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Abstract The necessity of Lorentz transforming the Dirac matrices is an ongoing
issue with contradicting opinions. The Lorentz transformation of Dirac spinors
is clear but for the Dirac adjoint, the combination of a spinor and the ‘time-like’
zeroth gamma-matrix, the situation is fussy again. In the Feynman slash objects,
the gamma matrix four vector connects to the dynamic four vectors without really
becoming one itself. The Feynman slash objects exist in 4-D Minkowsky space-
time on the one hand, the gamma matrices are often taken as inert objects like the
Minkowski metric itself on the other hand. To be short, a slumbering confusion
exists in RQM’s roots. In this paper, first a Pauli-level biquaternion environment
equivalent to Minkowski space-time is presented. Then the Weyl-Dirac environ-
ment is produced as a PT doubling of the biquaternion Pauli-environment. It is the
production process from basic elements that produces some clarification regarding
the mentioned RQM foundational fussiness.
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1 Introduction

The Lorentz transformation of Dirac matrices is an ongoing issue with contra-
dicting opinions. For some, the Dirac gamma matrices are Lorentz inert objects,
although written in a four-vector notation. For others, they transform as ordinary
four-vectors. The transformation of Dirac spinors is clear but for the Dirac adjoint,
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the combination of a spinor and the ‘time-like’ zeroth gamma-matrix, the situation
is fussy again.

The gamma matrix four vector is ontologically located in between the dynamic
objects, as for example the energy momentum four vector, on the one hand and
the 4-D basis for Minkowski space on the other hand. In Special Relativity, the
Minkowski metric is Lorentz transformation inert because the transformation hap-
pens inside this metric and affects the dynamic variables only. In the Feynman
slash objects, the gamma matrix four vector connects to the dynamic four vec-
tors without really becoming one itself. The Feynman slash objects exist in 4-D
Minkowsky space-time on the one hand, the gamma matrices are often taken as
inert objects like the Minkowski metric on the other hand. In some approaches,
the Dirac gamma matrices span a vector space for themselves but then it is unclear
how this vector-space relates to Minkowski space-time. To be short, a slumbering
confusion exists in RQM’s roots.

In this paper I construct the Weyl and Dirac matrices based on a doubling
specific biquaternion approach that is morphologically equal toMinskowski space-
time. From there, I construct the Lorentz transformation matrix operators for
the Weyl and Dirac matrices and the Feynman slash dynamic objects. The fact
of the construction from basis elements, of the Feynman slash objects first and
the related Lorentz transformation operators second, produces a plateau from
which a perspective is possible that allows one to somewhat clarify the mentioned
confusion.

In the literature, the Lorentz transformation matrix operator isn’t constructed
but derived based on the assumed Lorentz covariance of the Dirac equation.
Compared to this standardly presented highly complex derivation, the construction
presented in this paper has a pedagogical simplicity that might be beneficial for
educational purposes. The construction procedure also sheds a new perspective on
the contradictory opinions regarding the Lorentz properties of the gammamatrices
and there connection to Minkowski space-time.

In the remainder of the introduction, I relate to the literature on the Lorentz
transformation operator and the Lorentz transformation status of the gamma four
vector. In part two of this paper, I construct a Pauli-level biquaternion math-
phys environment morphologically equal to the Minkowski one. In part three, I
construct the Weyl-Dirac environment based on a PT parity time reversal doubling
of the biquaternion Pauli environment of part two. This construction produces the
announced clarification.
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1.1 The derivation of the LT-operator

The Lorentz transformation of Dirac matrices and spinors is an ongoing issue with
contradicting opinions. For some, the Dirac gamma matrices are Lorentz inert
objects, although written in a four-vector notation:Does that mean that the gamma
matrices that appear in the Dirac equation transform as a vector? The answer is
no [1, p. 63]. For others, they transform as ordinary four-vectors: the covariance
of the Dirac equation implies that γ transforms like a four-vector [2, p. 17].

What is consistent in all presentations of the Lorentz properties of the gamma
matrices, is the key equation SγνS−1 = Λ ν

µ γ
µ, as derived from the requirement

of the Lorentz covariance of the Dirac equation. In this equation, the operator S is
the Lorentz transformation operator, although the notation may vary from author
to author.

In [3, p. 73], Stone wrote: The Lorentz covariance of the Dirac equation
is guaranteed if there exists a matrix representation S(L) of the Lorentz group
so that for any Lorentz transformation Lµ

ν there exists a matrix S(L) such that
S(L)γµS−1(L) = (L−1)

µ
νγ

ν . This matrix S is defined by this equation and has to
be found through it, see Greiner in [4, p. 138, Eqn. 3.34]: This is the fundamental
relation determining the operator Ŝ: To find Ŝ means solving [Ŝ(â)γν Ŝ−1(â) =
a ν
µ γµ]. A similar reasoning is given in [5, p. 147, Eqn. 5.102], [6, p. 42] and in

[7, p. 93]. This usual textbook approach is critically analyzed and alternatively
presented in [8].

So in the usual textbook approach the authors have to solve SΛS−1βµSΛ−1S−1 =
Λ ν
µ βµ for SΛS−1 without the insight that it is a product of three operations. In [5,

p. 147, Eqn. 5.102], the “ S” is a black box, whereas in my approach I opened the
box and found “ S” = SΛS−1, a relation that I constructed and then used to prove
SΛS−1βµSΛ−1S−1 = Λ ν

µ βµ instead of assuming it first and solving it later. I do not
assume and solve, I construct and prove instead. This was possible mainly because
of its close connection to the Lorentz transformation approach in the biquaternion
representation of the Pauli level physics.

In this paper I will demonstrate that the S in SγνS−1 = Λ ν
µ γ

µ can be con-
structed out of three operations when the Weyl representation is used. First, one
transforms the Dirac representation of γν into the Weyl representation using S,
then the Lorentz transformation is applied to the Weyl γν using Λ, after which
one transforms the γ′ν back to the Dirac representation using S−1. The result gives
γ′ν = SΛS−1γνSΛ−1S−1 = Λ ν

µ γ
µ. The Lorentz transformation of the Weyl repre-

sentation of four-vectors is uncomplicated when using rapidities. So two matrices,
S and Λ are enough to construct the matrix that has a very complicated derivation
in the standard textbook approach.

In this paper, biquaternions are used to deal with relativist physics, including
mechanics, electrodynamics and quantum mechanics. Such a (bi-)quaternion ap-
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proach has a long history, see [9] and [10] for an extensive literature on the subject.
The originality of this paper is twofold, first in the attempt to develop a notation
that is as close as possible to both Relativistic QuantumMechanics and the General
Relativity standards and second in the construction of the Lorentz transformation
matrices needed in relativistic quantum mechanics on the Dirac-Weyl level. The
developed notation is indispensable for the construction. The goal is to reach out
to physicists, not to mathematicians and as a consequence the emphasis is on the
physics of the biquaternion synthesis, under negligence of the mathematical foun-
dations, subtleties and conventions. The paper is divided in two parts, the first on
the level of the Pauli spin matrices and the second on that of the Dirac matrices as
a double version of the Pauli ones. The biquaternion basis is represented by two
by two complex matrices in a dual minquat space-time and pauliquat spin-norm
version.

The first part is rather familiar in the context of the many biquaternion ap-
proaches that have been proposed the last hundred or so years, see [9] and [10].
Slight differences are present, making the biquaternion expose on the Pauli matri-
ces level interesting on its own. The result is applied to the Maxwell and Lorentz
EM-equations, in order to show its mathematical and conceptual consistency.

In the second part, matrices and spinors are treated on the Dirac level in
order to arrive at the relativistic core of quantum mechanics. The Dirac matrices
are presented as dual versions of the Pauli ones. The Lorentz transformation of
the Dirac matrices is being simplified due to the method developed in the first
Pauli level part of the paper. This simplification allows for a much shorten and
more transparent way to demonstrate the Lorentz invariance and covariance of
the equations and products. The Lorentz transformation properties of spinors is
critically assessed.

2 The Pauli spin level

2.1 A complex quaternion basis for the metric

Quaternions can be represented by the basis (1̂, Î, Ĵ, K̂). This basis has the properties
ÎÎ = ĴĴ = K̂K̂ = −1̂ and 1̂1̂ = 1̂; 1̂K̂ = K̂1̂ = K̂ for Î, Ĵ, K̂; ÎĴ = −ĴÎ = K̂; ĴK̂ =
−K̂Ĵ = Î; K̂Î = −ÎK̂ = Ĵ. A quaternion number in its summation representation
is given by A = a01̂ + a1Î + a2Ĵ + a3K̂, in which the aµ are real numbers . Bi-
quaternions or complex quaternions are given byC = A+iB = c01̂+c1Î+c2Ĵ+c3K̂
in which the cµ = aµ+ibµ are complex numbers and the aµ and bµ are real numbers.

This standard biquaternion basis (1̂, Î, Ĵ, K̂) can be used to provide a basis for
relativistic 4-D space-time. One way to do this is by making the time coordinate
c0 = b0i complex only and the space coordinates (c1, c2, c3) = (a1, a2, a3) real only,
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see [11]. Synge called these objects Minkowski quaternions or ‘minquats’, Silber-
stein called them ‘physical quaternions’ [11]. This however produces confusion
regarding the time-like complex number as the physics gets more complicated.
As Synge put it, the intrusion of the imaginary element is not trivial [11]. The
main reason is that minquats do not form a closed algebra under addition and
multiplication as a subspace inside the wider biquaternion space, due to the mul-
tiplication operation. The reason they are used nevertheless is given by Synge:
For the application of quaternions to Lorentz transformations it is essential to
introduce Minkowskian quaternions [11].

