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Abstract.-This paper examines some optical properties of isotropiccrystals, as well as the critical reflection of light,
from the perspective of different inertial reference frames in relative motion. The analysis proves several breaks of
Lorentz symmetry in optical crystallography and general optics. It also demonstrates there is no other relativist alterna-
tive to Lorentz transformation able to give a solution to theproblems posed by Lorentz transformation in the scenario
of optics and optical crystallography. The conclusions of the arguments point to the convenience of considering a new
discrete paradigm for the spacetime continuum in which thisand other problems could find a solution.

1.-Conventions
All reference frames (frames hereafter) will be assumed to be inertial frames.RFo will denote the proper frame of any object
or observer at rest in that frame.RFv will denote a frame whose axes coincide with the corresponding axes ofRFo at a certain
instant, and from whose perspectiveRFo moves at a uniform velocityv = kc, (wherec is the speed of light in a vacuum, and
0 < k < 1), beingv parallel to the axisXv. The axes in the planeXY of RFo andRFv will be denoted respectively byXo, Yo

andXv, Yv. Lengths, times and refractive indices measured inRFo andRFv will be respectively sub-indexed byo andv. As
usual,o will also sub-index the magnetic permeability and the electric permittivity of a vacuum, which are universal constant
with the same value in all frames. Expressions likeRFo-time, RFv-length, etc. will always indicate that the corresponding
time, length, etc. have been measured respectively inRFo or RFv. The absolute value of a magnitudex will be denoted, as
usual, by|x|. Lorentz transformation will be denoted by LT. The term ”velocity” will be used to refer to the module of the
vector velocity, i.e. as a synonym of (physical) speed. Unless otherwise indicated, all materials will be assumed transparent
and optically isotropic, and light will always be polarizedand of the same wavelength.

2.-The Refractive Index
Maxwell’s equations of electromagnetism lead almost immediately to the wave equation for electric fields (

−→
E), and for

magnetic fields (
−→
B):

∇2−→E = µoǫo
∂2−→E
∂2t

; ∇2−→B = µoǫo
∂2−→B
∂2t

(1)

where∇2 is the Laplacian (a second order differential operator);µo is the magnetic permeability of a vacuum (magnetic
constant,µo = 1.2566× 10−6 H/m), andǫo is the electric permittivity of a vacuum (electric constant, ǫo = 8.854× 10−12

F/m) Both,µo andǫo, are universal constants. The magnetic permeability is a measure of the magnetization of a medium in
response to a magnetic field. The electric permeability is a measure of the electric distortion of a medium in response to an
electric field. Comparing (1) with the standard form of a waveequation:

∇2−→Y =
1
v2
∂2−→Y
∂2t

(2)

it can be immediately inferred, as Maxwell did, that:

v = (µoǫo)−1/2 (3)

= (4π × 10−7mKgC−2 × 8.8541878× 10−12C2s2Kg−1m−3)−1/2 (4)

= 299792.458Km/s (5)

is the speed of the electromagnetic waves, that coincides with the speed of lightc in a vacuum (free space). As Maxwell
suggested, and we now know well, light is a set of electromagnetic waves. Evidently, as an algebraic combination of universal
constants, (µoǫo)−1/2, the speedc of light in a vacuum is also a universal constant. On the otherhand, each materialm has its
own magnetic permeabilityµm and its own electric permittivityǫm, usually greater than those of the vacuum. Light travels
through a transparent mediumm with a speedv less thanc given by:

v =
1

√
µmǫm

(6)
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The relative magnetic permeabilityµ′m = µm/µo and the relative electric permittivityǫ′m = ǫm/ǫo are frequently used in the
place ofµm andǫm. They represent the extent to which the corresponding material’s permeability and permittivity exceed
those of free space. These relative magnitudes allow us to write:

v =
1

√
µmǫm

=
1

√
µ′mµoǫ′mǫo

=
1

√
µ′mǫ

′
m

1
√
µoǫo

=
c

√
µ′mǫ

′
m

=
c
n

(7)

wheren =
√

µ′mǫ
′
m = c/v is the refractive index ofm. With respect to their optical properties, ordinary mattercan be isotropic

or anisotropic. Crystalline solids, except those of the isometric (cubic) system of symmetry, are anisotropic with respect to
the index of refraction: the index of refraction varies withdirection. In the case of isotropic materials the index of refraction
does not change with direction. All crystals, whether isotropic or anisotropic, show what could be calledpolar isotropy: for
any given directionAB through the crystal, the index of refraction is the same whenlight moves fromA to B as when it does
from B to A.

