Bell's theorem refuted via elementary probability theory

Gordon Stewart Watson ${ }^{1}$

Abstract

Bell's theorem has been described as the most profound discovery of science. Let's see. Introduction: Let β denote Bohm's experiment in Bell (1964); let \mathbf{B} (.) denote Bell's equation (.); let $A^{ \pm}$and $B^{ \pm}$be the causally-independent same-instance results in $\mathbf{B}(1)$, pairwise correlated via λ and functions A, B. Then, reserving P for probabilities, replace Bell's expectation $P(\vec{a}, \vec{b})$ in $\mathbf{B}(2)$ with its identity $E(a, b \mid \beta)$. So, from $\mathbf{B}(1), \mathbf{B}(2)$, RHS $\mathbf{B}(3)$ and the line below it-with Λ denoting the space of λ-here's Bell's 1964 theorem (BT $_{1}$) in our notation:

$$
\begin{gather*}
\quad \mathbf{B T}_{1}: E(a, b \mid \beta)=\int_{\Lambda} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \neq-a \cdot b[\text { sic }] \tag{1}\\
\text { with } A(a, \lambda)= \pm 1 \equiv A^{ \pm}, B(b, \lambda)=\mp 1 \equiv B^{\mp}, A(a, \lambda) B(b, \lambda)= \pm 1 . \tag{2}
\end{gather*}
$$

Refutation: LHS (1) is a standard definition of an expectation. So, under relativistic causality and functions (A, B) satisfying (2) and LHS (1): let Λ^{+}be the sub-space that delivers $A(a, \lambda) B(b, \lambda)=1$; then the remainder Λ^{-}delivers $A(a, \lambda) B(b, \lambda)=-1$. So, from (1):

$$
\begin{align*}
E(a, b \mid \beta) & =\int_{\Lambda^{+}} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda)+\int_{\Lambda^{-}} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \tag{3}\\
& =P\left(A B=1 \mid a, b, \Lambda^{+}\right)-P\left(A B=-1 \mid a, b, \Lambda^{-}\right): \text {the weighted-sum of } A B \text { results. } \tag{4}\\
& =\left[P\left(A^{+} B^{+}\right)+P\left(A^{-} B^{-}\right)\right]-\left[P\left(A^{+} B^{-}\right)+P\left(A^{-} B^{+}\right)\right]: \text {with conditions suppressed, }
\end{align*}
$$

the weighted-sum of the same-instance results (± 1) that deliver each $A B$ result. (5)
$=P\left(A^{+}\right) P\left(B^{+} \mid A^{+}\right)+P\left(A^{-}\right) P\left(B^{-} \mid A^{-}\right)-P\left(A^{+}\right) P\left(B^{-} \mid A^{+}\right)-P\left(A^{-}\right) P\left(B^{+} \mid A^{-}\right):$
via the product rule for the paired (same-instance) results correlated as in (2).
$=\frac{1}{2}\left[P\left(B^{+} \mid A^{+}\right)+P\left(B^{-} \mid A^{-}\right)-P\left(B^{-} \mid A^{+}\right)-P\left(B^{+} \mid A^{-}\right)\right]$: for, with λ a random latent variable, the marginal probabilities $\left[\right.$ like $\left.P\left(A^{+}\right)\right]=\frac{1}{2}$.
$=\frac{1}{2}\left[\sin ^{2} \frac{1}{2}(a, b)+\sin ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)\right]$: equating the probability functions in (7) to β-based laws (akin to Malus' Law for light-beams).
$=-\cos (a, b)=-a \cdot b$. So RHS (1) is refuted. QED. [See also: BT 2 at (20).]

