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Abstract

There are solutions of the Klein-Gordon equation for the massless neutrino that produce massless neutrino oscillation

of flavor. These solutions serve as a counterexample to Pontecorvo, Maki, Nakagawa, and Sakata theory for neutrino

oscillation of flavor, which implies neutrinos must have mass contrary to the standard model. We show that the wave

function for the massless antineutrino for an inverse β decay (IBD) is a superposition of two independent solutions of

the Klein-Gordon equation. One solution represents the latent incident wave upon an IBD. The other solution represents

the latent reflected wave from the IBD. This superposition renders a compound modulated wave function with regard

to amplitude and phase modulations. This compound modulation is shown to facilitate neutrino oscillation that may be

massless and, therefore, consistent with the standard model. Extra to a massless counterexample, the weak interaction is

shown to transmute the wave function during an IBD by changing the amounts of the latent incident and latent reflected

wave functions that are allocated to the superposition.
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1 Introduction

The Pontecorvo, Maki, Nakagawa, and Sakata (PMNS)
theory for oscillation of neutrino (ν) flavor implies that
the neutrino has a finite mass in contrast to the stan-
dard model [1–4]. PMNS theory, which was developed
in the mid-twentieth century in the absence of a contend-
ing theory, soon became preeminent regarding neutrino
oscillations including its implication that the neutrino
must have a finite mass in order to oscillate. A coun-
terexample to PMNS theory now exists: the quantum
trajectory representation of quantum mechanics had pre-
dicted in 2017 that massless neutrino oscillation is an al-
ternative possibility that is consistent with the standard
model [5]. However, the quantum trajectory representa-
tion is presently arcane, for it is couched in a quantum
Hamilton-Jacobi formulation [5–17]. As a result, PMNS
theory has maintained its preeminence on neutrino os-
cillation. A way to overcome this preeminence is to de-
scribe massless neutrino oscillation in the more familiar
wave-function representation, which would be more ac-
cessible to a much broader audience. Our objective in
this paper is to provide such.

A wave function representation that is a counterex-
ample to PMNS theory is attainable. This theoreti-
cal counterexample renders massless neutrino oscillation
while also showing that PMNS theory is not the exclu-
sive explanation of neutrino oscillation. In this paper,
we show that there are mathematical solutions of wave
equations, which to the best of our knowledge have been
used only a few times [18–23] to describe wave phenom-
ena, and which invite further investigation. We study
massless neutrino oscillation with these mathematical
solutions of the Klein-Gordon equation for a massless
antineutrino. This mathematical solution is synthesized
by the superpositional principle from two independent
solutions of the Klein-Gordon equation for an antineu-
trino before encountering a charged current interaction.
The two solutions are the latent incident solution and the
latent reflected solution. The “quantum action” of the
Klein-Gordon equation is composed of both independent
solutions of the Klein-Gordoen equation [14] and can be
seen as the order ~0 term of the quantum action of QFT.

Extra to the initial goal of adducing a massless coun-
terexample, the behavior of the synthesized solution also
gives insight into the weak interaction (weak force). A
byproduct of this investigation shows that the weak in-
teraction without causing any exchange of energy can
transmute the Klein-Gordon solution from a synthesized
solution to a plane-wave solution.

The particular charged current interaction that we
examine herein is the inverse beta decay (IBD) where
[24]

νe + p
W+ boson exchange−−−−−−−−−−−−−−→ e+ + n, (1)

in which the antineutrino, ν, participates as an electron
antineutrino, νe. The wave function for ν is specified by
ψ. When νe arrives at the point qb ready for IBD absorb-
tion in (1), its ψ is assumed in this ab initio calculation
to be then a traveling complex-exponential plane wave,
exp(ikq) with wave number k, in cartesian coordinate
q, and tacitly with amplitude 1. While the ab initio
calculation develops flavor oscillations for a massless ν,
the conventional terminology “neutrino oscillation” is re-
tained for referencing the oscillation phenomenon herein.

An outline of the rest of this paper follows. In §2 we
develop a model by an ab initio computation for massless
neutrino oscillation for an IBD. The wave function for
the neutrino is synthesized from the latent solutions for
the incident and reflected wave functions by the super-
positional principle. The latent incident and latent re-
flected wave functions are traveling complex-exponential
plane waves that are independent one-dimensional solu-
tions of the Klein-Gordon equation. This synthesized
solution is shown to be compoundly modulated with re-
gard to amplitude and phase. This compound modu-
lation induces periodic nonuniform propagation that in
turn facilitates neutrino oscillation. The amplitude and
phase modulations are individually analyzed. We ap-
ply the same modulation analyses to the wave function’s
spatial derivative. In this wave-function representation
for massless oscillation, the weak interaction changes
the synthesized wave function to a traveling complex-
exponential plane-wave solution, which is then ready for
absorption by the IBD process. In §3, we examine se-
lected didactic examples. The examples show that the
individual contributions of phase modulation and am-
plitude modulation complement each other. Where one
modulation is at a peak, the other is at a null. The ex-
amples also show that the compound modulations of the
wave function and its derivative supplement each other.
That is where the amplitude modulation increases dila-
tion in one, it decreases it in the other. And where phase
modulation rotates the phase of one clockwise, it rotates
the other’s phase counterclockwise. In §4 a brief discus-
sion is presented. Together, the complementing and sup-
plementing are shown to facilitate periodic nonuniform
propagation that permits massless neutrino oscillation.
Findings and conclusions are presented in §5.

2 Ab Initio Calculation

The one-dimensional stationary Klein-Gordon equation
(SKGE) for an antineutrino with mass m and for the
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Cartesian dimension q is a second-order, linear, homoge-
neous ordinary differential equation given by [25]

−~2c2
∂2ψ(q)

∂q2
+ (m2c4 − E2)ψ(q) = 0 (2)

where ~ is Plank’s constant, c is speed of light and E
is energy. As such, the superpositional principle applies
to the SKGE’s solutions. The inertial reference frame
for describing ψ of (2) is the frame for which the target
proton of the IBD is at rest. This makes E dependent
on the dynamics of the target proton. The threshold en-
ergy for executing an IBD is Ethreshold = 1.806 MeV for
νe and progressively greater for the analogous charged
current interactions for νµ and ντ . Herein, it is always
assumed the ν has energy greater than the threshold en-
ergy. The notation ψ denotes that the wave function of
the antineutrino is a solution of (2) but does not specify
whether it is unispectral, ψ = exp(ikq), or bispectral,
ψ2. Equation (2) remains well posed should m = 0 in
agreement with the standard model. Studying the case
m = 0 is sufficient to render a massless counterexample
to PMNS. For antineutrino energy E and nil mass, a
set of independent solutions sufficient to solve (2) may

be given by {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} where the
wave number k = E/(~c).