As light crosses from a materialm1 of refractive indexno1 into another materialm2 of refractive indexno2 its velocity
changes. As a consequence, the wavefront deviates its trajectory and the rays of light bend at the interface between both
media. This phenomenon is the familiar refraction of light,the reason for which a rod partially and obliquely submerged
in water seems to be bent just at the interface between air andwater. The refraction of light follows Snell’s Law, a simple
algebraic expression that relates the angles of incidence (i) and of refraction (r) with the refractive indexes (no1, no2) of the
materials through which light propagates:

sinθi
sinθr

=
c/no1

c/no2
=

no2

no1
(8)

If m1 is a vacuum, thenno1 = 1 the refractive index ofm2 is:

no2 =
sinθi
sinθr

(9)

The discussion that follows analyzes the refractive index of isotropic crystals from a relativistic point of view that consider
the following three alternatives:

A: The refractive index only makes sense in the proper frame of the corresponding isotropic medium, so that it can only
be measured at rest, in its proper frame.

B: The refractive index depend on relative motion and can be measured in all frames.

C: The refractive index does not depend on relative motion and can be measured in all frames.

3.-Case A: the refractive index can only be measured at rest
Let ABbe a transparent isotropic rod of proper lengthxo placed parallel theXo axis of its rest frameRFo, and assume a photon
φ movesthrough ABfrom its endA to its endB. Both, the lengthxo of ABand the timeto it takesφ to go fromA to B inside
ABcan be measured inRFo. If no is the refractive index ofAB, it can be written:

co =
xo

to
=

c
no

(10)

to =
noxo

c
(11)

whereco = xo/to is the speed of the photonφ throughAB measured inRFo; no = c/(xo/to) is the corresponding index of
refraction determined inRFo, and the speed ofφ throughAB is simply defined as the ratio of the lengthAB (or of any part
of AB) to the time the photonφ takes to traverse it, which is the physical definition of speed [1, p. 514]. Note thatco is
also the speed ofφ with respect toRFo. In the frameRFv, from whichRFo moves parallel to theXv at the uniform velocity
v = kx, 0 < k < 1, the lengthxv of ABand the timetvab it takesφ to go fromA to B through ABcan also be measured by means
of the rulers and clocks ofRFv. And they can also be deduced from LT. As inRFo, and according to the same definition of
speed, the ratioxv/tv is the speedcvab of light through ABdetermined inRFv. And beingc universal, the ratioc/cvab is the
refractive indexnv of AB in the direction fromA to B and determined inRFv. Now then, with respect toRFv, the photonφ
moves a distancexv + kctv at a speed which is the relativist sum of the speedsco andkc, both, the speed and the distance,
respectively greater thancvab andxv. So, contrarily to what happens inRFo, the speedcvab is not the speed ofφ with respect
to RFv. And it is by this difference that this section is discussing on the possibility that cvab = xv/tvab were not the speed of
light throughAB, in spite of the fact that it is the ratio of a distancexv through an object (AB) to the timetvab it takes another
object (φ) to traverse it, i.e a speed according to the physical definition of speed.