[^0]Further: Bell uses B(15), Bell's inequality (BI), as proof of his theorem: so we now refute it.

$$
\begin{gather*}
\text { BI: }|E(a, b)-E(a, c)|-1 \leq E(b, c) \text { [sic]: ie, B(15) in our notation, } \tag{10}\\
\text { where }-1 \leq E(a, b) \leq 1,-1 \leq E(a, c) \leq 1,-1 \leq E(b, c) \leq 1 \text {. However: } \tag{11}\\
E(a, b)[1+E(a, c)] \leq 1+E(a, c) \text {; for, if } V \leq 1 \text {, and } 0 \leq W \text {, then } V W \leq W \text {. } \tag{12}\\
\quad \therefore E(a, b)-E(a, c)-1 \leq-E(a, b) E(a, c) \text {. Similarly: } \tag{13}\\
E(a, c)-E(a, b)-1 \leq-E(a, b) E(a, c) \text {. Hence our irrefutable } \tag{14}\\
\text { counter-inequality, WI: }|E(a, b)-E(a, c)|-1 \leq-E(a, b) E(a, c) \text {. } \tag{15}
\end{gather*}
$$

So, with test-settings $0<(a, c)<\pi ;(a, b)=(b, c)=\frac{(a, c)}{2}=\frac{x}{2}$: and, via (9), using test-functions $E(a, b)=E(b, c)=-\cos \left(\frac{x}{2}\right), E(a, c)=-\cos (x)$: please
copy and test this next expression in WolframAlph a^{\circledR}; free-online, see References.

$$
\begin{equation*}
\operatorname{plot}|\cos (x)-\cos (x / 2)|-1 \& \&-\cos (x / 2) \& \&-\cos (x / 2) \cos (x), 0 \leq x \leq \pi \tag{18}
\end{equation*}
$$

Thus, under the generality of (16)-(17): (i) For $0<x<\pi$, Bell's (10) is everywhere false, our (15) is everywhere true. (ii) For $x=0$ and $x=\pi$, (10) and (15) are true. (iii) Let the relations between \mathbf{B} (14) and $\mathbf{B}(15)$ be $\mathbf{B}(14 a)-\mathbf{B}(14 \mathrm{c})$. (iv) Then Bell's error is his move from true $\mathbf{B}(14 \mathrm{a})$ to false $\mathbf{B}(14 \mathrm{~b})$: for $\mathbf{B}(14 \mathrm{~b})$ leads to false $\mathbf{B}(15)$. (v) In other words, given the common LHS in (10) and (15): Bell's error equates his false $E(b, c)$ in (10) to our irrefutable $-E(a, b) E(a, c)$ in (15); hence, as above, Bell's equality only holds at $x=0$ and $x=\pi$. That is: when Bell's $-\cos \left(\frac{x}{2}\right)=-\cos \left(\frac{x}{2}\right) \cos (x)$.

Conclusions: Under relativistic causality (no influence propagates superluminally) and true (nonnaive) realism (some existents change interactively): (i) Bell's theorem (1) and Bell's inequality (10) are refuted; his error identified. (ii) In (8), via our heuristic debt to Malus, we provide the first of a family of laws that refute Bell's theorem in other settings. (iii) A variation of (1), from Bell (1975), is similarly refuted: see Appendix. (iv) Thus, with an improved notation, we confirm a result in Watson 2017D: ie, our detector $\partial_{a}^{ \pm}$detects the equivalence classes to which each pre-test $p(\lambda)$ and $p(-\lambda)$ belong. That is, on the elements of $\partial_{a}^{ \pm}$'s domain, let $\stackrel{\partial_{a}^{ \pm}}{\sim}$ denote the equivalence relation has the same output under $\partial_{a}^{ \pm} ; \partial_{b}^{ \pm}$similarly. Then these clearly-local classes, under the laws in (8), also refute Bell's theorem: to thus expose and dismiss nonlocality in an irrefutable relativistically-causal way.

Appendix: Bell (1975) varies his first theorem to propose, in our terms, a second theorem: $\mathbf{B T}_{2}$.
$\mathbf{B T}_{2}: E(a, b \mid \beta) \neq \int_{\Lambda} d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \neq-a \cdot b=E(a, b \mid \beta)$ [sic]. For, after
Bell (1975:3): with these local forms $A(a, \lambda), B(b, \lambda)$, it is not possible to find functions
A and B and a probability distribution ρ which give the correlation $E(a, b \mid \beta)=-a \cdot b$.