The incident antineutrino is assumed to propagate
in the +q direction toward the target proton of an IBD,
while any reflection from an IBD would propagate in the
−q direction. The solution ψ = exp(ikq) is a unispectral
wave function with one spectral component, +k (the so-
lution of the homogeneous SKGE is defined to within a
constant in phase). Its derivative ∂qψ = ikψ is also unis-
pectral and is displaced in phase from ψ1 by a constant
π/2 radians. The amplitude of ∂qψ relative to that of
ψ is multiplied by the factor k. Thus, the unispectral
ψ(q) displays uniform rectilinear motion, which presents
a constant relationship,

∂qψ
/
ψ = ∂q ln(ψ) = ik, (3)

to any encountered current interactions. The constant
character of (3) is expected, for ψ(q) is an exponential
of the linear variable q. Uniform rectilinear propagation
precludes flavor oscillations.

Let the incident antineutrino to an IBD have a bis-
pectral wave function, ψ2, with spectral components given
by wave numbers {+k,−k}. We can synthesize a bis-
pectral ψ2 by the superpositional principal from the set
{exp(+ikq), exp(−ikq)} of independent solutions for the
SKGE. The incident bispectral ψ2 may be presented in
a few representative forms as [5]

ψ2 =

bispectral solution of SKGE by superpositional principle︷ ︸︸ ︷
α exp(+ikq)︸ ︷︷ ︸

latent incident wave

+ β exp(−ikq)︸ ︷︷ ︸
latent reflected wave

(4)

= (α− β) exp(ikq)︸ ︷︷ ︸
traveling wave

+ 2β cos(kq)︸ ︷︷ ︸
standing wave

= (α+ β) cos(kq) + i(α− β) sin(kq)︸ ︷︷ ︸
coherent standing waves

(5)

= Aψ exp(i Pψ),︸ ︷︷ ︸
compoundly modulated traveling wave

. (6)

where all forms , (4)–(6), are solutions of the SKGE. In
(6), ψ2 is compoundly modulated for its amplitude, Aψ,
and phase, Pψ are modulated as given by

Aψ =

amplitude modulation︷ ︸︸ ︷
[α2 + β2 + 2αβ cos(2kq)]1/2

and

Pψ =

phase modulation [5]︷ ︸︸ ︷
arctan

(
α− β
α+ β

tan(kq)

)
.

Equations (4)–(6) for the antineutrino’s wave func-
tion are all representations of a wave function synthe-
sized by the superpositional principle. As such, each
individual equation of (4) through (6) represents a syn-
thesized solution of the SKGE consistent with the or-
thodox interpretation of quantum mechanics. The coef-
ficients α and β respectively specify the amplitudes for
the latent incident and reflected waves associated with
an IBD. Propagation of the latent incident wave in the
+q direction implies that α2 > β2. The coefficients α
and β are normalized by

α2 − β2 = 1 (7)

consistent with one νe in (1) for an IBD (it is also the
normalization used in the quantum trajectory represen-
tation). Knowing the value of one coefficient implies
knowing the value of the other by normalization, (7).
If the conditions α > 1 and 0 < β2 = α2 − 1 exist,
then bispectral propagation in the +q direction follows.
The bispectral propagation for ν consistent with (4)–(6)
is nonuniform, albeit still rectilinear, in the +q direc-
tion. As such, ψ2(q) may also be considered to be the
wave function synthesized by the superposition of the
latent incident wave and the the latent reflected wave
upon each other. Note that herein the coefficients could
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have been expressed hyperbolically by α = cosh(γ) and
β = sinh(γ) consistent with (7).

For completeness, if the incident and reflected waves
were neither latent nor superimposed, then the wave-
function representation would be in a two dimensional
space {qincident, qreflected} given by

ψ(qincicdent, qreflected) =α exp(+ikqincident)

+ β exp(−ikqreflected),

which is not equivalent to ψ2(q) of (4)–(6). Equations
(4)–(6) individually show the superpositioning to de-
scribe ψsuperimposed in one-dimensional space by a single
independent variable q. Also for completeness, a liter-
ature search for “reflected neutrinos” on the web has
found nothing for reflected neutrinos from charged cur-
rent interactions per se but did find an unpublished re-
port regarding reflections of antique neutrinos from the
big bang [26].

Let us examine the compoundly modulated travel-
ing wave, (6), in special situations for didactic reasons.
Should β = 0, then the amplitude, Aψ, and phase, Pψ,
would respectively become

Aψ
∣∣
β=0

= [α2 + β2 + 2αβ cos(2kq)]1/2|β=0 = α|β=0 = 1

(8)
and

Pψ
∣∣
β=0

= arctan

(
α− β
α+ β

tan(kq)

) ∣∣∣∣
β=0

= kq. (9)

Then, (6) would represent unispectral propagation as ex-
pected. Next, we consider the case (|β| = α) /∈ {0 ≤
β2 = α2 − 1} and in violation of the normalization, (7).
Nevertheless, |β| = α is a limit point for β →∞. Should
±β = ∞ (i.e. where a latent total reflection would
preempt any IBD), then the amplitude would reduce to
trigonometric identities with scaling factor 2α given by
[27]

Aψ
∣∣
β=α

= 2α

(
1 + cos(2kq)

2

)1/2

= 2α cos(kq) (10)

and

Aψ
∣∣
−β=α

= 2α

(
1− cos(2kq)

2

)1/2

= 2α sin(kq) (11)

consistent with (5). The corresponding phase would be

Pψ
∣∣
β=α

= arctan

(
α− β
α+ β

tan(kq)

) ∣∣∣∣
β=α

= 0 (12)

and

Pψ|−β=α = arctan

(
α− β
α+ β

tan(kq)

) ∣∣∣∣
−β=α

=
π

2
(13)

also consistent with (5). Then, in either case and con-
sistent with (4), (6) would represent a scaled standing
cosine wave for β = α and a scaled standing sine wave
for −β = α. Standing waves, while mathematically per-
mitted, would have relativistic issues in addition to the
afore-mentioned total reflection issue. Thus, the repre-
sentation for the wave function, (6), covers all solutions
of physical interest of (2) propagating in the +q direction
with normalization α2 − β2 = 1, (7).