So, we are not dealing here with a case in which a set of measurements is being referred to a moving frame, becausexv
andtvab are measured and referred toRFv by observers at rest inRFv. What is being discussed is if the ratio of the distance
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xv to the timetvab, legitimately observed and measured inRFv, is not the speed of an object through another object simply
because it is not at the same time the speed of the first object (the photonφ) with respect toRFv. Now then, if the definition
of speed through an objectonly holds for objects observed at rest, this restriction should be explicitly declared in both the
physical definition of speed and the First Principle of relativity: the laws of physics are the same in all frames, unless the
involved speeds are speeds through objects in relative motion. Evidently, according to this restriction of the First Principle
of relativity, certain physical phenomena as the reflectionor the refraction of light moving through two transparent media,
air and water for instance, could only be examined and interpreted in physical terms in the rest frame of the corresponding
transparent media. Obviously, this would make special the rest frames compared with the moving ones. Therefore, on the
basis of the current physical definition of speed and the current statement of the First Principle of relativity, it can beassumed
that the ratio of the distance that an object moves through another object to the time elapsed in the trip is the velocity ofthe
first object through the second one, be this second object, ornot, in relative motion. As a consequence, the index of refraction,
be it or not a universal constant, could be measured in all frames. In the last section on conclusions it will be shortly examined
the possibility of a discrete spacetime where the above discussion would no longer make sense.

4.-Case B: the refractive index as a relative constant
The refractive index of a crystal depends very closely on itsinternal structure, which in turns is a consequence of the physic-
ochemical laws driving the nucleation and growing of crystals according to their corresponding ionic (atomic or molecular)
composition. As is well known for more than a century, and exhaustively confirmed by X-ray diffraction and other experimen-
tal analysis, the internal structure of a crystalline material is essentially periodic in any spacial direction withinthe crystal:
in any of such directions there is the same density and types of particles and chemical bonds separated by its own repetition
period (structural anisotropy), which is the same in each ofthe two senses of each considered direction within the crystal.
Contrarily to what happens in anisotropic crystals, when a polarized beam of light strikes an isotropic crystal, the beam does
not split into two polarized (ordinary and extraordinary) beams, nor there is an alteration of its direction of polarization. The
polarized beam passes through the crystal at a speed that depends on the refractive index of the crystal, which is a universal
property for each isotropic mineral species. The trajectory of the polarized beam is then deviated according to Snell’sLaw,
because isotropic crystals obey Snell’s Law. In isotropic crystals (minerals of the isometric system), the refractiveindex is
always the same for each mineral species and wavelength, whatsoever be the angle of incidence.

That said, letA andBbe two points within an isotropic crystalICRof refractive indexno in its rest frameRFo. Whatsoever
be the direction of the straight lineAB joining A andB, light travels throughICR from A to B at the same speedco = c/no,
because, being an isotropic crystal,ICR has the same refractive indexno in all directions. AssumeAB is placed parallel to
Xo, being its proper lengthxo. In RFo a photonφ will travel from A to B, and fromB to A, in the same timeto given by:

c
no
=

xo

to
(12)

From the perspective of the frameRFv, the crystalICR moves at a uniform velocityv = kc, 0 < k < 1, parallel toXv. We are
assuming in this section that it is possible to determine therefractive index of an isotropic crystal in relative motion, i.e. that it
is possible to determine the speed of lightthrougha crystal in relative motion. This speed can only be the ratioof the distance
a photon travelswithin the crystal, for instance the length ofAB or of any part ofAB, to the time it takes in completing the
trip. In our case, the photonφ travels a horizontal distanceγ−1xo (the length ofAB at the relative velocitykc) for a time
tvab. This timetvab will be calculated in two different ways to test each other. In the first waytab will be calculated by simply
application of LT toto, which is theRFo-interval of time between two events (φ starts moving atA, andφ ends moving atB)
separated by a proper distancexo in the direction of the relative motion. In the second way, itwill be calculated as the time
elapsed whileφ traverses theRFv-distanceγ−1xo+kctvab at the speed resulting from the relativistic sum ofc/no andkc, which
is the speed ofφ with respect toRFv. In the first case, and according to LT it holds:

tvab = γto +
γxokc

c2
(13)

= γ

(

to +
xok
c

)

(14)

As noted above,tvab is also the timeφ takes to traverse theRFv-distanceγ−1xo + kctvab at theRFv-velocitycv resulting from
the relativistic sum ofc/no andkc, which is given by:

cv =
c/no + kc

1+
kcc/no

c2

=
(c+ nokc)/no

(no + k)/no
=

c(1+ nok)
no + k

(15)
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In consequence, it can be written:

tvab =
γ−1xo + kctvab

c(1+ nok)
no + k

=
(γ−1xo + kctvab)(no + k)

c(1+ nok)
(16)

ctvab(1+ nok) = (γ−1xo + kctvab)(no + k) (17)

ctvab(1+ nok) = γ−1xo(no + k) + kctvab(no + k) (18)

ctvab(1+ nok− nok− k2) = γ−1xo(no + k) (19)

ctvab(1− k2) = γ−1xo(no + k) (20)

ctvabγ
−2 = γ−1xo(no + k) (21)

tvab = γ

(

noxo

c
+

kxo

c

)