The use of minquats produces language conflicts with almost all of modern
physics, that is Quantum Mechanics and Special and General Relativity, where
the space-time coordinates always are a set of four real numbers. So for several
reasons, I choose to insert the time-like complex number of c0 = b0i in the basis
instead of in the coordinate. So by using c01̂ = b0i1̂ = b0T̂ the space-time basis
is then given by (T̂, Î, Ĵ, K̂). In this way, the coordinates are always a set of real
numbers ∈ R. The space-time basis (T̂, Î, Ĵ, K̂), (a disguised minquat basis) is not
closed under multiplications, as already mentioned by Synge.

A set of four numbers ∈ R is given by

Aµ =


a0
a1
a2
a3

 ,
or by Aµ = [a0, a1, a2, a3] . In this way, the raising or lowering of the index doesn’t
change any sign. Aµ simply is the transpose of Aµ and vise versa. The biquaternion
basis can be given as a setKµ = (T̂, Î, Ĵ, K̂). Then a biquaternion space-time vector
can be written as the product

A = AµKµ = [a0, a1, a2, a3]


T̂
Î
Ĵ
K̂

 = a0T̂ + a1Î + a2Ĵ + a3K̂ (1)

I apply this to the space-time four vector of relativistic bi-quaternion 4-space
R with the four numbers Rµ = (r0, r1, r2, r3) = (ct, r1, r2, r3), so with r0, r1, r2, r3
∈ R. Then I have the space-time four-vector as the product of the coordinate
set and the basis R = RµKµ = r0T̂ + r1Î + r2Ĵ + r3K̂ = ctT̂ + r · K. I use
the three-vector analogue of RµKµ when I write r · K. In this notation I have
RT = −r0T̂ + r1Î + r2Ĵ + r3K̂ = −r0T̂ + r · K for the time reversal operator and
RP = r0T̂ − r1Î − r2Ĵ − r3K̂ = r0T̂ − r · K for the space point mirror or parity
operator, with RP = −RT . In this notation, the transpose of a matrix will be given
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by the suffix ‘t’, so Rt
µ = Rµ. The complex transpose of spinors is given by the

dagger symbol, as in ψ†. The complex conjugate of a spinor is given by ψ∗. In this
language, the operators T and P take the role of raising and lowering of indexes in
the General Relativity convention.

2.2 Matrix representation of the quaternion basis

Quaternions can be represented by 2x2 matrices. Several representations are pos-
sible, but most of those choices result in conflict with the standard approach in
physics. Given the unit quaternion as 1̂, my choice for the space-time four set is

T̂ =
[
i 0
0 i

]
, Î =

[
i 0
0 −i

]
, Ĵ =

[
0 1
−1 0

]
, K̂ =

[
0 i
i 0

]
. (2)

I can compare these to the Pauli spin matrices σP = (σx, σy, σz).

σx =

[
0 1
1 0

]
,σy =

[
0 −i
i 0

]
,σz =

[
1 0
0 −1

]
. (3)

If I exchange the σx and the σz, I get K = iσ and Kµ = i(1̂,σ). So in my use of
the Pauli matrices, I use σ ≡ (σI, σJ, σK) = (σz, σy, σx). So also Î = T̂σI, Ĵ =
T̂σJ, K̂ = T̂σK and σI = −T̂Î,σJ = −T̂Ĵ,σK = −T̂K̂.

With this choice of matrices, a four-vector R can be written as

R = r0

[
i 0
0 i

]
+ r1

[
i 0
0 −i

]
+ r2

[
0 1
−1 0

]
+ r3

[
0 i
i 0

]
. (4)

This can be compacted into a matrix representation of R:

R =
[

r0i + ir1 r2 + ir3
−r2 + ir3 r0i − ir1

]
=

[
R00 R01
R10 R11

]
(5)

with the numbers R00, R01, R10, R11 ∈ C.

2.3 Multiplication of vectors as matrix multiplication adds pauliquats to minquats

In general, the multiplication of two vectors A and B follows matrix multiplication,
with Ai j, Bi j,Ci j ∈ C.

AB =
[

A00 A01
A10 A11

] [
B00 B01
B10 B11

]
=

[
C00 C01
C10 C11

]
= C. (6)
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So we have

C = AB =
[

A00B00 + A01B10 A00B01 + A01B11
A10B00 + A11B10 A10B01 + A11B11

]
=

[
C00 C01
C10 C11

]
. (7)

Of course, vectors A, B and C can be expressed with their aµ, bµ, cµ coordinates
∈ R and if we use them, after some elementary but elaborate calculations and
rearrangements we arrive at the following result of the multiplication expressed in
the aµ, bµ and cµ as

c0 = −a0b0 − a1b1 − a2b2 − a3b3

c1K = a2b3 − a3b2

c2K = a3b1 − a1b3

c3K = a1b2 − a2b1

c1σ = −a0b1 − a1b0

c2σ = −a0b2 − a2b0

c3σ = −a0b3 − a3b0 (8)

In short, if we use the three-dimensional Euclidean dot and cross products of
Euclidean three-vectors in classical physics, this gives for the coordinates

c0 = −a0b0 − a · b
cK = a × b (9)

cσ = −a0b − ab0 (10)

And in the quaternion notation we get

C = AB = (−a0b0 − a · b)1̂ + (a × b) ·K + (−a0b − ab0) · σ (11)

This matrix multiplication, in which I used T̂T̂ = −1̂ and T̂K = −σ, implies that
the space-time basis (T̂,K) is being duplicated by a spin-norm basis (1̂,σ) by the
multiplication operation.

The relativistically relevant multiplications of two four-vectors are all in the
form C = AT B. The difference between AB and AT B is in the sign of a0. This
results in

C = AT B = (a0b0 − a · b)1̂ + (a × b) ·K + (a0b − ab0) · σ (12)

From this it follows that the physically relevant norm of a four-vector, from a
relativistic perspective, is the product AT A and not the product AA:

C = AT A = (a0a0 − a · a)1̂ + (a × a) ·K + (a0a − aa0) · σ =

(a0a0 − a · a)1̂ = c2a2
τ1̂. (13)
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The main quadratic form of the metric is dRT dR = (c2dt2 − dr2)1̂ = c2dτ21̂ =
ds21̂ with ds = cdτ. The quadratic giving the distance of a point R to the origin
of its reference system is given by RT R = (c2t2 − r2)1̂ = c2τ21̂ = s21̂ with s = cτ.

Themultiplication of two four vectors can also be arranged as themultiplication
of two tensors, a coordinate tensor times a metric tensor using that

(AµKµ)T BνKν = AµBν(Kµ)
TKν = C ν

µ K ν
µ (14)

with the metric tensor as

K ν
µ = (Kµ)

TKν =
[
−T̂, Î, Ĵ, K̂

] 
T̂
Î
Ĵ
K̂

 = (15)


−T̂T̂ ÎT̂ ĴT̂ K̂T̂
−T̂Î ÎÎ ĴÎ K̂Î
−T̂Ĵ ÎĴ ĴĴ K̂Ĵ
−T̂K̂ ÎK̂ ĴK̂ K̂K̂

 =

1̂ −σI −σJ −σK

σI −1̂ −K̂ Ĵ
σJ K̂ −1̂ −Î
σK −Ĵ Î −1̂

 . (16)

This multiplication product has a norm 1̂ part, a space K part and a spin σ part.
So the multiplication of two four vectors AT B = C has this multiplication matrix.
The multiplication combines the properties of symmetric and anti-symmetric in
one product.

The inevitable appearance of the spin-norm basis in the multiplication of two
Synge minquats or Silberstein physical quaternions is why the minquats do not
form a closed algebra under multiplication [11]. In my approach, the space-time
basis (T̂,K) doesn’t form a closed algebra under multiplications, it needs a spin-
norm complex dual (T̂,K) = i(1̂,σ) to cover all of biquaternion space, while only
allowing real coordinates for Rµ and Pµ in RµKµ and Pµσ

µ. The obligation,
chosen freely in a Kantian way, to only use real coordinates produces the dual
basis in a unique way.

The physical sphere, the cosmos so to speak, then obtains a dual space-
time/spin-norm basis as it’s natural geometry. This duality will prove to mirror
real physics with electric charges or monopoles as part of space-time and hy-
pothetical magnetic monopoles as spin-norm entities, if at all possible. Electric
currents exist in real space-time (T̂,K) and magnetic monopole currents can only,
if at all, exist in the ‘imaginary’ spin-norm (1̂,σ) sphere as will be shown further
on in this paper. If Synge’s minquats are RµKµ biquaternions, then Pµσ

µ are
pauliquats. The sum of minquats and pauliquats cover the whole of biquaternion
space. The multiplication of a minquat with a minquat produces a minquat and a
pauliquat. Electric currents must be represented by minquats and magnetic cur-
rent by pauliquats, if at all. Intrinsic spin is a pauliquat, its Lorentz dual intrinsic
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polarization is a minquat. The existence of minquats and pauliquats defies elec-
tromagnetic super-symmetry as is striven for by the magnetic monopole research
community. The combined minquat and pauliquat environment is a-symmetric.