If the neutrino and antineutrino are considered to
form a Majorana pair of particles (an unsettled ques-
tion), then the wave functions for the neutrino and an-
tineutrino would be complex conjugates of each other.
Under the Majorana hypothesis, the latent reflected wave,
β exp(−ikq), in (4) would be the wave function for a neu-
trino with amplitude β. In this case, (6) would represent
the superposition of the wave functions of the Majorana
neutrino and antineutrino upon each other. This is con-
sistent with Pontecorvo’s proposal [28] that a mixed par-
ticle consisting of part antineutrino and part neutrino
may exist. Furthermore, the set of independent solu-

tions, {ψ, ψ̌} = {exp(+ikq), exp(−ikq)} = {ψ,ψ}, that
solve the SKGE, form a pair of Majorana solutions that
are sufficient to solve the SKGE. Any solution, e.g., (4)–
(6), of the SKGE formed from this pair by the superpo-
sitional principle would itself have a Majorana partner
that would also be its complex conjugate. While the
wave functions given by (4)–(6) are Pontecorvo “mixed”
solutions [28], they are still specified herein as ψs of the
ν as determined by the directional characteristic, (+q),
of the latent incident wave.

Let us briefly discuss how this ab initio calculation
describes the evolution of the bispectral ψ2 during con-
summation of an IBD. The weak interaction is not a
“force” per se. It does not cause an energy exchange
among its participants. Rather for purposes of this pa-
per, it enables beta decay where a neutron decays into
a proton, electron, and neutrino, which is the inverse of
an IBD, (1). Let us consider that the weak interaction
occurs in a black box over the short range of the weak
interaction between qa, where the antineutrino initially
encounters the weak interaction, and qb where the an-
tineutrino is absorbed by the target proton. The short
range of the weak interaction is given by qb−qa ≈ 10−18
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m, a value much smaller than the radius of the proton.
Within the black box, qa < q < qb, the same set of in-
dependent solutions, {exp(+ikq), exp(−ikq)}, which are
sufficient to solve (2), are used to describe ψ2 while it
is subject to the forceless weak interaction that pre-
cludes any energy exchange. In the absence of an energy
exchange, the wave number k remains a constant in (4)–
(6) during νe’s transit of the black box from qa to qb. But
the coefficients {α, β} are changed! During the transit of
νe from qa to qb in this ab initio calculation, the forceless
weak interaction by W+ exchange smoothly changes co-
efficients {α, β}|qa → {1, 0}|qb while continuously main-
taining the normalization α2 − β2 = 1 of (7). In other
words, the coefficients while inside the black box bound-
aries become variables {α(q), β(q)}qa≤q≤qb that are ex-
plicitly still subject to the normalization

α2(q)− β2(q) = 1, qa ≤ q ≤ qb,

which is consistent with (7). A smooth transition of
the coefficients from {α(qa), β(qa} to {1, 0}|qb with C1

continuity would be sufficient to maintain C1 continuity
of the νe’s wave function as it evolves, during its transit
of the black box with constant E and wave number k,
from a bispectral ψ2(qa) to a unispectral exp(ikqb) ready
to be absorbed. At qb, the output transmitted wave
function of the black box will have become a unispectral
wave function as given by

ψ2(qa) = α(qa) exp(ikqa) + β(qa) exp(−ikqa)

= [1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)

q→qb, ∴ β(q)→0−−−−−−−−−−−→ exp(ikqb), qa ≤ q ≤ qb (14)

under the influence of the exchange of the W+ boson
between the proton and antineutrino. In the extended
black box, a provisional form for β(q) with C1 continuity
during the transmutation of ψ from ψ2(qa) to exp(ikqb)
in (14) is offered by

β(q) =
β(qa)

2

[
1 + cos

(
q − qa
qb − qa

π

)]
, qa ≤ q ≤ qb.

Again, no energy is exchanged between the proton
and antineutrino by the W+ boson exchange. [If the
transmitted wave function at qb had not been unispec-
tral, exp(ikq), then its initial values at qa would have
been flavor incompatible, ν(qa) 6= νe(qa), which would
have preempted an IBD. Consummated IBDs are rare
events.] The transmitted unispectral wave function,
exp(ikq), is the wave function for νe in (1). The nor-
malization α2 − β2 = 1, (7), specifies that the value

of the amplitude of the transmitted unispectral wave
function is 1, consistent with the assumptions for νe’s
wave function for (1). The transmitted unispectral νe
is compatible with being absorbed by the proton con-
sistent with (1). The function of the black box in the
IBD process (to change the input bispectral wave func-
tion to an output unispectral wave function of ampli-
tude 1 in a forceless manner for νe’s E never changes)
has been completed with the νe positioned at qb, ready
to be absorbed with the target proton. The W+ bo-
son exchange has now been completed. The IBD carries
on. The IBD completes consummation consistent with
(1) where its parent particles, the proton and the unis-
pectral antineutrino, are absorbed, and the IBD emits its
daughter products, a positron and a neutron. The latent
transmission coefficient, T , and reflective coefficient, R,
of the black box for the weak interaction process are the
expected

T =
α2 − β2

α2
=

1

α2
and R =

β2

α2
, (15)

where the coefficients {α, β} are their pre-weak-interaction
values.

Flavor compatibility for an IBD is determined by the
boundary conditions {ψ, ∂qψ} at the black box’s input
barrier interface, qa. The black box in this ab initio
calculation renders a transmitted unispectral wave func-
tion, exp(ikq), if and only if ψ2 has proper IBD initial
values for the black box, {ψ, ∂qψ}q=qa .