(22)

= γ

(

to +
xok
c

)

(23)

which coincides with (14). Therefore, ifcvab denotes the speed of light when going fromA to B through ICR, and measured
in RFv, it can be written:

cvab =
γ−1xo

γ

(

to +
xok
c

) =
γ−2

to
xo
+

k
c

=
γ−2

no

c
+

k
c

=
c(1− k2)
no + k

(24)

In RFv the refractive indexnvab of ICR in the direction fromA to B is, therefore:

nvab =
c

c(1− k2)
no + k

(25)

=
no + k
1− k2

(26)

Let us now assume the photonφ moves in the same directionAB parallel toXv but in the opposite sense, i.e. fromB to A.
From the perspective ofRFo it can be written:

c
no
=

xo

to
(27)

Denoting bytvba theRFv-timeφ takes to go fromB to A throughAB, it can be written forRFv:

tvba = γto −
γxokc

c2
(28)

= γ

(

to −
xok
c

)

(29)

The timetvba is also the timeφ takes to traverse theRFv-distanceγ−1xo − kctvba at theRFv-velocity c′v resulting from the
relativistic sum ofc/no andkc, now in the same direction but in opposite senses, which is given by:

c′v =
c/no − kc

1−
kcc/no

c2

=
(c− nokc)/no

(no − k)/no
=

c(1− nok)
no − k

(30)

In consequence, it can be written:

tvba =
γ−1xo − kctvba

c(1− nok)
no − k

=
(γ−1xo − kctvba)(no − k)

c(1− nok)
(31)

ctvba(1− nok) = (γ−1xo − kctvba)(no − k) = γ−1xo(no − k) − kctvba(no − k) (32)

ctvba(1− nok+ k(no − k)) = γ−1xo(no − k) (33)
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ctvba(1− nok+ nok− k2) = γ−1xo(no − k) (34)

ctvba(1− k2) = γ−1xo(no − k) (35)

ctvbaγ
−2 = γ−1xo(no − k) (36)

tvba = γ

(

noxo

c
+

kxo

c

)

(37)

= γ

(

to +
kxo

c

)

(38)

which coincides with (29). Therefore, ifcvba denotes the speed of light when going fromB to A through ICR, and measured
in RFv, it can be written:

cvba =
γ−1xo

γ

(

to −
xok
c

) =
γ−2

to
xo
− k

c

=
γ−2

no

c
− k

c

=
c(1− k2)
no − k

(39)

In RFv the refractive indexnvba of ICR in the direction fromB to A is, therefore:

nvba =
c

c(1− k2)
no − k

=
no − k
1− k2

(40)

which is different fromnvab, and the difference increases withk (Figure 1). So then, according to LT, light travels through

Fig. 1 – Left: the relative refractive indicesnvab andnvba and the ratio between them in terms of the relative velocity coefficientk and the refractive
index at restno = 1.5 (note thatnvab can be several times greater thannvba) Note that polar anisotropy increases exponentially with relative velocity.
Right: Surface ofnvab in terms ofno andk.

an isotropic crystal at different speeds in each sense (fromA to B, and fromB to A) of the same directionAB. Let us call
polar anisotropyto this relativistic anisotropy of the refractive index. AsFigure 1 shows, this polar anisotropy is far from
being infinitesimal: the refractive index in one of the senses of the same direction can be several times greater than the one
in the other sense. The problem is that all of our empirical and theoretical knowledge in the field of optical crystallography
indicates such a polar anisotropy does not exist in the rest frame of crystals, whether isotropic or anisotropic, not even at the
infinitesimal scale compatible with experimental detection.