With $\mathbf{B T}_{2}$ sandwiched between results proven in (3)-(9), we refute (20) via two physically-significant A and B functions under $\int_{\Lambda} d \lambda \rho(\lambda)=1$ and every β-relevant existent. So: source $\left[S_{\beta}\right]$ emits particlepairs $p(\lambda)$ and $p(-\lambda)$; their properties (.) pairwise-correlated via $\lambda+(-\lambda)=0 . p(\lambda)$ interacts with detector $\partial_{a}^{ \pm}$, a 2-channel polarizer-analyzer with principal-axis a and output channels $a^{ \pm} \equiv \pm a$. Within $\partial_{a}^{ \pm}$, polarizer $\Phi_{a}^{ \pm}$transforms $p(\lambda)$ to $p\left(\varphi=a^{ \pm}\right)$, where φ denotes the post-interaction spinaxis. $p\left(\varphi=a^{ \pm}\right)$then interacts with analyzer $a \cdot \varphi$ to deliver the result $A^{ \pm}= \pm 1$; etc. In shorthand: $A(a, \lambda)=\partial_{a}^{ \pm}(\boldsymbol{\lambda})= \pm 1, B(b, \lambda)=\partial_{b}^{ \pm}(-\lambda)= \pm 1$, and $\mathbf{B T} \mathbf{T}_{2}$ is refuted as in (3)-(9). Thus:

$$
\begin{gather*}
\pm 1=A^{ \pm} \leftarrow \partial_{a}^{ \pm} \leftarrow p(\lambda) \leftarrow\left[S_{\beta}\right] \rightarrow p(-\lambda) \rightarrow \partial_{b}^{ \pm} \rightarrow B^{\mp}=\mp 1 ; \text { ie, } \tag{21}\\
\pm 1=\left[a \cdot \varphi \leftarrow p\left(\varphi=a^{ \pm}\right) \leftarrow \Phi_{a}^{ \pm}\right] \leftarrow p(\lambda) \leftarrow\left[S_{\beta}\right] \rightarrow p(-\lambda) \rightarrow\left[\Phi_{b}^{ \pm} \rightarrow p\left(\varphi=b^{\mp}\right) \rightarrow b \cdot \varphi\right]=\mp 1: \tag{22}\\
\text { thus, via } \partial_{a}^{ \pm}: p(\lambda) \rightarrow\left[\Phi_{a}^{ \pm} \rightarrow p\left(\varphi=a^{ \pm}\right) \rightarrow a \cdot \varphi\right]= \pm 1=A^{ \pm}: \text {in short, } \partial_{a}^{ \pm}(\lambda)= \pm 1 ; \text { etc. } \tag{23}
\end{gather*}
$$

Thus, as in (3)-(9), $\mathbf{B T}_{2}$ is refuted: $E(a, b \mid \beta)=\int_{\Lambda} d \lambda \rho(\lambda) \partial_{a}^{ \pm}(\lambda) \partial_{b}^{ \pm}(-\lambda)=-a \cdot b$. QED.
For some proposed consequences of the results here: see Watson (2020E).

References:

1. Bell, J. S. (1964). "On the Einstein Podolsky Rosen paradox." Physics 1, 195-200. http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
2. Bell, J. S. (1975). "Locality in quantum mechanics: reply to critics." 0-5
http://cds.cern.ch/record/980330/files/CM-P00061609.pdf
3. Watson, G. S. (2017D). "Bell's dilemma resolved, nonlocality negated, QM demystified, etc." 1-20. https://vixra.org/pdf/1707.0322v3.pdf
4. Watson, G. S. (2020E). "Wholistic mechanics (WM): classical mechanics extended from light-speed c to Planck's constant h." 1-9. https://vixra.org/abs/2008.0137
5. WolframAlpha ${ }^{\circledR}$. "WolframAlpha: computational intelligence." https://www.wolframalpha.com

[^0]: ${ }^{1}$ eprb@me.com [Ex: 1989.v0, 2019R.v1, 2020H.v4c] Ref: 2020H.v5 20201024