Future research may refine the aforementioned de-
scription of the evolution of the antineutrino’s wave func-
tion in the black box. If so, the principle of superposi-
tion of the wave functions of the latent incident and the
latent reflected waves could still describe a generalized
(14). For example, future research may find that the
transmitted wave function of energy E from the black
box should have coefficients {(1 + β2

b )1/2, βb}|q=qb with
β > 0 for IBD absorption of the antineutrino. For a suc-
cessful IBD, the black box model of the weak force would
then transmute the incident wave function described by

[1 + β2(qa)]1/2 exp(kqa) + β(qa) exp(−ikqa)

q→qb, ∴ β(q)→βb−−−−−−−−−−−−→

(1 + β2
b )1/2 exp(ikqb) + βb exp(−ikqb) (16)

where qa < q ≤ qb. This generalizes (14) and would still
describe a counterexample permitting massless neutrino
oscillation. Equations (14) and (16) are analogous to the
invariance of the Schwarzian derivative under a Möbius
transformation in the quantum trajectory representation
[14,29].
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Chirality and helicity are the same for massless lep-
tons propagating with speed c. The quantum measure
of helicity, normalized over a cycle of nonuniform prop-
agation, for a massless antineutrino before encountering
the black box, q < qa, would by (4)–(6) be α2 − β2 = 1,
which is also the normalization, (7). Upon completing
the transit of the black box at qb, the antineutrino, with
ψ = exp(ikqb), would still have the helicity value of 1
conserving helicity (chirality). Thus, the interaction of
the massless antineutrino with the black box would be
reflectionless. This is consistent with (14) and (16). The
concept of superimposing a latent reflected wave and
the latent incident wave upon each other to achieve re-
flectionless transmission had initially been applied to an
acoustical analogue [20].

The representation of ψ2 by (6) may be derived from
the trigonometric form of (5) by using either Bohm’s
scheme for complex wave functions to render ψ2’s am-
plitude and phase [30] or by vector analysis. The am-
plitude, Aψ = [α2 + β2 + 2αβ cos(2kq)]1/2, is recognized
as a re-expressed law of cosines where the exterior angle
argument 2kq is the supplement of π − 2kq or

Aψ = [α2 + β2 − 2αβ cos(π − 2kq)]1/2︸ ︷︷ ︸
law of cosines

= [α2 + β2 + 2αβ cos(2kq)]1/2︸ ︷︷ ︸
law of cosines for exterior angles

.

For completeness, the phase is established [30] by
Pψ(q) = arctan{=[ψ(q)]/<[ψ(q)]}, which by (5) renders

Pψ = arctan

(
α− β
α+ β

tan(kq)

)
. (17)

Also for completeness, the phase is related to the quan-
tum Hamilton’s characteristic function (quantum reduced
action), W, by Pψ = W/~ [7,10,14]. The W has been
shown to change values monotonically [14] implying that
Pψ also behaves monotonically.

The bispectral ψ2 as represented by (6) exhibits the
superposition of the latent incident and reflected wave
functions upon each other that are described by func-
tions of q, (4). The superposition induces a compound
modulation in ψ2, which in turn induces nonuniform rec-
tilinear propagation for massless neutrinos as shown in
§3. PMNS theory achieves nonuniform rectilinear propa-
gation in one dimension by superimposing three different
masseigenstates within the neutrino [1–4]. Application
of Eq.-(6)-like representations have been made to study
step barriers [18] and tunneling [19].

Before an IBD, q ≤ qa, the nonuniform propagation
of the compoundly modulated ψ2(q) with q can be ex-
amined more closely by considering the phase and am-

plitude modulations separately. The phase modulation
may be described by the phase displacement between
the phase of the bispectral ψ2 given by (6) and the
phase, kq, of the corresponding unispectral wave func-
tion, exp(ikq), which propagates rectilinearly with uni-
form motion. This phase displacement is a rotational
displacement in complex ψ-space between ψ2(q) and the
unispectral exp(ikq). The phase displacement due to
phase modulation, Pmψ , may be expressed in units of
radians as a function of phase kq, also in units of radians,
as given by

Pmψ = arctan

(
α− β
α+ β

tan(kq)

)
− kq, q ≤ qa (18)

where kq, which is also the phase of unispectral exp(ikq),
is not restricted to its principal value.

The derivative of phase with respect to q, for the
bispectral wave function, (6), is given by [5]

∂ arctan
(
α−β
α+β tan(kq)

)
∂q

=
(α2 − β2)k

α2 + β2 + 2αβ cos(2kq)

=
k

α2 + β2 + 2αβ cos(2kq)
. (19)

Equation (19) for the bispectral wave function exhibits
nonuniform phase propagation that is periodic in q. The
derivative of phase with respect to q remains positive
definite for the denominator on the right side of (19)
is always positive for all q by the Schwarzian inequality.
Meanwhile, the corresponding derivative of phase for the
unispectral wave function, exp(ikq), is ik, which is con-
stant and manifests uniform rectilinear propagation. For
completeness in the quantum trajectory representation,
the derivative of phase with regard to q renders the con-
jugate momentum, ∂qW, divided by ~ [8–14].

The relative amplitude dilation Amψ due to ampli-

tude modulation, Aψ of (6) or (8), relative to (α2+β2)1/2

is defined to be a dimensionless variable that is a func-
tion of phase, kq, and given by

Amψ ≡ [α2 + β2 + 2αβ cos(2kq)]1/2 − (α2 + β2)1/2

(α2 + β2)1/2

=

[
1 +

2αβ cos(2kq)

α2 + β2

]1/2

− 1, q ≤ qa. (20)

Any finite β = (α2 − 1)1/2 is sufficient to cause ψ2 to
generate nonuniform rectilinear motion consistent with
the compound modulation implied by (18) and (20).
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As the wave function, ψ2, for the antineutrino must
be C1 continuous until absorbed in an IBD, the behavior
of its derivative, ∂qψ2, must also be considered. If the
dividend of ∂qψ2 /ψ2 were a constant or independent of
q, then neutrino oscillation would not be supported as
previously noted. From (4)–(6), the derivative of the
bispectral wave function ∂qψ2, is given by

∂qψ2 = ik[α exp(ikq)− β exp(−ikq)]

= k[(α− β) cos(kq)− i(α+ β) sin(kq)] exp(iπ/2)

= k [α2 + β2 − 2αβ cos(2kq)]1/2︸ ︷︷ ︸
law of cosines

× exp

[
i arctan

(
α+ β

α− β
tan(kq)

)
+ i

π

2

]
. (21)

A difference between (4)–(6) for ψ2 and (21) for ∂qψ2 is
the change of the sign of β and the phase shift π/2. A
finite β by (4) and (21) ensures that

∂qψ2(q)

ψ2(q)
= ik

(
α exp(ikq)− β exp(−ikq)
α exp(ikq) + β exp(−ikq)

)
(22)

would be a variable of q in contrast to the unispectral
case, (3). The bispectral ψ2(kq) propagates in a nonuni-
form manner that facilitates neutrino oscillation without
the need for masseigenstates of PMNS theory.