Let us now consider the general case in whichφ travels through the isotropic crystalICR in any directionDE that makes
an angleαo, 0◦ ≤ αo ≤ 360◦, with the axisXo of RFo (hereafter directionαo). SinceICR is isotropic, the refractive index in
the directionDE will continue to beno. Assumeφmoves a distanceho throughICRwhose respective horizontal and vertical
components arexo andyo respectively parallel toXo andYo. In RFo it holds:

c
no
=

ho

to
=

xo

to| cos(αo)|
(41)

to
xo
=

no

c| cos(αo)|
(42)

From the perspective of the frameRFv, φ moves throughICR a distancehv for a time tv, beingγ−1xo andyo respectively
the horizontal (parallel toXv) and vertical (parallel toYv) components ofhv. The double sign± is used because the LT term
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γxokc/c2 (difference in phase synchronization) is positive in the direction of the relative motion (increasingx) and negative
in the opposite one. Since the sign of cos(αo) changes in the same way,± will opportunely replaced with+. Thus, from the
perspective ofRFv it can be written:

hv
tv
=

√

γ−2x2
o + y

2
o

γto ±
γxokc

c2

=

√

γ−2 + tan2(αo)

γ
to
xo
± γk

c

=

√

γ−2 + tan2(αo)

γ
to

ho| cos(αo)|
± γk

c

(43)

=

√

γ−2 + tan(αo)

γ
no

c| cos(αo)|
± γk

c

=

√

γ−2 + tan2(αo)

γ

c

(

no

| cos(αo)|
± k

) (44)

=
c
√

γ−2 + tan2(αo)

γ

(

no + kcos(αo)
| cos(αo)|

) =
c| cos(αo)|

√

1− k2 + tan2(αo)
γ(no + kcos(αo))

(45)

=
c| cos(αo)|

√

sec2(αo) − k2

γ(no + kcos(αo))
=

c| cos(αo)|
√

1/ cos2(αo) − k2

γ(no + cos(αo)
(46)

=
c
√

1− k2 cos2(αo)
γ(no + kcos(αo)

(47)

Therefore, ifcvαv andnvαv denote respectively the speed ofφ throughICR and the refractive index ofICR, both in theRFv-
directionαv, which is related to theRFo-directionαo through tan(αv) = γ tan(αo), it can be written:

c
nvαv
= cvαv =

hv
tv
=

c
√

1− k2 cos2(αo)
γ(no + kcos(αo)

(48)

nvαv =
γ(no + kcos(αo))
√

1− k2 cos2(αo)
=

no + kcos(αo)
√

(1− k2)(1− k2 cos2(αo))
(49)

For the particular valuesαo = 90◦ andαo = 270◦ it holds:

nv90◦ = nv270◦ =
no√

1− k2
= γno (50)

Fig. 2 – The anisotropy of an isotropic crystal in relative motion
according to LT (for an isotropic crystal of refractive index at rest
no = 1.5). Note that some of them can be more than six times greater
than other, which is hard to explain in terms of structural and optical
crystallography.

Hence, in the vertical direction parallel toYv, and only in it, there is
no polar anisotropy. On the other hand, and as Figure 2 illustrates,
LT transforms any isotropic crystal into an anisotropic onewhose
birefringence (the difference between the maximum and the mini-
mum refractive index of a transparent material) can be (depending
on the relative velocitykc) several times greater than the natural
birefringence of anisotropic minerals: the birefringenceof a highly
birefringent mineral as rutile is 0.287, while Figure 2 shows bire-
fringences thirty times greater than that of the rutile. There is no
way to explain such a difference in crystallographic terms. We
must conclude that LT transforms the proper world at rest in a
world in which isotropic minerals cannot exist and all minerals,
whether isotropic or anisotropic, exhibit a type of anisotropy until
now unknown in the physical world: polar anisotropy. We have
proved that the refractive indexnvab is greater than the refractive
index nvba, which means light travels throughICR faster in the
direction fromB to A than in the direction fromA to B. If that
unexpected polar anisotropy were real, related to the periodic in-
ternal structure ofICR, it would also be present but in the opposite

direction after rotatingICR180º. But this is not what happens. What happen is that, according to LT, after rotatingICR light
travel faster now fromA to B than fromB to A. Polar anisotropy can only be, therefore, a mathematical artifact unrelated
to the physical electromagnetic interactions between light an the internal periodical structure of crystals driving the speed
of light through them. And for the same reasons, the relativistic impossibility of isotropic crystals, of which we have the
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highest empirical and theoretical evidence, can only be another mathematical artifact unrelated to the true electromagnetic
interactions between light and isotropic minerals.