2.4 The Lorentz transformation

A normal Lorentz transformation between two reference frames connected by a
relative velocity v in the x− or Î-direction, with the usual γ = 1/

√
1 − v2/c2,

β = v/c and r0 = ct, can be expressed as[
r′0
r′1

]
=

[
γ −βγ
−βγ γ

] [
r0
r1

]
=

[
γr0 − βγr1
γr1 − βγr0

]
. (17)

We want to connect this to our matrix representation of R as in Eq.(5) which
gives

R′00 = ir′0 + ir
′
1 = iγr0 − iβγr1 + iγr1 − iβγr0 (18)

R′11 = ir′0 − ir
′
1 = iγr0 − iβγr1 − iγr1 + iβγr0. (19)

Now we want to introduce rapidity or hyperbolic Special Relativity in order to
integrate Lorentz transformations into our matrix metric. In [12] I gave a brief
history of rapidity in its relation to the Thomas precession and the geodesic pre-
cession. For this paper we only need elementary rapidity definitions. If we use the
rapidity ψ as eψ = coshψ + sinhψ = γ + βγ, the previous transformations can be
rewritten as

R′00 = ir′0 + ir
′
1 = (γ − βγ)(ir0 + ir1) = R00e−ψ (20)

R′11 = ir′0 − ir
′
1 = (γ + βγ)(ir0 − ir1) = R11eψ . (21)

As a result we have

RL =

[
R′00 R′01
R′10 R′11

]
=

[
R00e−ψ R01

R10 R11eψ

]
= U−1RU−1. (22)

In the expression RL = U−1RU−1 we used the matrix U as

U =

[
e
ψ
2 0

0 e−
ψ
2

]
. (23)

But this means that we can write the result of a Lorentz transformation on R
with a Lorentz velocity in the Î-direction between the two reference systems as
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RL = r0

[
ie−ψ 0

0 ieψ
]
+ r1

[
ie−ψ 0

0 −ieψ
]
+ r2

[
0 1
−1 0

]
+ r3

[
0 i
i 0

]
. (24)

This can be written as

RL = r0U−1T̂U−1 + r1U−1ÎU−1 + r2Ĵ + r3K̂ = r0T̂
L
+ r1Î

L
+ r2Ĵ + r3K̂. (25)

But because we started with Eq.(17), we now have two equivalent options to
express the result of a Lorentz transformation

RL = r′0T̂ + r′1Î + r2Ĵ + r3K̂ = r0T̂
L
+ r1Î

L
+ r2Ĵ + r3K̂, (26)

either as a coordinate transformation or as a basis transformation.
This result only works for Lorentz transformation between vx-, v1- or Î-aligned

reference systems. Reference systems which do not have their relative Lorentz
velocity aligned in the Î-direction will have to be space rotated into such an
alignment before the Lorentz transformation in the form RL = U−1RU−1 is applied.
In principle, such a rotation in order to achieve the Î alignment of the primary
reference frame to a secondary reference frame is always possible as an operation
prior to a Lorentz transformation. This unique alignment between two frames of
reference S and S′, needed to match the physics with the algebra, is analyzed by
Synge in [11, p. 41-48] and focuses on the concept of a communal photon. The
requirement of reference system alignment is also the reason for the appearance of
the Thomas precession and the Thomas-Wigner rotation if the axis are not aligned;
the notion that two Lorentz transformations in different directions in space can
always be substituted by the subsequent application of one space rotation and one
single Lorentz transformation, see [12]. The communal photon of Synge is the one
for which the relativistic Doppler shift between S and S′ results in ν′ = νe±ψ . The
minquat algebra requires inertial observers to align their principal axis along such
a communal photon, in my notation the Î axis.

The Lorentz transformation of the coordinates (Rµ)L can be written as
r′0
r′1
r′2
r′3

 = Λ
µ
ν Rν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



r0
r1
r2
r3

 =

γr0 − βγr1
γr1 − βγr0

r2
r3


So the Lorentz transformation of R = RµKµ = KµRµ can be presented as

RL = Kµ(Rµ)L = KµΛ
µ
ν Rν = (KµΛ

µ
ν )R

ν = (Kν)
L Rν

= U−1KνU−1Rν = U−1KνRνU−1 = U−1RU−1 (27)
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This implies the identity KµΛ
µ
ν = U−1KνU−1, an identity that isn’t possible for

the coordinates only. The matrix representation of the basis is key to this identity,
because the relativisticDoppler factor e±ψ appears differently attached to thematrix
elements. As is the Î alignment of the two involved reference frames during the
Lorentz transformation. Given that Kµ = iσµ, the identity KµΛ

µ
ν = U−1KνU−1

can also be seen as an instruction for the Lorentz transformation of the Pauli spin
matrices as a norm-spin four set σµ = (1̂,σ).

The Lorentz transformation of AT is also interesting, due to the importance
of the product C = AT B and therefore the Lorentz transformation CL . Given the
inverse Lorentz transformation as

AL−1
≡ U AU (28)

one can prove (
AT

)L−1

= U
(
AT

)
U =

(
U−1 AU−1

)T
=

(
AL

)T
(29)

and (
AT

)L
= U−1

(
AT

)
U−1 = (U AU)T =

(
AL−1

)T
. (30)

The result
(
AL )T

= U ATU will be used in several important derivations in this
paper, when the Lorentz transformation of a product and the possible invariance
or Lorentz covariance has to be investigated, as in the next example.

Start with two inertial reference systems S1 and S2 connected by a constant
relative velocity v, a Lorentz gamma factor γ(v) and a rapidity factor ψ(v) defining
the Lorentz transformation matrix U. Given A and B in S1 and their product in S1
as C = AT B. Then in S2 one has AL and BL and their product CL =

(
AL )T BL . We

then have

CL =
(
AL

)T
BL =

(
AT

)L−1

BL = U
(
AT

)
UU−1BU−1

= U AT BU−1 = UCU−1. (31)

As a result, it is easy to prove that the quadratic AT A = c2a2
τ1̂ is Lorentz

invariant. We have

(AL)T AL = (AT )−L AL = U ATUU−1 AU−1 = U AT AU−1

= U(c2a2
τ)1̂U−1 = UU−1(c2a2

τ)1̂ = c2a2
τ1̂ = AT A. (32)

So both quadratics RT R and dRT dR are Lorentz invariant scalars, as has been
shown for every quadratic of four-vectors. But they aren’t perfect quadratics, the
last defined through the requirement AA = |A|21̂.
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2.5 Adding the dynamic vectors

If I want to apply the previous to relativistic electrodynamics and to quantum
physics, I need to further develop the mathematical language, the notation system
and the biquaternion elements. I don’t claim originality regarding the biquaternion
foundations of my notation system. As indicated before, there is a whole subculture
around quaternions an biquaternions in physics, see [9], [10], and I have been
studying many of those papers. The justification for my paper is to be found in
what it adds to this rather large subculture, as part of the more general plethora of
different vector formalisms currently in use [13].

But let’s return to my project of formulating a pragmatic biquaternion math-
phys language through which relativity and quantum can be synthesized. The most
relevant dynamic four vectors must be given a biquaternion representation. The
basic definitions I use for that purpose are quite common in the formulations of
relativistic dynamics, see for example [14]. I start with a particle with a given
three vector velocity as v, a rest mass as m0 and an inertial mass mi = γm0,
with the usual γ = (

√
1 − v2/c2)−1. I use the Latin suffixes as abbreviations

for words, not for numbers. So mi stands for inertial mass and Up for potential
energy. The Greek suffixes are used as indicating a summation over the numbers
0, 1, 2 and 3. So Pµ stands for a momentum four-vector coordinate row with
components (p0 =

1
cUi, p1, p2, p3). The momentum three-vector is written as p and

has components (p1, p2, p3).
I define the coordinate velocity four vector as

V = VµKµ =
d
dt

RµKµ = cT̂ + v ·K = v0T̂ + v ·K. (33)

The proper velocity four vector on the other hand will be defined using the proper
time τ = t0, with t = γt0 = γτ, as

U = UµKµ =
d

dτ
RµKµ =

d
1
γ dt

RµKµ = γVµKµ = u0T̂ + u ·K. (34)

The momentum four vector will be, at least when we have the symmetry condition
p = miv,

P = PµKµ = miVµKµ = miV = m0UµKµ = m0U. (35)
The four vector partial derivative ∂ = ∂µKµ will be defined using the coordinate
four set

∂µ =

[
−

1
c
∂t,∇1,∇2,∇3

]
= [∂0, ∂1, ∂2, ∂3] . (36)

The electrodynamic potential four vector A = AµKµ will be defined by the coor-
dinate four set

Aµ =

[
1
c
φ, A1, A2, A3

]
= [A0, A1, A2, A3] (37)
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The electric four current density vector J = JµKµ will be defined by the coordinate
four set

Jµ = [cρe, J1, J2, J3] = [J0, J1, J2, J3] , (38)

with ρe as the electric charge density. The electric four current with a charge q will
be also be written as Jµ and the context will indicate which one is used.

Although we defined these fourvectors using the coordinate column notation,
wewill often use thematrix or summation notation, as for examplewith P = PµKµ,
written as

P = p0T̂ + p1Î + p2Ĵ + p3K̂ = p0T̂ + p ·K

=

[
ip0 + ip1 p2 + ip3
−p2 + ip3 ip0 − ip1

]
=

[
P00 P01
P10 P11

]
. (39)

The flexibility to use either of these notations is a strength of the math-phys
language as developed in this paper. There are cases where one needs to go all
the way to the internal scalar matrix notation to solve issues as for example the
product rule in calculating a derivative, after which one returns to themore compact
notation to evaluate the outcome.