There is an alternative expression for ∂qψ2(kq) that
conveniently shows its relation to ψ(kq − π/2). This
relation is shown by (4) and (21) to be

∂qψ2(kq) = ik[α exp(ikq)− β exp(−ikq)]

= k{α exp[i(kq + π/2)]

+ β exp[−i(kq + π/2)]}

=k ψ2(kq + π/2). (23)

Equation (23) can be generalized to

∂qψ2(kq) = kψ2(kq + n1π), (24)

n1 = ±1/2, ±3/2, ±5/2, · · ·

where n1 is bound by the antineutrino’s creation point
and the point qa where an IBD commences. The bis-
pectral derivative ∂qψ2 by (21)–(24), like ∂qψ1, is also a
solution of the SKGE.

The derivative of the bispectral wave function is com-
poundly modulated. Its amplitude, Aψ ′ , and phase,
Pψ ′ , are respectively given by

Aψ ′ = k[α2 + β2 − 2αβ cos(2kq)]1/2, q ≤ qa (25)

and

Pψ ′ = arctan

(
α+ β

α− β
tan(kq)

)
+
π

2
, q ≤ qa. (26)

Its relative amplitude dilation, Amψ
′ , due to amplitude

modulation and its phase displacement (a rotation) due
to phase modulation, Pmψ

′ , for ∂qψ2(kq) are given re-
spectively by

Amψ
′ = k

[
1− 2αβ cos(2kq)

α2 + β2

]1/2

− k, q ≤ qa (27)

and

Pmψ
′ = arctan

(
α+ β

α− β
tan(kq)

)
− kq, q ≤ qa. (28)

The dilations and rotations of (27) and (28) for ∂qψ2(kq)
are analogous to those for ψ2, (20) and (18) respec-
tively. While ∂qψ2(kq) has compound modulation with
the same period (oscillation cycle) as that of the asso-
ciated ψ2(kq), the of dilations and rotations differ by
being out of phase, cf. (6) and (21)–(28). The relative
amplitude dilation and phase rotation of ∂qψ2(kq) are
opposite to those of ψ2(kq). This is desirable for flavor
oscillation.

Let us now examine the measurement of momentum,
p, for the bispectral antineutrino. The applicable quan-
tum momentum operator herein is ~

i ∂q. The orthodox

measurement of momentum of the bispectral ψ2 with
box normalization is over one repetitive cycle. This box
length is π/k. The momentum of ψ2, using (4), (7) and
(21), is given by

p =

∫ π/k
0

ψ
†
2 (q) ~

i ∂qψ2(q) dq∫ π/k
0

ψ
†
2 (q)ψ2(q) dq

= ~
k
∫ π/k

0
[α2 − β2 + 2αβ sin(2kq)] dq∫ π/k

0
[α2 + β2 + 2αβ cos(2kq)] dq

= ~
(α2 − β2)π

(α2 + β2)π/k
=

~k
α2 + β2

. (29)

An orthodox measurement of momentum of the bispec-
tral antineutrino, (29), is a constant and positive def-
inite, i.e., p > 0, in the direction of latent incident
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wave, (4). This is consistent with the quantum trajec-
tory representation where the quantum reduced action,
W, changes monotonically [14].

Let us extend our examination of p to find under what
conditions [α2−β2 + 2αβ sin(2kq)], the integrand in the
numerator in (29), becomes negative over any portions
of its repetitive cycle. The particular point of interest
for investigation is q = 3π/(4k) where the integrand be-
comes

[α2−β2 +2αβ sin(2kq)]q=3π/(4k) =

=1︷ ︸︸ ︷
α2 − β2−2αβ. (30)

For |β| sufficiently small, (30) would be positive; suf-
ficiently large, negative. The |β| for which (30) is nil
marks the upper bound where [α2 − β2 + 2αβ sin(2kq)],
the integrand, is never negative. Because −β2 is a neg-
ative quantity, the Schwarz inequality is not applicable
to (30). The right side of (30) becomes nil for

2αβ = 1. (31)

The particular values of α and |β| that satisfy both Eqs.
(7) and (31) are identified by αthreshold and |βthreshold|.
The threshold coefficients separate α, |β|-space into two
domains: one where the integrand is always positive-
definite; the other, not always positive consistent with
the value of sin(2kq) in (29). Equation (7) for normal-
ization, α2 − β2 = 1, and (31) are sufficient to resolve
αthreshold and |βthreshold| by algebraic means. The solu-
tions for the threshold coefficients are

{αthreshold, βthreshold} =

{(
21/2+1

2

)1/2

,
(

21/2−1
2

)1/2
}
.

(32)
The logic relationship

α < / > αthreshold ⇐⇒ |β| < / > |βthreshold|

between α and β follows. If |β| < |βthreshold|, then the

integrand ψ
†
2 (q) (~/i)∂q ψ2(q) of (29) would always be

positive [in the direction of the latent incident wave of
(4)] for all q throughout the repetitive oscillation cycle.
If |β| > |βthreshold|, then for some q, but not a prepon-
derance of q of the repetitive oscillation cycle, the inte-

grand ψ
†

(~/i)∂q ψ2 would be negative [in the direction
of the latent reflected wave of (4)]. Nevertheless, even if
|β| > |βthreshold|, the orthodox measure for momentum
would still remain valid, for (29) yields positive momen-
tum as α2 − β2 = 1 > 0.

Figure 1: The phase displacement due to phase modulation Pmψ

as a function of kq over a Riemann sheet for selected values of F .
Both Pmψ and kq are exhibited in units of radians.

3 Examples

Let us now illustrate with didactic examples how a bis-
pectral wave function facilitates massless flavor oscilla-
tion. We consider the contributions of phase and am-
plitude modulations separately. These contributions are
examined for the selected cases given by

(α, β) = (1, 0), (4/151/2, 1/151/2), (2/31/2, 1/31/2),

(4/71/2, 3/71/2). (33)

These cases are compliant with normalization α2−β2 =
1, (7). The selected cases may be identified for con-
venience by the fraction F ≡ β/α = (α2 − 1)1/2/α =
β/(1 − β2)1/2. Also, F is related to the reflection co-
efficient, (15), for F = R1/2. The fractions F for the
selected cases with respect to (33) are given by

F = 0, 1/4, 1/2, 3/4. (34)

Comparisons of the effects of either phase or ampli-
tude modulations among the selected cases of F are de-
veloped as a function of phase, kq, measured in radians.