We could accept that a ruler may have different lengths, one for each observer that observes it a different relative velocity
(though it is hard to believe that a ruler could have simultaneously an indefinite number of different lengths). But it seems
unacceptable that each mineral species has simultaneouslyan indefinite number of internal structures, one for each possible
relativistic observer, simply because a mineral can only belong to one of the 230 spacial groups of symmetry (or to a few
number of them in the case of polymorphic minerals) defining its internal structure, which are the consequences of the
physicochemical laws driving crystallogenesis. In its turn, the internal structure of crystals are the responsible for their
electromagnetic interactions with light, which are universal attributes of each mineral species. And recall that in the derivation
of the anisotropic refractive indexnvαv and its consequences have intervened not only Fitzgerald-Lorentz contraction, but also
time dilation and, particularly important in the deductionof polar anisotropy, the difference in phase synchronization. LT
seems to transform the actual world into a deformed reality that can only be apparent. And what is worse, an apparent world
whose appearance disagrees with the known laws of structural and optical crystallography.

The above results have been deduced from the initial hypothesis that the refractive indexes of transparent media are not
universal constants, as is the case of the refractive index of free space, but relative constants whose relative values can be
determined in relative motion. Under this hypothesis, LT has been proved to be inappropriate. So, to end this section, let us
ask for another relativistic transformation different form LT that could be compatible with the laws of optical crystallography.
As we know, LT includes one functional factor for convertingbetween relative lengths in the direction of relative motion,
and two functional factors for converting between relativetimes, including the differences in phase synchronization in both
senses of the direction of relative motion, the three of themdepending exclusively on the relative velocity factork. The length
functional factorL(k) immediately follows from:

∀xo : xv = γ
−1xo =

√
1− k2xo (51)

L(k) =
√

1− k2 (52)

In our case, the functional factorsTab(k) andTba(k) are immediately derived from LT. Indeed, consider a photonmoving
through free space and so that inRFo it travels from the endA to the endB of a rest rulerABof proper lengthxo and parallel
to the axisXo. In RFo the photon lasts the same timeto in going fromA to B as in going fromB to A, to. According to LT,
things are not that way inRFv:

tvab = γto +
γkcxo

c2
= γto +

γkccto
c2

= γ(1+ k)to (53)

tvba = γto −
γkcxo

c2
= γto −

γkccto
c2

= γ(1− k)to (54)

So that:

Tab(k) =
1+ k
√

1− k2
(55)

Tba(k) =
1− k
√

1− k2
(56)

As could not be otherwise,Tab(k) , Tba(k). And it cannot be otherwise because from the perspective ofRFv the photon
travels different distances when going fromA to B (L(k)xo + kctv) and when going fromB to A (L(k)xo − kctv), while the
speed of lightc is the same in both cases (Second Principle of Relativity). As in the case of LT, the new transformation we are
asking for, must have at least one functional factorL∗(k) for converting between relative lengths, and two functional factors
T∗ab(k) andT∗ba(k) for converting between relative times. In the case of the above photon moving throughICR from A to B we
would have:

cvab =
L∗(k)xo

T∗ab(k)to
=

L∗(k)
T∗ab(k)to/xo

(57)

According to (12),to/xo = no/c, so that:

cvab =
L∗(k)

T∗ab(k)no/c
=

cL∗(k)
noT∗ab(k)

(58)

cvabnoT
∗
ab(k) = cL∗(k) (59)

T∗ab(k) =
cL∗(k)
cvabno

(60)

T∗ab(k) =
nvab

no
L∗(k) (61)
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In the case of the above photon moving throughICR from B to A we would have:

cvba =
L∗(k)xo

T∗ba(k)to
=

L∗(k)
T∗ba(k)to/xo

=
L∗(k)

T∗ba(k)no/c
=

cL∗(k)
noT∗ba(k)

(62)

cvbanoT
∗
ba(k) = cL∗(k) (63)

T∗ba(k) =
cL∗(k)
cvbano

(64)

T∗ba(k) =
nvba

no
L∗(k) (65)

According to (61)-(65), and being polar anisotropy theoretically and experimentally impossible, we would getT∗ab(k) =
T∗ba(k),∀k, which goes against the Second Principle of relativity, as noted above.