2.6 The EM field in our language

I we apply the matrix multiplication rules to the electromagnetic field with four
derivative ∂ and four potential A, with ∂0 = −

1
c∂t and A0 =

1
cφ, we get B = ∂T A

as

B = ∂T A = (−
1
c2 ∂tφ − ∇ · A)1̂ + (∇ × A) ·K +

1
c
(−∂tA − ∇φ) · σ. (40)

If we apply the Lorenz gaugeB0 = −
1
c2 ∂tφ−∇ ·A = 0 and the usual EM definitions

of the fields in terms of the potentials we get

B = ∂T A = B ·K +
1
c
E · σ. (41)

Using σ = −T̂K = −iK, this can also be written as

B = ∂T A = (B − i
1
c
E) ·K = −→B ·K. (42)

The use of B = B − i1cE dates back to Minkowski’s 1908 treatment of the subject
[15]. In my opinion, the flexibility of easy switching between the different modes
of notations makes my biquaternion variant suited for unification purposes.
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Using B we can write B as

B = B1Î + B2Ĵ + B3K̂ =
−→
B ·K =[

iB1 B2 + iB3
−B2 + iB3 −iB1

]
=

[
B00 B01
B10 B11

]
. (43)

For the Lorentz transformation of B we can apply the result of the previous
section to get BL = (∂L)T AL = (∂T )−L AL = U(∂T )UU−1 AU−1 = U(∂T A)U−1 =
UBU−1, so

BL =

[
e
ψ
2 0

0 e−
ψ
2

] [
B00 B01
B10 B11

] [
e−

ψ
2 0

0 e
ψ
2

]
=

[
B00 B01eψ

B10e−ψ B11

]
(44)

which, when written out with E and B leads to the usual result for the Lorentz
transformation of the EM field with the Lorentz velocity in the x-direction. But it
can also be written as a transformation of the basis, while leaving the coordinates
invariant:

BL = UBU−1 = B1UÎU−1 + B2UĴU−1 + B3UK̂U−1 = (45)

B1Î + B2Ĵ
L
+ B3K̂

L
= B1

[
i 0
0 −i

]
+ B2

[
0 eψ

−e−ψ 0

]
+ B3

[
0 ieψ

ie−ψ 0

]
.

The Lorentz transformation of the EMfield can be performed by internally twisting
the (Ĵ, K̂)-surface perpendicular to the Lorentz velocity and in the process leaving
the EM-coordinates invariant.

That the above equals the usual Lorentz transformation of the EM field can
be shown by going back to [15], where he wrote the transformation in a form
equivalent to 

B′1
B′2
B′3

 =

1 0 0
0 γ iβγ
0 −iβγ γ



B1
B2
B3

 =


B1
γB2 + iβγB3
γB3 − iβγB2

 (46)

So we have
B′01 = B

′
2 + iB

′
3 = γB2 + iβγB3 + iγB3 + βγB2 (47)

and
B′10 = −B

′
2 + iB

′
3 = −γB2 − iβγB3 + iγB3 + βγB2. (48)

If we use the rapidity ψ as eψ = coshψ+ sinhψ = γ+ βγ, this can be rewritten
as

B′01 = B
′
2 + iB

′
3 = (γ + βγ)(B2 + iB3) = B01eψ (49)

and
B′10 = −B

′
2 + iB

′
3 = (γ − βγ)(−B2 + iB3) = B10e−ψ, (50)

which leads to Eqn. (44).
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2.7 The Maxwell Equations and the Lorentz force law

The Maxwell equations in our language can be given as, using J = ρV , ∂B = µ0J
and the Lorentz force law, with a four force density F , as JB = F . Maxwell’s
inhomogeneous wave equations can be written as (−∂T∂)B = −µ0∂

T J and with
the Lorentz invariant quadratic derivative,

− ∂T∂ = (∇2 −
1
c2 ∂

2
t )1̂ (51)

we get the homogeneous wave equations of the EM field in free space in the
familiar form as

(−∂T∂)B = ∇2B −
1
c2 ∂

2
t B = 0. (52)

I will look at ∂B = µ0J first. The underlying structure then also applies to the
Lorentz Force Law and the inhomogeneous part of the wave equation. I start with

B = ∂T A = B ·K +
1
c
E · σ. (53)

Then ∂B is given by

∂B =
(
−

1
c
∂tT̂ + ∇ ·K

) (
B ·K +

1
c
E · σ

)
=

−(∇ · B)1̂ + 1
c
(∇ · E)T̂ + (∇ × B −

1
c2 ∂tE) ·K +

1
c
(∇ × E + ∂tB) · σ (54)

If we interpret this result using the knowledge regarding the inhomogeneous
Maxwell equations, we get an interesting result. First of all, the part of theMaxwell
Equation with the dimension of the norm 1̂ is zero and so is the part with the di-
mension of spin σ. The space-time parts K and T̂ equal the space-time parts of
the four current µ0J. So we get

∂B = −(∇ · B)1̂ + 1
c
(∇ · E)T̂ + (∇ × B −

1
c2 ∂tE) ·K +

1
c
(∇ × E + ∂tB) · σ =

01̂ + µ0cρT̂ + µ0J ·K + 0σ = µ0J . (55)

So the spin-normpart of theMaxwell Equations equals zero and the space-time part
equals the space-time four current density times µ0. In the line of this interpretation,
magnetic monopoles and the correlated magnetic monopole current should be
searched in the pauliquat dimensions of spin-norm, not in the minquat dimensions
of space-time.

As for the Lorentz covariance of the Maxwell Equations, this can be demon-
strated quite easily. Given the four-vectors ∂, A and J in reference system S1, with
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the Maxwell Equations as ∂(∂T A) = µ0J, then in reference system S2 we have
the four-vectors ∂L , AL and JL and the covariant Maxwell Equations given as
∂L(∂L)T AL = µ0JL . In S2 this can be proven through

∂L(∂L)T AL = ∂L(∂T )L
−1

AL = U−1∂U−1U(∂T )UU−1 AU−1 = U−1∂(∂T )AU−1 =

U−1∂BU−1 = U−1µ0JU−1 = µ0JL . (56)

So if we have ∂B = µ0J in one frame of reference, this transforms as ∂L BL =

µ0JL in another frame of reference, which means that the equation maintains its
form, it is Lorentz covariant. We have form-invariance of the equations.

I will look at JB = F now, with J = qV . The underlying structure for the
Lorentz Force Law is the same as for the Maxwell equations. So JB is given by

JB =
(
cqT̂ + J ·K

) (
B ·K +

1
c
E · σ

)
=

−(J · B)1̂ +
1
c
(J · E)T̂ + (J × B + qE) ·K + (

1
c
J × E − cqB) · σ (57)

If we interpret this result using the knowledge regarding the Lorentz Force Law,
we get an interesting result. First of all, the part of the Lorentz force law with the
dimension of the norm 1̂ is zero and so is the part with the dimension of spin σ.
The space-time partsK and T̂ equal the space-time parts of the four force F. Thus
we get

JB = −(J · B)1̂ +
1
c
(J · E)T̂ + (J × B + qE) ·K + (

1
c
J × E − cqB) · σ =

01̂ +
1
c

PT̂ + F ·K + 0σ = F . (58)

So the spin-norm pauliquat part of the Lorentz Force Law equals zero and the
space-time minquat part equals the space-time four force.

In both cases, ∂B and BJ, we get a dual spin-norm and space-time product,
with the spin-norm equal zero and the non-zero space-time leading to the inhomo-
geneous four-vectors of current and force. Speculations about magnetic monopoles
are connected to these spin-norm parts, the set spanned by pauliquats. In my anal-
ysis, if spin-norm is the twin dual of space-time and as such an integral aspect of
the metric as foreseen in [16], then searches for magnetic monopoles should focus
on this spin-norm aspect of the vacuum.

But from a purely geometric perspective, the product of three four-vectors like
in BJ = ∂T AJ = F, we can separate the coordinate four sets ∂µ, Aν, and Jµ

from the metric basis, as in BJ = ((∂µAν)Jµ)((KT
µKν)Kµ), and focus on the metric



Biquaternion based construction of Weyl-Dirac matrices and LT operators 17

product alone. We then get

K ν
µ Kµ = (KT

µKν)Kµ =


−T̂T̂ ÎT̂ ĴT̂ K̂T̂
−T̂Î ÎÎ ĴÎ K̂Î
−T̂Ĵ ÎĴ ĴĴ K̂Ĵ
−T̂K̂ ÎK̂ ĴK̂ K̂K̂



T̂
Î
Ĵ
K̂

 = (59)


−T̂T̂T̂ + ÎT̂Î + ĴT̂Ĵ + K̂T̂K̂
−T̂ÎT̂ + ÎÎÎ + ĴÎĴ + K̂ÎK̂
−T̂ĴT̂ + ÎĴÎ + ĴĴĴ + K̂ĴK̂
−T̂K̂T̂ + ÎK̂Î + ĴK̂Ĵ + K̂K̂K̂

 =

T̂ − T̂ − T̂ − T̂
Î − Î + Î + Î
Ĵ + Ĵ − Ĵ + Ĵ

K̂ + K̂ + K̂ − K̂

 , (60)

with no norm-spin (1̂,σ) product in the end result. The product of three four-vectors
in this metric/geometry environment should produce a space-time four vector only,
as is reflected in theMaxwell equations and the Lorentz Force Law. In other words,
the multiplication of three minquats produces a pure minquat, not a pauliquat or a
sum of a pauliquat and a minquat. Looking for magnetic monopoles as ‘symmetric
completion’ of the Maxwell Equations and the Lorentz Force Law makes no sense
in the metric/geometry developed in this paper because it implies looking for non-
zero (1̂,σ) results from K ν

µ Kµ. The metric (T̂,K); (1̂,σ) dimensionality analysis
implies that only non-zero (T̂,K) results are possible and that excludes magnetic
monopole four forces and four currents.