The value F = 0 represents a unispectral wave func-
tion, which precludes massless flavor oscillation. The
unispectral F = 0 is still included for comparison to the
bispectral F s where F = 1/4, 1/2, 3/4. For compari-
son, the value Fthreshold for 2αβ = 1 with normalization
α2 − β2 = 1, which establishes F ’s upper bound for no

reversals of sign of the integrand ψ
†
2 (~/i)∂q ψ2 as a func-

tion of q , (32), is given by
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Fthreshold =
βthreshold

αthreshold
=

(
21/2 − 1

21/2 + 1

)1/2

= 21/2 − 1

=
1

21/2 + 1
= 0.41421356 · · · .

We first consider phase modulation. The phase dis-
placements, Pmψ of (18), as a function of kq, where

kq is also the phase of ψ, are exhibited for the vari-
ous values of F on Fig. 1 over the extended Riemann
sheet π/2 ≤ kq ≤ 3π/2 of the arc tangent function on
the right side of (6). The phase duration of the Rie-
mann sheet is consistent with box normalization of ψ2.
Each extended Riemann sheet specifies an oscillation cy-
cle. Figure 1 exhibits one cycle for phase modulation,
Pmψ , over a Riemann sheet. The cycle of Pmψ for
bispectral F s has one concave segment and one convex
segment. The cycle is repetitive over other Riemann
sheets. As expected, a Pmψ for the unispectral F ren-
ders the horizontal straight line Pmψ = 0. Thus, the
unispectral case prohibits phase modulation, which does
not facilitate flavor oscillation. The absolute value of
Pmψ for kq 6= π/2, π, 3π/2 is shown on Fig. 1 to
increase with increasing F . At kq = π/2, π, 3π/2,
the phase difference Pmψ = 0 for all F . These points
kq = π/2, π, 3π/2, for F 6= 0, are inflection points of
Pmψ with nil curvature, which are between Pmψ’s al-
ternating concave and convex segments. At these inflec-
tion points, |Pmψ(q)| attains its maximum slope (rate of
change with kq). Had Fig. 1 included the standing-wave
case where F = 1, then, consistent with (10) and (11), it
would have generated a straight line from (Pmψ (kq) =
(π/2, π/2) to (−π/2, 3/π/2) on an extended Fig. 1. Had
the cases F = −1/4, −1/2, −3/4 been examined
instead (e.g., the values of F for the analogous phase
differences for ∂qψ2 would be negative), then Fig. 1
would have changed its exhibition of the antisymmetric
phase modulation from the first-and-third (upper/left-
and-lower/right) quadrants to the second-and-fourth of
Fig. 1. The phase modulation, Pmψ, is antisymmetric
within the Riemann sheet for

Pmψ (π − kq) = −Pmψ (π + kq), 0 < q < π/2.

Each extended Riemann sheet contains one cycle of Pmψ

for the bispectral ψ2.
For the amplitude modulation, Amψ is examined for

F = 0, 1/4, 1/2, 3/4. Again, F = 0 represents the
unispectral case, which does not support flavor oscilla-
tion. The amplitude modulations are exhibited on Fig.
2. Positive differences on Fig. 2 represent a dilation that
is an expansion; negative differences, a contraction. The

Figure 2: The relative amplitude dilation Amψ as a function

of kq over a Riemann sheet for selected values of F . Amψ is

dimensionless, and kq is exhibited in units of radians.

Figure 3: The relative amplitude dilations due Amψ and Amψ ′

as functions of kq over a Riemann sheet for F = 1/2. For an
unbiased Am

ψ
′ , k = 1 to facilitate comparison to dimensionless

Amψ . The amplitude modulations are dimensionless, and kq is

exhibited in units of radians.

absolute values of Amψ for kq 6= 3π/4, π/4 are shown
on Fig. 2 to increase with increasing F . In Fig. 2, Amψ

for bispectral F is symmetric with its convex segments
disjointed on the Riemann sheet. In comparing Figs. 1
and 2 for bispectral F = 1/4, 1/2, 3/4, either the
Pmψ or the Amψ has an extremum where the other is
nil. This ensures that at least one type of modulation of
ψ2 is changing for all q on the extended Riemann sheet
π/2 ≤ kq ≤ 3π/2. A local maximum rate of change
of a modulation occurs at its zero-crossings where the
modulation has inflection points between concave and
convex segments as shown by Figs. 1 and 2. The greater
(lesser) rate of change of modulation implies the greater
(lesser) opportunity for flavor oscillation. The modula-
tion extrema, where the rate of change of a particular
modulation is nil, are isolated phase (kq) points where
that particular modulation does not contribute to neu-
trino oscillation.
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A comparison between the amplitude modulation,
Amψ, of the bispectral ψ2, (6), and the amplitude mod-

ulation, Amψ
′ , of the associated bispectral ∂qψ2, (21),

are presented in Fig. 3 for the particular values F = 1/2,
and k = 1. As Amψ

′ by (25) has a linear factor k while
Amψ does not, the choice k = 1 makes Fig. 3 unbiased.
The amplitude modulations, Amψ and Amψ

′ , exhibit
the same repetitive periodicity but are displaced in phase
(kq) by the constant π/2 radians. This kq displace-
ment increases the opportunity for neutrino oscillation
for Amψ(kq) is positive (negative) where Amψ

′ (kq) is

negative (positive). The ratio of amplitudes of ∂qψ2(kq)
relative to ψ2(kq) by (6) and (21) is given as a function
of phase (kq) in fractional form by

∣∣∂qψ2(kq)
∣∣ :
∣∣ψ2(kq)

∣∣ ∣∣∂qψ2(kq)
∣∣∣∣ψ2(kq)
∣∣ =

Aψ ′(kq)

Aψ(kq)︸ ︷︷ ︸
fractional form

=k

︷ ︸︸ ︷(
α2 + β2 − 2αβ cos(2kq)

α2 + β2 + 2αβ cos(2kq)

)1/2

.