Let us end this section by summarizing its main results. To assume the refractive index is a relative constant in isotropic
minerals that can be measured in relative motion has the following unacceptable consequences:

1.-Isotropic crystals show polar anisotropy, which is incompatible with all of our theoretical and experimental
knowledge in optical and structural crystallography.

2.-Isotropic crystals, of whose existence we have the highest theoretical and empirical evidence, cannot exist in
relative motion.

3.-Some universal properties of isotropic crystals, as their respective refractive indexes, become non-universal
thanks to LT.

4-.-There is no relativistic alternative to LT able to resolve the above optical conflicts.

5.-Case C: the refractive index as a universal constant
This section assumes that the magnetic permeabilityµm and the electric permittivityǫm of any transparent mediumm are
universal constants, as is the case of the magnetic permeability µo and electric permittivityǫo of a vacuum (free space). In
these conditions, and considering that any algebraic combination of universal constants is also a universal constant,it can be
written:

c = 1/
√
µoǫo

µ′m = µm/µo

ǫ′m = ǫm/ǫo

n =
√

µ′mǫ
′
m







































are universal constants

Thus, to assume the refractive index of an isotropic medium is a universal constant is a logical consequence of assuming its
magnetic permeability and its electric permittivity are universal constants. Assuming that this is the case, the next discussion
analyzes, from a relativistic point of view, the critical angle of reflection, the minimal angle of incidence at which therefraction
of light between two isotropic media ceases to occur and all light is internally reflected.

When light crosses from a isotropic material of refractive indexno1 into another isotropic material of a less refractive
index no2, the angle of incidence is less than the angle of refraction.As the angle of incidence increases the angle of
refraction approaches to 90º. There is a critical angle of incidenceθc (0º< θ < 90º) for which the refracted angle is just 90º.
Over this critical angle no refraction occurs and all incident rays are reflected. Let us callcritical reflectionto the reflection
of light when the incident angle is just the critical angle. We will examine the critical reflection of light from the perspective
of two inertial reference frames that move relative to each other. LetRFo be the proper frame ofm1 andm2, two isotropic
transparent materials whose refractive indices are respectively no1 andno2, beingno1 > no2. The critical angle of incidence is
immediately deduced from Snell’s Law: it is the angle of incidenceθc for which the refracted angle is 90º:

sinθc
sin 90

=
no2

no1
(66)

sinθc = no2/no1 (67)

θc = arcsinno2/no1 (68)

Assuming the refractive indices of isotropic transparent media are universal constants, any algebraic combination ofthem, as
no2/no1, is also a universal constant. In consequence, the criticalangleθc (0º< θ < 90º) is a universal constant for any two
given isotropic transparent materials. Assume that inm1 a laser beam is emitted inclined to the Normal by the criticalangle
θc. The critical reflection occurs and a visible light is emitted by a critical sensor placed at the appropriate vertical distance
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yo1 (Figure 3). Assume also a photon of the critical incident raylasts a timeto in traversing the distanceho at its velocity
c1 = c/no1 throughm1. We can write:

co =
c

no1
=

ho

to
(69)

Fig. 3 – Reflection of light at the critical angle for the isotropic transparent materialsm1 andm2 in RFo (top) and inRFv (bottom). In both cases a
critical sensor emits a visible light if, and only if, the critical reflection takes place.