3 The Dirac spin level

3.1 The Dirac-Weyl environment’s disconnect to Minkowsky space-time

In the twenties of the previous century, the quadratic relativistic scalar Klein-
Gordon wave equation could not be applied to the relativistic electron including
(Pauli-) spin. In his search for a solution, Dirac linearized the Klein-Gordon
equation by introducing four by four matrices as duplexes of the two by two
Pauli matrices. In his two seminal 1928 papers he introduced the Clifford four
set (β, α) and, using what were later called the gamma matrices, the covariant
Clifford four set (β, γ) [17], [18]. The Pauli matrices were incorporated in these
matrices. Weyl later found another covariant Clifford four set, which relates to the
Dirac covariant set as low velocity relativistic to high velocity relativistic gamma
matrices Clifford four set [19].Weyl explicitly discussed parity P and time-reversal
T properties of these representations [20], [21, p. 109].

All these gamma or gamma-like matrices can be represented as two by two
matrices of the biquaternion pauliquat basis (1̂,σ). But using this biquaternion
basis (1̂,σ) as a basis for the gamma matrices makes it difficult to establish a
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connection between the gamma four-vector as a basis in an imaginary Dirac space-
time and the Minkowsky space-time of special relativity. With the spinor wave
objects as setting up an Hilbert space, the disconnect increases even more. The
Born rule connecting the intensity of the waves absolute value to probabilities of
outcomes in the real world in the laboratory successfully decreases the gap without
entirely closing it.

Using result of the previous section, I can build gamma-equivalent matrices
with a direct connection to Minkowskian space-time. It is my opinion that the
(T̂,K) biquaternion minquat basis will provide a solid foundation for connecting
the Clifford four sets of Relativistic Quantum Mechanics to ordinary relativistic
Minkowski space-time. This direct connection, through the construction of the
Dirac environment from basic elements, will prove to be insightful and fruitful.

3.2 The Weyl matrices in dual minquat space-time mode as bèta matrices.

In my math-phys language and with a Möbius kind of doubling in mind I can
define matrices through the application of parity or point reflection P and time
reversal or present reflection T of the energy-momentum four vector P as[

P P
PP PT

]
=

[
P P
−PT PT

]
=

p0

[
T̂ T̂
T̂ −T̂

]
+ p1

[
Î Î
−Î Î

]
+ p2

[
Ĵ Ĵ
−Ĵ Ĵ

]
+ p3

[
K̂ K̂
−K̂ K̂

]
=

p0

[
T̂ T̂
T̂ −T̂

]
+ p ·

[
K K
−K K

]
(61)

The problem with this matrix is that it doesn’t represent a Clifford four-set; it
doesn’t square to 2E2/1.

I can split the quadruple of P into two duplexes Pµβ
µ + Pµξ

µ. The bèta’s are
defined through, constructed as, the parity duplex

/P = Pµβ
µ =

[
0 P
−PT 0

]
= p0

[
0 T̂
T̂ 0

]
+ p ·

[
0 K
−K 0

]
= p0β0 + p · β =

p0

[
0 T̂
T̂ 0

]
+ p1

[
0 Î
−Î 0

]
+ p2

[
0 Ĵ
−Ĵ 0

]
+ p3

[
0 K̂
−K̂ 0

]
(62)

with /P = Pµβ
µ = p0β0 + p1β1 + p2β2 + p3β3.
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The xi’s are defined through, constructed as, the time reversed duplex

Pµξ
µ =

[
P 0
0 PT

]
= p0

[
T̂ 0
0 −T̂

]
+ p ·

[
K 0
0 K

]
= p0ξ0 + p · ξ =

p0

[
T̂ 0
0 −T̂

]
+ p1

[
Î 0
0 Î

]
+ p2

[
Ĵ 0
0 Ĵ

]
+ p3

[
K̂ 0
0 K̂

]
(63)

with Pµξ
µ = p0ξ0 + p1ξ1 + p2ξ2 + p3ξ3.

The relation with the metric of the previous section is direct. In the βµ space is
mirrored, so the space-time double is obtained through the parity operation. In the
ξµ time is reversed, so the space-time double is obtained through the T operation.

Of these two, only the βµ matrices are a Clifford four set; only for them does
the square of /P give the desired outcome as in /P/P = −E /1. The βµ matrices are the
minquat equivalent of the Weyl-gamma matrices, the latter as based on doubling
the pauliquat spin-norm set. If I use T̂ = i1̂ and K = iσ, the result is

βµ = (β0, β) =

( [
0 i1̂
i1̂ 0

]
,

[
0 iσ
−iσ 0

] )
= (i1̂, iγ) = iγµ (64)

which relates the parity dual βµ to the Weyl gamma representation. The question
then is how to represent the equivalent of the Dirac representation in the beta
minquat environment.

3.3 From the Weyl and Dirac equations to the Dirac bèta matrices

The trick in finding Clifford four-sets is connected to the problem of the quadratics
and to the problem of formulating equations in theDirac environment. The quadrat-
ics of the energy-momentum four-vectors in the Clifford representation have to be
reducible to the Klein Gordon energy condition PT P = E21̂ with E = U0

c = m0c.
TheWeyl bèta representation of /P matches this requirement. The ξµ representation
doesn’t.

In the Weyl and Dirac equations we can split −E2/1 using the ξ matrix, as
/E2
= (Eξ)2 = −E2/1, with the eigen time matrix ξ, defined as

ξ =

[
T̂ 0
0 T̂

]
. (65)

The Weyl or chiral equation stems from the quadratic /P/P = /E /E in the space-
time Weyl representation.

/P/P =
[

0 P
−PT 0

] [
0 P
−PT 0

]
=

[
−PPT 0

0 −PT P

]
=[

−E21̂ 0
0 −E21̂

]
= −E2/1 = /E /E (66)
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So we have /P/P − /E /E = 0. This leads to (/P − /E)(/P + /E) = 0. If we split this
into two equations, /P − /E = 0 and /P + /E = 0, then only the trivial all zero
solution is possible. As a consequence, the Weyl equations only apply to zero-
restmass particles, like the neutrino’s. If we add the Dirac spinors, then we get
Ψ†(/P− /E)(/P+ /E)Ψ = 0, which can be split into Ψ†(/P− /E) = 0 and (/P+ /E)Ψ = 0.
By interpreting the spinors as waves or wave-like fields all the solutions of those
equations can be interpreted as eigenvalue solutions of related operators and we
get the Weyl wave equations as

Ψ
† /̂P = Ψ† /E (67)
/̂PΨ = −/EΨ (68)

if we use /̂P = −i~/∂ and a four column dual spinor Ψ. When applied to zero
restmass particles, this reduces to Ψ† /̂P = 0 and /̂PΨ = 0.

TheDirac equation stems from the quadratic form /P/P = (p0β0+p·β)2 = −E2/1,
as

/P/P =
[

p0T̂ p ·K
−p ·K −p0T̂

] [
p0T̂ p ·K
−p ·K −p0T̂

]
=[

(−p2
0 + p2)1̂ 0

0 (−p2
0 + p2)1̂

]
= −E2/1. (69)

This leads to the two options for the Dirac equations

(p̂0β0 + p̂ · β)Ψ = Ei/1Ψ (70)
Ψ
†(p̂0β0 + p̂ · β) = −EΨ†i/1 (71)

if we use P̂ = −i~∂ and a four column spinor Ψ.
From this we can derive the Dirac bèta matrices, i.e. the bèta-matrices in the

Dirac representation. The Dirac representation mixes the bèta and the xi represen-
tation and thus represents a PT dual. I nevertheless, using the gamma tradition,
use the bèta and Feynman slash symbols for both representations in the time-space
(T̂,K) basis. This gives for the Dirac bèta representation

/P = Pµβ
µ = p0

[
T̂ 0
0 −T̂

]
+ p ·

[
0 K
−K 0

]
= p0β0 + p · β =

p0

[
T̂ 0
0 −T̂

]
+ p1

[
0 Î
−Î 0

]
+ p2

[
0 Ĵ
−Ĵ 0

]
+ p3

[
0 K̂
−K̂ 0

]
. (72)

As with the Weyl representation, in the Dirac representation we have βµ = iγµ.
So in the space-time representation we have the Weyl /P as

/Pw =

[
0 P
−PT 0

]
(73)
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and the Dirac /P as

/Pd =

[
p0T̂ p ·K
−p ·K −p0T̂

]
(74)

.

3.3.1 The transformation from the Dirac to the Weyl representation and vice versa

The transformation from the Weyl to the Dirac representation and vice versa is an
operator that is usually written as S. Given theWeyl and Dirac bèta representations
of Eqn.(73) and Eqn.(74), the transformation matrix can easily been found and
equals one of the usual forms of S:

S =
1
√

2

[
1̂ 1̂
−1̂ 1̂

]
(75)

It has the property β0S = S−1β0 and the directly related Sβ0 = β0S−1.
The switch from theWeyl βνw to the Dirac βνd is then given by β

ν
d = SβνwS−1 and

the switch from the Dirac to the Weyl representation by the inverse βνw = S−1βνdS.
We then also have the transformation /Pw = S−1 /PdS and /Pd = S/PwS−1.

