the metaphorical idea.\(^{25}\) If we combine two oscillators in a 90-degree angle – think of two springs or two pistons attached to some crankshaft\(^{26}\) – then we get some *perpetuum mobile* which stores twice the energy of a single oscillator, and the motion of the pistons will reflect that of a mass on a spring: it is described by a sinusoidal function, with the zero point at the center of each cylinder. We detailed the math elsewhere\(^ {27}\) and only note the model is relativistically correct. Indeed, the relativistically correct force equation for one oscillator is:

\[
F = \frac{dp}{dt} = F = -kx \quad \text{with} \quad p = m v = \gamma m_0 v
\]

The energy conservation equation can be derived from multiplying both sides with \(v = \frac{dx}{dt} \). One can then verify the following\(^ {28}\):

\[
v \frac{d(\gamma m_0 v)}{dt} = -kxv \iff \frac{d(mc^2)}{dt} = -\frac{d}{dt}\left[\frac{1}{2}kx^2 \right] \iff \frac{dE}{dt} = \frac{d}{dt}\left[\frac{1}{2}kx^2 + mc^2 \right] = 0
\]

For the potential energy, one gets the same \(kx^2/2 \) formula one gets for the non-relativistic oscillator. That is no surprise: potential energy depends on position only, not on velocity, and there is nothing relative about position. However, the \((\frac{1}{2})m_0v^2 \) term that we would get when using the non-relativistic formulation of Newton’s Law is now replaced by the \(mc^2 = \gamma m_0 c^2 \) term. Both energies vary – with position and with velocity respectively – but the equation above tells us their sum is some constant.

\(^{25}\) These ideas will probably intrigue us for the rest of our life, and we are not sure if we will ever get beyond metaphorical ideas only in regard to these deep questions.

\(^{26}\) Academics seem to prefer springs, but I like engines. In fact, the metaphor was inspired by a discussion with my son on the efficiency of a Ducati engine, which effectively has a 90-degree bank angle. The 90° angle of the V-2 makes it possible to perfectly balance the counterweight and the pistons, ensuring smooth travel always. With permanently closed valves, the air inside the cylinder compresses and decompresses as the pistons move up and down. It provides, therefore, a restoring force. As such, it will store potential energy, just like a spring.

\(^{27}\) See: *The Wavefunction as an Energy Propagation Mechanism*.

\(^{28}\) I am grateful to an unknown undergraduate student for posting this solution. Unfortunately, I lost the reference. Whomever recognizes this, please do email as I would like to properly credit the good work.
Hence, the game with two oscillators working in tandem should work here too.29 In addition, the analogy can be extended to include two \textit{pairs} of springs or pistons, in which case the springs or pistons in each pair would help drive each other. Even more interestingly, we may imagine a multi-piston \textit{radial} engine (Figure 3)30, as illustrated

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{radial_engine.png}
\caption{The metaphor of the radial engine (source: \url{Wikipedia})}
\end{figure}

The point is this: somehow, in this beautiful interplay between linear and circular motion, energy is borrowed from one place and then returns to the other, cycle after cycle. While transferring kinetic energy from one piston to the other, the crankshaft will rotate with a constant angular velocity: linear motion becomes circular motion, and vice versa. Most importantly, we can \textit{add} the total energy of the oscillators to get the total energy of the whole system to get the \(E = ma^2\omega^2 \) formula. The only thing that remains to be done then, is to substitute for the tangential velocity \(v_t = a\omega \). In fact, substituting \(a\omega \) for \(c = a\omega \) gives us Einstein’s mass-energy equivalence relation (\(E = mc^2 \)) is what inspired our mass without mass model of an electron.

In short, the idea here is that the oscillations of the real and imaginary part of the wavefunction would, somehow, incorporate the energy conservation law. Is this interpretation compatible with operator theory? It should be: if we know the potential and kinetic energy – \textit{at any point in time} – we should be able to derive position, momentum, and all other relevant physical observables from it, isn’t it? Of course, we admit we should formally show this by reexamining the textbook derivations of operators so as to prove the point. If someone would be able to do it for us, please do email! We would be very happy to see such result – because, frankly, we still do not really get this squaring business. It must be something with Pythagoras’ Theorem. Something obvious involving the addition of two orthogonal vectors, but I just cannot see it yet. 😊

Jean Louis Van Belle, 22 October 2020

29 The analogy can be extended to include two \textit{pairs} of springs or pistons, in which case the springs or pistons in each pair would help drive each other.

30 We did not google references here, but the \url{Wikipedia article on radial engines} looks like a good start.
Annex: Spin and the imaginary unit

When thinking of spin as physical angular momentum, one can easily integrate the concept of spin in the elementary wavefunction by thinking about the direction of motion, as illustrated below (Figure 4): we can go from the +1 to the −1 position on the unit circle taking opposite directions.

Hence, combining the + and − sign for the imaginary unit with the direction of travel, we get four mutually exclusive structures for our electron wavefunction (see Table 1).

![Diagram showing wavefunctions for spin and direction](image)

Figure 4: $e^{i\pi} \neq e^{-i\pi}$

Table 1: Occam’s Razor: mathematical possibilities versus physical realities

<table>
<thead>
<tr>
<th>Spin and direction of travel</th>
<th>Spin up ($J = +\hbar/2$)</th>
<th>Spin down ($J = -\hbar/2$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive x-direction</td>
<td>$\psi = \exp[(ikx - \omega t)]$</td>
<td>$\psi^* = \exp[-(ikx - \omega t)] = \exp[i(\omega t - kx)]$</td>
</tr>
<tr>
<td>Negative x-direction</td>
<td>$\chi = \exp[-(ikx + \omega t)] = \exp[i(\omega t + kx)]$</td>
<td>$\chi^* = \exp[i(\omega t + kx)]$</td>
</tr>
</tbody>
</table>

Unfortunately, the mainstream interpretation of quantum mechanics does not integrate the concept of particle spin from the outset because the + or − sign in front of the imaginary unit (i) in the elementary wavefunction ($a\cdot e^{-i\theta}$ or $a\cdot e^{i\theta}$) is thought as a mathematical convention only. This non-used degree of freedom in the mathematical description then leads to the false argument that the wavefunction of spin-$\frac{1}{2}$ particles has a 720-degree symmetry. Indeed, physicists treat −1 as a common phase factor in the argument of the wavefunction.

However, we should think of −1 as a complex number itself: the phase factor may be $+\pi$ or, alternatively, $-\pi$: when going from +1 to −1 (or vice versa), it matters how you get there—as illustrated below.

31 Mainstream physicists therefore think one can just multiply a set of amplitudes – let us say two amplitudes, to focus our mind (think of a beam splitter or alternative paths here) – with −1 and get the same physical states.

32 The quantum-mechanical argument is technical, and so I am not going to reproduce it here. I do encourage the reader to glance through it, though. See: Euler’s Wavefunction: The Double Life of −1. Note that the $e^{i\pi} \neq e^{-i\pi}$ expression may look like horror to a mathematician! However, if he or she has a bit of a sense for geometry and the difference between identity and equivalence relations, there should be no surprise. If you are an amateur physicist, you should be excited: it is, effectively, the secret key to unlocking the so-called mystery of quantum mechanics. Remember Aquinas’ warning: *quia parvus error in principio magnus est in fine.* A small error in the beginning can lead to great errors in the conclusions, and we think of this as a rather serious error in the beginning!