From the perspective ofRFv it can be written:

nv1 = no1

c universal constant











⇒ cv =
c

nv1
=

c
no1
= co (70)

yv = yo

θc universal constant











⇒ xv = xo (71)

yv = yo

xv = xo











⇒ hv = ho (72)

hv = ho

cv = co











⇒ tv = to (73)

In consequence, and according to (71) and (73), LT functional factors for lengthsL(k) and LT functional factor for timesT(k)
(52)-(55) must hold:

∀k ∈ (0, 1) : L(k) =
√

1− k2 = 1; T(k) =
1+ k
√

1− k2
= 1 (74)

which is impossible except ifk = 0, i.e. at rest with respect toRFo. And for the same reasons, the corresponding length and
time factorsL∗(k) andT∗(k) of any other relativistic transformation alternative to LT, must also verify:

∀k ∈ (0, 1) : L∗(k) = T∗(k) = 1 (75)

which means that, under the assumption that the refractive indexes of transparent media are universal constants, therecannot
be changes neither in lengths nor in times when measured fromdifferent frames in relative motion, if the corresponding
transformation is compatible with the critical reflection of light.

6.-Conclusions
By assuming the index of refraction is a relative constant depending on relative motion, it has been proved that LT implies the
relativistic existence of an impossible polar anisotropy as well as the impossibility of transparent isotropic materials, which
also goes against our theoretical and empirical evidence regarding the optical behaviour of isometric minerals. We have
then assumed the alternative assumption, according to which the refractive index is a universal constant for each transparent
crystalline material. The corresponding discussion has proved that LT cannot account for the critical reflection of light when
observed in relative uniform motion, which is another evident break of Lorentz symmetry. The results of both discussions go
far beyond the breaking of Lorentz symmetry. They prove there is no other relativistic alternative to explain the considered
optical properties, of which we have the highest theoretical and experimental support. We would have to conclude that, at
least with respect to these optical properties, the proper (rest) frame of the transparent materials interacting with light is not
equivalent to other frames in relative uniform motion. A conclusion that put to the test the Principle of Relativity in its current
version.

The special theory of relativity is a theory on the spacetimecontinuum, but space and time could be discontinuous,
discrete, made of indivisible minima, as is the case of matter and energy. It is convenient to recall at this point that the
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continuumis a set theoretical object built on one of the most controverted hypothesis in history, the hypothesis of the actual
infinity (subsumed into the Axiom of Infinity founding modernset theories), according to which, and to put it into colloquial
terms, the list of the natural numbers exists as a complete totality in spite of the fact that no last number complete the list. The
alternative hypothesis of the potential infinity -it is always possible to count a number greater than any given number, but the
complete list of numbers does not actually exist- does not deserve the attention of contemporary mathematics, whose main
stream is infinitist even in the more pure teoplatonic sense.Physics should not depend on the consistency of a set theoretical
axiom that could be inconsistent (for its shortness, I recommend to take a glance atthis proof).

Other aspects of our knowledge of reality also point to the discrete nature of both space and time. In this regard, it
is worth noting that the factor for converting between continuous and discrete geometries has the algebraic form of the
relativistic Lorentz’s factorγ, of capital importance in LT. So, ironic as it may be, the theory of special relativity could be a
theory on the inconsistent spacetime continuum, whose experimental support comes from an unexpected algebraic relation
between discrete and continuous geometries. The discrete interpretation of nature, including space and time, has a significant
number of advantages (seeA). One of the most relevant is that, contrarily to the points of the spacetime continuum, which
are primitive concepts devoid of physical meaning, the indivisible units of space and time would be physical elements ofthe
physical world plenty of physical meaning. This physical fabric of indivisible units of space and time would be the actual
scenario where all physical phenomena takes place, being all of them subjected to the same physical laws. Although these
physical phenomena could be also be referred to abstract reference frames, these abstract frames could only be defined in
agreement with the absolute character of the physical world, including its discrete fabric of space and time.

References

[1] Database Oxford University Press,Dictionary of Physics, Oxford University Press, New York, 2009.

https://www.researchgate.net/publication/45913981_Nested-set_inconsistency
https://www.researchgate.net/publication/340297098_Physics_and_the_Problem_of_Change

	.-Conventions
	.-The Refractive Index
	.-Case A: the refractive index can only be measured at rest
	.-Case B: the refractive index as a relative constant
	.-Case C: the refractive index as a universal constant
	.-Conclusions