(35)

On the extended Riemann sheet π/2 ≤ kq ≤ 3π/2, the
ratio, Aψ ′(kq) : Aψ(kq) for F = 1/2 by (33)–(35) has

maxima of 3k at kq = π/2, 3π/2; has a minimum of
k/3 at kq = π; and equals k at kq = 3π/4, 5π/4 in
accordance with (35). The values of the extrema of ratio
in fractional form, (35), may be generalized and are given
on this extended Riemann sheet by

Aψ ′(kq)

Aψ(kq)

∣∣∣
maximum

= k
α+ β

α− β
at kq =

π

2
,

3π

2

and

Aψ ′(kq)

Aψ(kq)

∣∣∣
minimum

= k
α− β
α+ β

at kq = π.

The nature of (35) implies that its logarithmic presen-
tation would exhibit for unbiased k = 1 a periodic an-
tisymmetry within the extended Riemann sheet {π/2 ≤
kq ≤ 3π/2} given by

ln

(
Aψ ′(kq)

Aψ(kq)

)
= − ln

(
Aψ ′(kq ± π/2)

Aψ(kq ± π/2)

)
, for k = 1.

The variation of the ratio, (35), is one of the factors
that facilitate flavor oscillation. On the other hand, the
corresponding ratio for the unispectral case (F = 0) is
the constant k for all q.

Figure 4: The Phase difference 4P
ψ

′
,ψ

(kq) as a function of kq

over a Riemann sheet for F = 0, 1/2. Both 4P
ψ

′
,ψ

(kq) and kq

are exhibited in units of radians.

A comparison of (9) and (26) shows the relation-
ship between Pψ(kq) and Pψ ′(kq) is that the sign of

β has changed (also the sign of the associated F would
change). Therefore Pψ ′(kq) − π/2 and Pψ(kq) are a
half-cycle out of phase. While the undulations of Pψ ′

and Pψ when summed are in opposition, their difference
is reinforced. Their changing difference is another factor
enabling flavor oscillation. The relative phase difference,
4Pψ ′

,ψ(kq), in radians between Pmψ
′ and Pmψ is re-

inforced for they are out of phase as shown by

4Pψ ′
,ψ(kq) = Pψ ′(kq)− Pψ(kq)

= Pψ(kq + π/2) + π/2− Pψ(kq). (36)

The relative phase difference 4Pψ ′
,ψ(kq) is exhibited

on Fig. 4 for F = 1/2 and F = 0 (the unispectral
case). For the bispectral case, Fig. 4 also exhibits co-
herent reinforcement of the undulations of Pψ ′ and Pψ
of 4Pψ ′

,ψ(kq) consistent with (23). Larger undulations
increase the opportunity for flavor oscillations.

The two factors, the ratio of amplitudes and the
phase difference, describe the relative relationship be-
tween ∂qψ and ψ as a function of phase, kq. The ratio of
amplitudes, (35), and the phase difference of Fig. 4 each
complete one cycle on an extended Riemann sheet, e.g.,
π/2 < kq < 3π/2. However, their respective extrema
are displaced by a quarter cycle, π/4, from each other.
The phase difference, 4Pψ ′

,ψ(kq) has extrema on the

extended Riemann sheet at kq = 3π/4, 5π/4 while the
ratio, Aψ ′ : Aψ(kq), has extrema at kq = π/2, π, 3π/2.
Where one factor has an extremum at some particular
kq, the other factor has an inflection point there. And
where one factor has an inflection point, the other has an
extremum. A local extremum for a factor implies that
the factor has a local nil in facilitating flavor oscillation
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while the other factor having an inflection point implies
a local peak in facilitating flavor oscillation. Further-
more, where one factor’s support for flavor oscillation
decreases, the other factor’s support increases. Thus,
the two factors complement each other to ensure that
the bispectral antineutrino can facilitate possible flavor
oscillation for some interaction throughout its repetitive
cycle.

Both phase and amplitude modulations exhibit the
same kq periodicity on Figs. 1–4. This may be shown
by trigonometry for the general situation. Periodicity of
phase modulation, (19), is consistent with the extended
Riemann sheet of the arc tangent,

(2n− 1)π/2 ≤ kq ≤ (2n+ 1)π/2, n = 0,±1,±2, · · · .

Hence, Pmψ (kq) = Pmψ (kq+π). Periodicity of ampli-
tude modulation, (20), is consistent with the argument,
2kq, of the cosine term in the law of cosines completing
its cycle, 2π. Periodicity of Amψ is also given by

Amψ (kq) = Amψ (kq + nπ), n = ±1,±2,±3, · · · .

For completeness, the quantum trajectory representation
also has the same kq periodicity [5].

4 Discussion

Compound modulation makes ∂qψ2 / ψ2 a periodic vari-
able in phase, kq, and spatially periodic for a given k.
The phase and amplitude modulations complement each
other for they are a quarter-cycle out of phase with each
other as shown by Figs. 1 and 2. The modulations
of ψ2 and ∂qψ2 supplement each other. The amplitude
modulation induces continuous dilations with respect to
phase, kq, of the ∂qψ2(q) and ψ2(q) differently by (25)
and (8) respectively. The dilations of ∂qψ2(q) and ψ2(q)
are opposed: where one is an expansion; the other is a
contraction. These amplitude modulations being in op-
position increase the amount of dilation (either expan-
sion or contraction) of the ratio

∣∣∂qψ2(kq)
∣∣ :

∣∣ψ2(kq)
∣∣

with respect to phase, kq, as exhibited by (35) and Fig.
3. This increases the opportunity for neutrino oscilla-
tion. Meanwhile, phase modulation induces continuous
rotations with respect to phase, kq, of Pmψ(q), (18),
and Pmψ

′(q), (28). These rotational displacements are
opposed: where one rotation is clockwise; the other,
counterclockwise. This opposition in rotations enlarges
4Pψ ′

,ψ(kq) as exhibited by (36) and Fig. 4. This oppo-

sition between the behavior of ψ2(q) and its derivative
is typical of well behaved functions undergoing periodic
motion. Note that either phase or amplitude modula-
tion, by itself, could facilitate neutrino oscillation of the

bispectral antineutrino. Together, they increase the op-
portunity for oscillation.

The transmutation of coefficients {α, β} → {1, 0} of
(14) by the weak interaction nulls out the compound
modulation of νe’s wave function without any exchange
of energy. This is shown for phase modulation on Fig. 1
and for amplitude modulation on Fig. 2 where modula-
tion effects decrease with decreasing absolute values of
|F | and are completely nulled at |F | = 0.