3.4 Lorentz transformations of the vectors in the Dirac and Weyl representation
environments

In the Pauli level part of this paper I developed the (T̂,K) relativistic approach.
This resulted in the Lorentz transformation of a four vector P = (p0T̂, p · K)
as PL = U−1PU−1 and the Lorentz transformation of its time reversal PT as
(PL)T = (PT )L

−1
= UPTU with U as

U =

[
e
ψ
2 0

0 e−
ψ
2

]
(76)

and the rapidity ψ. The quadratic PT P is a Lorentz invariant scalar U2
0

c2 1̂ = E21̂
with the dimension of the norm 1̂. If in the space-time minquat βµ representation
we have the Weyl /P in a reference system S as

/P =
[

0 P
−PT 0

]
(77)

then in reference system S′ we have PL and so also the Weyl /PL as

/PL
=

[
0 PL

−(PL)T 0

]
=

[
0 U−1PU−1

−UPTU 0

]
(78)
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The question then is which matrix can generate this result. The obvious answer is

/PL
w = Λ/PwΛ

−1 =

[
U−1 0

0 U

] [
0 P
−PT 0

] [
U 0
0 U−1

]
=

[
0 U−1PU−1

−UPTU 0

]
(79)

with the Lorentz transformation matrix

Λ =

[
U−1 0

0 U

]
(80)

and its inverse Λ−1.
As for the generator of Λ, we have

Λ =

[
U−1 0

0 U

]
=


e−

ψ
2 0 0 0

0 e
ψ
2 0 0

0 0 e
ψ
2 0

0 0 0 e−
ψ
2


=



cosh
(
ψ
2

)
0 0 0

0 cosh
(
ψ
2

)
0 0

0 0 cosh
(
ψ
2

)
0

0 0 0 cosh
(
ψ
2

)

+



− sinh
(
ψ
2

)
0 0 0

0 sinh
(
ψ
2

)
0 0

0 0 sinh
(
ψ
2

)
0

0 0 0 − sinh
(
ψ
2

)

=

cosh
(
ψ

2

) [
1̂ 0
0 1̂

]
+ sinh

(
ψ

2

) [
−σI 0

0 σI

]
=

/1 cosh
(
ψ

2

)
+ αI sinh

(
ψ

2

)
= /1eαI

(
ψ
2

)
(81)

with the αI defined in the Weyl presentation as:

αI =

[
−σI 0

0 σI

]
=


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (82)

The inverse is then obviously given by Λ−1 = /1e−αI
(
ψ
2

)
.
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The Klein Gordon energy-momentum condition’s Lorentz invariance or co-
variance depends on the product /PL /PL . Using the previous result, we have for the
Lorentz transformation of the product /P/P in the Weyl representation

/PL /PL
= Λ/PΛ−1

Λ/PΛ−1 = Λ/P/PΛ−1 =

Λ(−E2/1)Λ−1 = −E2/1ΛΛ−1 = −E2/1 = /P/P, (83)

so a Lorentz invariant product. This ensures the Lorentz invariance of the Klein
Gordon energy-momentum condition /P/P = /E /E in the Weyl representation.

In the Dirac version, where /P = p0β0 +p · β, things get more complicated. We
have to start with the Dirac /Pd in the primary reference system and we want to end
up with /PL

d in the secondary reference system.We know how to transform between
the Dirac and the Weyl representations and we know how to Lorentz transform the
Weyl /Pw. This means we have to go from Dirac to Weyl in the primary reference
system, then Lorentz transform the Weyl four vector to the secondary reference
system and then transform back from the Weyl to the Dirac representation, three
operations in total. The total result gives

/PL
d = SΛS−1 /PdSΛ−1S−1. (84)

For the Klein Gordon equation in the Dirac representation, we get the Lorentz
invariance through

/PL
d /P

L
d = SΛS−1 /PdSΛ−1S−1SΛS−1 /PdSΛ−1S−1 =

SΛS−1 /PdSΛ−1
ΛS−1 /PdSΛ−1S−1 =

SΛS−1 /PdSS−1 /PdSΛ−1S−1 =

SΛS−1 /Pd /PdSΛ−1S−1 =

SΛS−1(−E2/1)SΛ−1S−1 =

−E2/1SΛS−1SΛ−1S−1 =

−E2/1SΛΛ−1S−1 =

−E2/1SS−1 =

−E2/1 =

/Pd /Pd . (85)

In details, with rapidity ψ, the operator SΛS−1 is given as

SΛS−1 =

[
cosh(ψ2 )1̂ sinh(ψ2 )σI

sinh(ψ2 )σI cosh(ψ2 1̂

]
= /1 cosh(

ψ

2
) + αI sinh(

ψ

2
) = /1e

(
αI

ψ
2

)
, (86)
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with /1e
(
αI

ψ
2

)
as the generator of the Lorentz boost. The αI in the Dirac represen-

tation is defined as as:

αI =

[
0 σI
σI 0

]
=


0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

 . (87)

The operator SΛ−1S−1 is given as

SΛ−1S−1 =

[
cosh(ψ2 )1̂ − sinh(ψ2 )σI

− sinh(ψ2 )σI cosh(ψ2 1̂

]
=

/1 cosh(
ψ

2
) − αI sinh(

ψ

2
) = /1e−

(
αI

ψ
2

)
. (88)

In the transformation of the four vector we have /Pd = Pµβ
µ. Because the

operators only work on the matrix aspect of each of the elements of βµ, the
Lorentz transformation can also be written as

/PL
= e

(
αI

ψ
2

)
/Pe−

(
αI

ψ
2

)
= SΛS−1Pµβ

µSΛ−1S−1 = PµSΛS−1βµSΛ−1S−1 (89)

and we can focus on
(βµ)L = SΛS−1βµSΛ−1S−1 (90)

thus interpreting the Lorentz transformation as a boost of the dual minquat metric.
Using the Lorentz transformation expression of the operator combinations

SΛS−1 and SΛ−1S−1 in terms of the rapidity and the hyperbolic trigonometric
expressions, we can calculate the result on the bèta matrices of the SΛS−1 and
SΛ−1S−1 operators. After some calculations this results in

(βµ)L = SΛS−1βµSΛ−1S−1 = Λ
µ

ν βν = βµ (91)

with, given the usual Lorentz boost γ = 1√
1−β2

and β = v
c ,

(βµ)L =


β0
β1
β2
β3


L

= Λ
µ
ν β

ν =


γ −γβ 0 0
−γβ γ 0 0

0 0 1 0
0 0 0 1



β0
β1
β2
β3

 =

γβ0 − βγβ1
γβ1 − βγβ0

β2
β3

 = β
µ. (92)
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Independently from the previous direct calculations based on known Λ, S and
Λ

µ
ν , the Lorentz transformation of P can also be presented as a transformation of

the coordinates Pµ with a fixed metric K µ, see the results of Eqn.(27). For the bèta
dual this applies as well. Thus one either transforms the coordinates Pµ or one
transforms the metric in βµ, but not both. The end result will be the same. For the
first we get

/PL
= (Pµβ

µ)L = (Pµ)
Lβµ = (PνΛ ν

µ )β
µ = P′µβ

µ. (93)

But this can also be written as

/PL
= (PνΛ ν

µ )β
µ = Pν(Λ ν

µ β
µ) = Pνβ′ν . (94)

So we have (βν)L = Λ ν
µ β

µ and we have, in the Dirac representation, (βν)L =
SΛS−1βνSΛ−1S−1, leading to

Λ
ν
µ β

µ = SΛS−1βνSΛ−1S−1. (95)

In the space-time Weyl representation the results are the same, giving

ΛβµΛ−1 = Λ ν
µ βµ. (96)

A remark is necessary: one has to keep track of the representation one is in, Weyl
or Dirac, because the same Λ ν

µ and βµ symbols are used but they aren’t equal in
the respective representations.

The ease of the Lorentz transformation and the proving of Lorentz covariance
or invariance in the developed math-phys environment can be contrasted with
the usual approach as critically analyzed and alternatively presented in [8]. The
relation SΛS−1βµSΛ−1S−1 = Λ ν

µ βµ for the Dirac matrices in this paper has been
constructed using already knownmatrices. I do not use this relationship as a starting
point in the process of finding the operator SΛS−1, as is done in the literature. As
I mentioned in the introduction, in [5, p. 147, Eqn. 5.102], the “ S” is a black box,
whereas in my approach I opened the box and found “ S” = SΛ−1S−1, a relation
that I constructed and then used to prove SΛS−1βµSΛ−1S−1 = Λ ν

µ βµ instead of
assuming it first and solving it later. I do not assume and solve, I construct and prove
instead. This was possible because of its connection to the Lorentz transformation
approach in the biquaternion representation of the Pauli level physics.

My approach confirms the claim that the bèta matrices can transform like
a ‘regular’ four-vector, but it also confirms the approach that the bèta matrices
remain fixed during a Lorentz transformation. One has to realizes that in the
Feynman /P = Pµβ

µ notation, the Lorentz transformation is either performed on
Pµ with fixed βµ or on βµ with fixed Pµ: one either transforms the coordinates or
one transforms the metric, but not both. Either the metric aspect of /P is Doppler
twisted or the dynamic variables are, but not both.
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3.5 Lorentz transformations of the spinors in the Weyl representation
environments

The Lorentz transformation of the spinors is known to be half the Lorentz trans-
formation of a four vector. In case of the Weyl bèta representation we have
/PL
= Λ/PΛ−1, so we expect to have either ΨL = ΛΨ or ΨL = Λ−1Ψ.
Now, in physics, the Lorentz transformation of EM-waves represents a rela-

tivistic Doppler boost, represented by the factor eψ = γ+γβ shifting the frequency
and wavelength to the red or to the blue. Matter waves and the associated phe-
nomena are duly called so because they exhibit wave phenomena as refraction and
interference. So matter waves should have wave-fronts and crests and troughs and
as such undergo the equivalent of Doppler shifts when observed from vÎ-boosted
reference systems. But measurements always involve intensities, never pure waves,
so the intensities should exhibit quantum Doppler shifts.

We further know that if the spinor Ψ represents a matter wave, then Θ = /PΨ
also represents a matter wave and both should Lorentz transform identically. From
this we can infer that ΨL = ΛΨ, because then

Θ
L = (/PΨ)L = /PL

Ψ
L = Λ/PΛ−1

Ψ
L = Λ/PΛ−1

ΛΨ = Λ/PΨ = ΛΘ (97)

From ΨL = ΛΨ we can derive the relation

(ΨL)† = (ΛΨ)† = Ψ†Λ, (98)

due to the fact that Λ is diagonal real and thus equal to its conjugate transpose.
We then get for Lorentz transformation of the intensityΨ†Ψ of the matter wave

Ψ

(Ψ†Ψ)L = (ΨL)†(ΨL) = (ΛΨ)†(ΛΨ) = Ψ†ΛΛΨ = Ψ†Λ2
Ψ = Ψ†eαIψΨ =

Ψ
†
Ψ cosh(ψ) + Ψ†αIΨ sinh(ψ) = Ψ†Ψγ + Ψ†αIΨγβ, (99)

with alpha matrix αI , Lorentz boost γ = cosh(ψ), γβ = sinh(ψ). This is the
quantum equivalent of a Doppler boost with rapidity ψ, as should be expected for
a wave phenomenon when observed from a moving reference system.

In the Weyl representation, boosting the probability density doesn’t mix the
spinors because we have a diagonal matrix in the Lorentz boost operator, as

(Ψ†Ψ)L =
[
Ψ∗1 Ψ

∗
2 Ψ
∗
3 Ψ
∗
4
] 
γ − γβ 0 0 0

0 γ + γβ 0 0
0 0 γ + γβ 0
0 0 0 γ − γβ



Ψ1
Ψ2
Ψ3
Ψ4


= γΨ∗1Ψ1 − γβΨ

∗
1Ψ1 + γΨ

∗
2Ψ2 + γβΨ

∗
2Ψ2

+γΨ∗3Ψ3 + γβΨ
∗
3Ψ3 + γΨ

∗
4Ψ4 − γβΨ

∗
4Ψ4 =

Ψ
∗
1Ψ1e−ψ + Ψ∗2Ψ2eψ + Ψ∗3Ψ3eψ + Ψ∗4Ψ4e−ψ . (100)
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The factor γ ± γβ = e±ψ represents a relativistic wavelenght/frequency Doppler
shift of the intensities.

In Wave Mechanics, the equations are wave equations and the Lagrangians
are the intensities of those waves. The Klein-Gordon energy-momentum condition
is Lorentz Invariant, the linearized Dirac equation transforms like a wave Ψ and
the Lagrangian wave intensity derived from that equation transforms Doppler like
with a factor eαIψ .

The conditon ΨL = ΛΨ gives

Ψ
L
w = ΛΨw =

[
U−1 0

0 U

] [
Ψ1
w

Ψ2
w

]
=

[
U−1Ψ1

w

UΨ2
w

]
. (101)

Important in this last equation is the result that the bispinors Ψ1 and Ψ2 do not mix
in the Lorentz transformation in the space-time Weyl representation.

3.6 Lorentz transformations of the spinors in the Dirac representation
environments

The same line of reasoning will give us the Lorentz transformation rules for the
spinors in the space-time Dirac representation, respectively

Ψ
L
d = SΛS−1

Ψd (102)

and
(ΨL)

†

d = (Ψ
†

d)SΛS−1. (103)

For the intensities we then get

(Ψ
†

dΨd)
L = (ΨL)

†

dΨ
L
d = (Ψ

†

d)SΛS−1SΛS−1
Ψd = (Ψ

†

d)SΛ
2S−1
Ψd . (104)

In the Dirac representation, we have to calculate SΛ2S−1 in order to be able to
evaluate the result. In details, with rapidity ψ, the operator SΛ2S−1 is given as

SΛ2S−1 =

[
cosh(ψ)1̂ sinh(ψ)σI

sinh(ψ)σI cosh(ψ)1̂

]
= /1 cosh(ψ) + αI sinh(ψ) = /1e(αIψ), (105)

with /1e(αIψ) as the generator of the Lorentz boost delivered Doppler shift of the
probability/field density, as

(Ψ†Ψ)L = Ψ†e(αIψ)Ψ = Ψ†Ψ cosh(ψ) + Ψ†αIΨ sinh(ψ). (106)

The operator SΛS−1 for the Lorentz transformation of the Dirac spinor Ψ exactly
matches the one in [22].
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Zooming in further and using cosh(ψ) = γ and sinh(ψ) = γβ, we get for the
Dirac representation

(Ψ†Ψ)L =
[
Ψ∗1 Ψ

∗
2 Ψ
∗
3 Ψ
∗
4
] 

γ 0 γβ 0
0 γ 0 −γβ
γβ 0 γ 0
0 −γβ 0 γ



Ψ1
Ψ2
Ψ3
Ψ4


= γΨ∗1Ψ1 + γβΨ

∗
1Ψ3 + γΨ

∗
2Ψ2 − γβΨ

∗
2Ψ4

+γΨ∗3Ψ3 + γβΨ
∗
3Ψ1 + γΨ

∗
4Ψ4 − γβΨ

∗
4Ψ2. (107)

We see that in the Dirac representation, boosting the probability density mixes the
spinors and thus the particles and the anti-particles, the electrons and the positrons.

The structure of these transformations look familiar. If we define γ′ = cosh(ψ2 )
and γ′β′ = sinh(ψ2 ), we get the Lorentz transformation of Ψ as

Ψ
L =

[
γ′1̂ γ′β′σI

γ′β′σI γ′1̂

] [
Ψ1

Ψ2

]
=

[
γ′1̂Ψ1 + γ′β′σIΨ

2

γ′1̂Ψ2 + γ′β′σIΨ
1

]
. (108)

In the hyperbolic formulation, the details of the Lorentz transformation of Ψ gives

Ψ
L =

[
(Ψ1)L

(Ψ2)L

]
=

[
cosh(ψ2 )1̂ sinh(ψ2 )σI

sinh(ψ2 )σI cosh(ψ2 1̂

] [
Ψ1

Ψ2

]
=[

cosh(ψ2 )1̂Ψ
1 + sinh(ψ2 )σIΨ

2

cosh(ψ2 )1̂Ψ
2 + sinh(ψ2 )σIΨ

1

]
. (109)

What we see here is that the Lorentz transformation of the Dirac spinor mixes the
two twin Pauli spinorsΨ1 andΨ2. As a consequence, one cannot Lorentz transform
a single Pauli spinor in the Dirac representation, so a Lorentz transformation of
the Pauli equation without the full Dirac twin is impossible. The Pauli equation on
its own cannot possibly be relativistic, not because of the Pauli spin matrices, as
is usually thought [23], but due to the spinors involved.

3.7 Connecting the beta-matrices to the gamma-matrices and to the Dirac alpha
and spin matrices

My reversed order of the Pauli spin matrices, with σI = σz, σJ = σy, σK = σx
and σ = (σI, σJ, σK) implies that the usual (x, y, z) order of the gamma matrices
are reversed correspondingly, with γ1 = γI = γz, γ2 = γJ = γy, γ3 = γK = γx and
γ = (γ1, γ2, γ3) = (γI, γJ, γK)).
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The set of gamma matrices in the Dirac representation, γµ = (β, γ) = (γ0, γ),
can then be defined as

γµ = (β, γ) = (γ0, γ) =

( [
1̂ 0
0 −1̂

]
,

[
0 σ
−σ 0

] )
(110)

The set of gamma matrices in the Weyl representation, γµ = (γ0, γ), can be
defined as

γµ = (γ0, γ) =

( [
0 1̂
1̂ 0

]
,

[
0 σ
−σ 0

] )
(111)

In my (1̂,σ) norm-spin basis the Dirac set αµ = (/1, α) can be represented as

αµ = (/1, α) =

( [
1̂ 0
0 1̂

]
,

[
0 σ
σ 0

] )
. (112)

The most straightforward doubling of the Pauli level norm-spin set (1̂,σ) is the
Dirac level norm-spin set Σµ = (/1,Σ) defined as

Σµ = (/1,Σ) =

( [
1̂ 0
0 1̂

]
,

[
σ 0
0 σ

] )
. (113)

The tensor −βµβν = −iγµiγν = γµγν is given by

−βµβ
ν = γµγ

ν =
[
γ0 γ1 γ2 γ3

] 
γ0
γ1
γ2
γ3

 =
γ0γ0 γ1γ0 γ2γ0 γ3γ0
γ0γ1 γ1γ1 γ2γ1 γ3γ1
γ0γ2 γ1γ2 γ2γ2 γ3γ2
γ0γ3 γ1γ3 γ2γ3 γ3γ3

 =

/1 −α1 −α2 −α3
α1 −/1 −iΣ3 iΣ2
α2 iΣ3 −/1 −iΣ1
α3 −iΣ2 iΣ1 −/1

 . (114)

Thus, the product −βµβν firmly connects the minquat domain to the pauliquat
domain on theDirac level. The product of twoDirac level duplexminquats produces
a mixture of a duplex minquat and a a duplex pauliquat, as was the case on the
Pauli level.