The periodic, nonuniform propagation by a massless
antineutrino results in flavor oscillations where the an-
tineutrino in a particular phase (kq) segment within an
oscillation cycle may execute a flavor-compatible current
interaction with C1 continuity of its wave function. Fu-
ture work may show that these segments for various fla-
vors {νe, νµ, ντ} may be disjointed, and the segments for
the flavors may not densely fill the oscillation cycle.

Should the segments for the active flavors {νe, νµ, ντ}
not densely fill the oscillation cycle, then the voids of the
oscillation cycle would be locations where the antineu-
trino is inactive and would behave as the elusive sterile
antineutrino, νs [31,32]. By precept, the sterile antineu-
trino was hypothesized to be subject only to gravity and
explicitly not to the weak interaction. The MiniBooNE
Collaboration has recently inferred its existence from ex-
periment [31], but such existence has not yet been inde-
pendently confirmed by other ongoing experiments [32].
As the hypothetical sterile antineutrino would not par-
take in charged current interactions, the voids in the
oscillation cycle could manifest the existence of this hy-
pothetical sterile antineutrino. This hypothetical sterile
antineutrino, by (2)–(6), could be massless and have a
bispectral wave function. As this hypothetical bispec-
tral sterile antineutrino could propagate nonuniformly,
it would oscillate in flavor to become an active antineu-
trino, {νe, νµ, ντ}. Flavor oscillation of the sterile an-
tineutrino would imply that it would have the same right
handedness of the active antineutrinos. Again, this sup-
port for the existence of the sterile antineutrino is pred-
icated on the existence of voids in the oscillation cycle.

The orthodox measurement of the momentum oper-
ator ~

i ∂q acting on a bispectral antineutrino over a box
length, which is consistent with an oscillation cycle, has
been shown by (29) to give a finite positive momentum
in the direction of the latent incident wave, (4). An
IBD event is a good way to observe antineutrinos for the
antineutrino reacts only to gravity and the weak inter-
action. Observed momentum, in principle, need not be
averaged over a box length. Should future work find that
box normalization is too coarse, then restricting the ab-
solute value of β to |β| ≤ |βthreshold| = [(21/2 − 1)/2]1/2,
(32), would maintain positive momentum for the bispec-
tral antineutrino throughout the oscillation cycle, i.e.,
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ψ
†
2 (q) ~

i ∂qψ2(q) > 0 by (30)–(32) for all q within the
box normalization.

Future work may also show that the different charged
or neutral current interactions may scramble the flavors.
In other words, the antineutrino flavors may be interac-
tion dependent where the values of ψ and ∂qψ for some
given E at a point q0 may specify an antineutrino of
a particular flavor for an interaction while concurrently
at q0 also specifying a different flavor associated with
another different interaction. This would cause the seg-
ments for the various flavors of the oscillation cycle to
overlap.

Future work may also yield a better understanding
of IBDs and the weak force. Nevertheless, the concept
of a bispectral wave-function representation should be
robust enough to adjust assumptions and still facilitate
flavor oscillation by a massless antineutrino.

5 Findings and Conclusions

The principal finding is the existence of a wave-function
representation for massless neutrino oscillation of flavor,
which is a counterexample to PMNS theory’s finding
that m > 0. The wave-function representation for m = 0
is compatible with an orthodox interpretation of the bis-
pectral wave function, ψ2. One spectral component rep-
resents the embedded latent incident wave function for
an IBD; the other, the embedded latent reflected wave
function. Such a bispectral wave function is capable of
flavor oscillations without any need for masseigenstates,
which confirms that PMNS theory is not the exclusive
theory for neutrino oscillation. Once created, a bispec-
tral, massless antineutrino, with super-threshold energy
(E > 1.806 MeV), has the possibility by flavor oscillation
to initiate an IBD.

The co-principal finding, which is extra to the mass-
less oscillation finding, is that the forceless weak interac-
tion for this oscillation model transmutes the wave func-
tion of the antineutrino from bispectral to unispectral.
There is no energy exchange during the transmutation
for the weak interaction is forceless. In general, the weak
interaction can transmute the wave function to a dif-
ferent superposition of its set of independent solutions
without any exchange of energy.

The first secondary finding is that flavor oscillations
are compatible with classifying neutrinos to be Majorana
leptons.

The second secondary finding is that the elusive ster-
ile neutrino may be just where the antineutrino is in
a location, q, in the oscillation cycle where its values
{ψ2, ∂qψ2}|q are incompatible initial values for initiating
a current interaction of any flavor there (sterile is not a
flavor). This finding is predicated upon the existence of

such a location in the oscillation cycle.
The third secondary finding establishes a relation-

ship between the amplitude β of the latent embedded
reflected wave and the opportunity to observe negative

momentum, i.e., ψ
†
2 (q) ~

i ∂qψ2(q) < 0. There exists
a βthreshold for which, if |β| < |βthreshold|, then

ψ
†
2 (q) ~

i ∂qψ2(q) > 0 for all q before an IBD. For cases
of super-threshold |β|, the orthodox quantum measure-
ment of momentum over one repetitive box length would
still yield positive momentum, (29).

The fourth secondary finding confirms the similar
prediction for massless neutrino oscillation by the less
familiar quantum trajectory representation of quantum
mechanics [5]. This finding also substantiates that wave
mechanics and quantum trajectories are equivalent for
free particles [7,33]. In addition, incisive insights ren-
dered by the wave-function representation complement
those of the trajectory representation to substantiate
massless neutrino oscillation.

A tertiary finding supports Pontecorvo’s suggestion
[28] that a neutrino may be composed of a mixture of
neutrino and antineutrino components.

In conclusion, massless neutrino oscillation implies
the validity of the standard model to consider neutrinos
to be massless.

A co-conclusion is that the forceless weak interac-
tion prepares the antineutrino for interaction with other
particles by transmuting the antineutrino’s wave func-
tion. The transmutation changes the wave function in
this ab initio calculation from a bispectral wave func-
tion to a unispectral wave function, exp(ikq), without
an exchange of energy. Conversely, the wave function
of the antineutrino manifests the effects of the forceless
weak interaction by a change in the superposition of its
independent solutions for a given energy.

A secondary conclusion is the confirmation of the
similar prediction of the validity of the standard model
by the quantum trajectory representation, which sub-
stantiates that such a prediction is not an anomaly of
the quantum trajectory representation.
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