3.8 Lorentz transformation of the EM field in the Weyl-Dirac environment

We can apply this to the product /B = /∂ /A, which then results in



30 E.P.J. de Haas

/∂ /A =
[
−1

c∂tT̂ ∇ ·K
−∇ ·K 1

c∂tT̂

] [ 1
cφT̂ A ·K
−A ·K −1

cφT̂

]
=

[
B11 B21
B21 B22

]
=[

−B ·K 1
cE · T̂K

1
cE · T̂K −B ·K

]
= −iB ·

[
σ 0
0 σ

]
−

1
c
E ·

[
0 σ
σ 0

]
=

−iB · Σ −
1
c
E · α = −

1
c
(E · α + icB · Σ). (115)

with
B11 = B22 = (

1
c2 ∂tφ + ∇ · A)1̂ − (∇ × A) ·K (116)

and
B12 = B21 = −

1
c
∂tA · T̂K −

1
c
∇φ · T̂K. (117)

The end result /B = −1
c (E · α + icB · Σ) applies for both the Weyl and the Dirac

presentations and includes the use of the Lorenz gauge. In the perspective of the
approach of this paper, this can be interpreted as a photon field – hypercomplex
metric interaction product. The product is located in the pauliquat domain on the
level of the Dirac-Weyl duplex of the Pauli space-time duplex. The product of two
bèta matrices isn’t a bèta matric but a metric-intrinsic ‘polarization’-’spin’ dual
‘six-vector’ like entity. As on the Pauli-level, the set of the PT-duplex minquat bèta
matrices isn’t a closed set for multiplications. Multiplication transports us from
the space-time domain to the spin-norm domain in a double duplex way.

The Lorentz transformation of this product is straightforward. In the Weyl
representation, we get

/BL
= /∂

L
/AL
= Λ/∂Λ−1

Λ /AΛ−1 = Λ/∂ /AΛ−1 = Λ/BΛ−1 =

−
1
c
(E · ΛαΛ−1 + icB · ΛΣΛ−1). (118)

In the Dirac representation the result will be

/BL
= SΛS−1 /BdSΛ−1S−1 =

−
1
c
(E · SΛS−1αSΛ−1S−1 + icB · SΛS−1ΣSΛ−1S−1. (119)

It is of course also possible to perform the Lorentz transformation on the coordi-
nates of E and B and leave the Weyl-Dirac alpha (the intrinsic ‘polarization’ when
enhanced by the Bohr magneton) and Weyl-Dirac Sigma (the intrinsic ‘magneti-
zation’ when enhanced by the Bohr magneton) unaltered. The result will be that
a Lorentz transformation mixes the alpha and the Sigma, or, alternatively, that it
mixes the electric and magnetic fields.
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3.9 Lorentz transformation, Dirac adjoint and Dirac probability current

The Dirac adjoint is defined as

Ψ = Ψ†γ0 = −iΨ†β0. (120)

The Lorentz transformation properties of the Dirac adjoint are problematic, to say
the least. In the Weyl representation, Ψ† Lorentz transforms as (ΨL)† = Ψ†Λ. The
Lorentz transformation of the Dirac adjoint, Ψ

L
should then be

Ψ
L
=

(
Ψ
†γ0

)L
= Ψ†ΛγL

0 . (121)

But the transformation properties of γ0 = −iβ0 depend onmany contextual circum-
stances. As part of a Feynman slash vector /A, one can treat the matrices as fixed
during a Lorentz transformation under the condition that the coordinates undergo
the Lorentz transformation. So it is allowed to treat γ0 = −iβ0 as a Lorentz ‘scalar’
and keep it fixed, but not at all times and unconditionally. In my approach, γ0 is not
unconditionally a reference frame independent fixed matrix, it’s reference frame
independence is contextual.

The Dirac adjoint is used to get the productsΨγ0Ψ and Jν = ΨγνΨ = Ψ†/1Ψ+
Ψ†αΨ. If we look at the probability density tensor Φ ν

µ = Ψ†γµγ
νΨ =, we

recognize the elements of the Dirac probability current Jν in this tensor:

Φ
ν

µ = Ψ
†γµγ

ν
Ψ =


Ψ†/1Ψ −Ψ†α1Ψ −Ψ

†α2Ψ −Ψ
†α3Ψ

Ψ†α1Ψ −Ψ
†/1Ψ −Ψ†iΣ3Ψ Ψ

†iΣ2Ψ

Ψ†α2Ψ Ψ
†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ
†iΣ2Ψ Ψ

†iΣ1Ψ −Ψ†/1Ψ

 . (122)

This tensor has transparent Lorentz transformation properties. If the coordinates,
eventually to be attached to this tensor, are kept fixed, then the gamma-matrices
can be Lorentz transformed and we get for the tensor, in the Dirac representation
and using the bèta matrices:(

Φ
ν

µ

)L
=

(
Ψ

L
)† (

βµ
)L
(βν)L (Ψ)L =

(
Ψ
†SΛS−1

) (
SΛS−1βµSΛ−1S−1

)(
SΛS−1βνSΛ−1S−1

) (
SΛS−1

Ψ

)
= Ψ†SΛΛS−1β ν

µ Ψ = Ψ
†eαIψβ ν

µ Ψ =

Φ
ν

µ cosh(ψ) + Ψ†αI β
ν

µ Ψ sinh(ψ) = γΦ ν
µ + γβΨ

†αI β
ν

µ Ψ. (123)

In
(
Φ ν
µ

)L
= γ

(
Φ ν
µ + βΨ

†αI β
ν

µ Ψ

)
, the γ represents the scalar velocity

clock-effect and the β represents the geometric Î-direction dependence of the
relativistic Doppler shift. The result represents a quantum-relativistic Doppler
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shift with Doppler shift factor eαIψ . From the tensor Φ ν
µ the Dirac probability

density current and probability density scalar can be derived.
The Dirac current can be arrived at by using the coordinate velocity’s rest

system coordinates as V ν to get

Jν = Φ ν
µ V µ =

Ψ†/1Ψ −Ψ†α1Ψ −Ψ
†α2Ψ −Ψ

†α3Ψ

Ψ†α1Ψ −Ψ
†/1Ψ −Ψ†iΣ3Ψ Ψ

†iΣ2Ψ

Ψ†α2Ψ Ψ
†iΣ3Ψ −Ψ†/1Ψ −Ψ†iΣ1Ψ

Ψ†α3Ψ −Ψ
†iΣ2Ψ Ψ

†iΣ1Ψ −Ψ†/1Ψ




c
0
0
0

 =


cΨ†/1Ψ
cΨ†α1Ψ

cΨ†α2Ψ

cΨ†α3Ψ

 . (124)

But this object isn’t complete because it involves two βµ’s and only one set of
coordinates, in this case V µ. But it does indicate that it is problematic to interpret
the Dirac probability density current as a real current, moving through space-time,
see [2, p. 24].

The point tomake here is to show that theDirac adjoint and theDirac probability
current can be seen as part of the more general tensor product with at its core the
product βµβν. In my opinion, the Dirac probability current should be interpreted as
part of a tensor, not as a stand alone four vector. If βµβν would be at the origin of the
adjoint Ψ = Ψ†γ0, then the probability density tensor Φ ν

µ = Ψ
†βµβ

νΨ would be
thé quantum-relativistic object to study in this context. This tensor has a transparent
Lorentz transformation. The continuity equation for the Dirac probability density
current would then be derived from the more general closed system condition for
this probability density tensor

∂νΦ
ν

µ = ∂νΨ
†γµγ

ν
Ψ = 0. (125)

The closed system condition is going back to von Laue [24]. It might be interesting
to further explore the relevance of this condition for the probability density of
relativistic quantum mechanics.

4 Conclusion

In the Pauli-level part of this paper, I constructed a biquaternion space-time metric
that matches theMinkowski space-time requirements and at the same time contains
the Pauli spin environment. The space-time metric Kµ and its spin-norm dual σµ
are not inert like the original Minkowski metric ηµ but can be internally Doppler
twisted. Dynamic vectors in this space-time are PµK µ products. The connection
between the Minkowski space-time metric ηµ and the biquaternion space-time
metric Kµ can be made but isn’t straightforward. It is unclear for example in what
dimension one should imagine Kµ’s spin-norm dual σµ.
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Nevertheless was it possible to construct the Weyl-Dirac gamma-matrices en-
vironment from the biquaternion Pauli-level building blocks. To arrive at the the
Dirac environment I added the PT dual to both the space-time metric Kµ and its
spin-norm dual σµ. This construction from basic elements with known space-time
connection allowed me to construct the Lorentz transformation operators on the
Weyl-Dirac level.

This connection also allowed me to critically assess the confusing situation
regarding the Lorentz transformation properties of the Dirac matrices. In my
opinion, the Feynman slash objects are the Weyl-Dirac analogues of the Pauli-
level PµK µ dynamic vectors, combinations of four-sets of dynamic variables and a
space-time metric. In Lorentz transformations of these dynamic vectors, one either
Lorentz transforms the metric object K µ or the dynamic variables Pµ but not both.

In my opinion, the Weyl-Dirac matrices contain the space-time Minkowski
metric, but in a complicated way. The gamma matrices γµ are not to be interpreted
as ordinary dynamic four-vectors related to real particles or fields, but as objects
with a complicated relationship with the space-time metric of Special Relativity.
According tomy analysis, theDirac adjoint contains the time element present in iγ0,
but also highly indirect, making its Lorentz transformation properties extremely
complicated. Treating the Dirac adjoint’s importance for physics as originating in
the probability density tensor seems advisable.

The results of this paper might be useful for those teaching Relativistic Quan-
tum Mechanics. Not for direct use in college teaching, but as background knowl-
edge regarding the confusing situation around the roots of RQM. RQM is a logical
positivist, Copenhagen Interpretation product, bringing order to the experimental
spectroscopic data of the first half of the twentieth century. In this bringing order in
the available spectroscopic data, connecting the mathematical-experimental order
to physical reality beyond the Born stochastic rule was not within the reach of the
theorists of the Copenhagen School. This disconnect still haunt us, especially when
teaching RQM to students who expect to learn more about nature itself. Reducing
this disconnect might be a positive contribution of this paper.
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