Bell's theorem refuted

Gordon Stewart Watson ${ }^{1}$

Abstract

Bell's theorem has been described as the most profound discovery of science, one of the few essential discoveries of 20th Century physics, indecipherable to non-mathematicians. Let's see.

Introduction: Let β denote the thought-experiment in Bell (1964) and let $\mathbf{B}($.$) denote Bell's equations$ (.). From the line before $\mathbf{B}(1)$, let $A^{ \pm} \& B^{ \pm}$denote the independent same-instance results therein. Then $A^{ \pm}$and $B^{ \pm}$are pairwise correlated via Bell's functions $A \& B$ and the latent variable λ. That is:

$$
\begin{equation*}
A(a, \lambda)= \pm 1=A^{ \pm}, B(b, \lambda)=\mp 1=B^{\mp}: \text { ie, if } a=b \text { then } A^{+} B^{-}=A^{-} B^{+}=-1 ; \text { as in } \mathbf{B}(13) . \tag{1}
\end{equation*}
$$

Then, reserving P for probabilities, let's replace Bell's expectation $P(\vec{a}, \vec{b})$ in $\mathbf{B}(2)$ with its identity $E(a, b \mid \beta)$. Then, from (1), $\mathbf{B}(2)$, RHS $\mathbf{B}(3)$ and the line below $\mathbf{B}(3)$, this is Bell's theorem under β :

$$
\begin{equation*}
E(a, b \mid \beta)=\int d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \neq-a \cdot b[\mathrm{sic}] . \tag{2}
\end{equation*}
$$

Refutation- $\beta: E(a, b \mid \beta)$ is the average result under β with settings $a \& b$. So, via (1) \& LHS (2):

$$
\begin{align*}
E(a, b \mid \beta)= & \int d \lambda \rho(\lambda)[(A(a, \lambda \mid \beta)=1)(B(b, \lambda)=1)-(A(a, \lambda)=1)(B(b, \lambda)=-1) \\
& -(A(a, \lambda \mid \beta)=-1)(B(b, \lambda)=1)+(A(a, \lambda)=-1)(B(b, \lambda)=-1)] \tag{3}\\
= & P\left(A^{+} B^{+} \mid \beta\right)-P\left(A^{+} B^{-} \mid \beta\right)-P\left(A^{-} B^{+} \mid \beta\right)+P\left(A^{-} B^{-} \mid \beta\right) \tag{4}\\
= & P\left(A^{+} \mid \beta\right) P\left(B^{+} \mid \beta A^{+}\right)-P\left(A^{+} \mid \beta\right) P\left(B^{-} \mid \beta A^{+}\right)-P\left(A^{-} \mid \beta\right) P\left(B^{+} \mid \beta A^{-}\right) \\
& +P\left(A^{-} \mid \beta\right) P\left(B^{-} \mid \beta A^{-}\right) \text {via the product rule for outcomes correlated as in (1). } \tag{5}\\
= & \frac{1}{2}\left[P\left(B^{+} \mid \beta A^{+}\right)-P\left(B^{-} \mid \beta A^{+}\right)-P\left(B^{+} \mid \beta A^{-}\right)+P\left(B^{-} \mid \beta A^{-}\right)\right] \text {for, with } \\
& \lambda \text { a random latent variable, the marginal probabilities }\left[\text { like } P\left(A^{+} \mid \beta\right)\right]=\frac{1}{2} . \tag{6}\\
= & \frac{1}{2}\left[\sin ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)+\sin ^{2} \frac{1}{2}(a, b)\right]: \text { replacing the probability } \\
& \text { functions in }(6) \text { with } \beta \text {-based laws akin to Malus' Law for light-beams. } \tag{7}\\
= & \sin ^{2} \frac{1}{2}(a, b)-\cos ^{2} \frac{1}{2}(a, b)=-\cos (a, b)=-a \cdot b . \text { So RHS (2) is refuted: QED. } \tag{8}
\end{align*}
$$

[^0]Comments: (i) Bell's theorem, derived in the context of thought-experiment β, is refuted via elementary probability theory. (ii) Bell's related inequality-B(15), the basis for (2)—is refuted in Watson (2020F.v3:2-3) via high-school mathematics. (iii) Laws similar to those in (7) refute Bell's theorem elsewhere; eg, we next refute Bell's theorem via an idealization of experiment α, Aspect (2004).

Refutation- $\alpha: E(a, b \mid \alpha)$ is the average result under α. Therein, (1)-(2) above are replaced by:

$$
\begin{align*}
A(a, \lambda)= & \pm 1=A^{ \pm}, B(b, \lambda)= \pm 1=B^{ \pm}: \text {ie, if } a=b \text { then } A^{+} B^{+}=A^{-} B^{-}=1 . \tag{9}\\
E(a, b \mid \alpha)= & \int d \lambda \rho(\lambda) A(a, \lambda) B(b, \lambda) \neq \cos 2(a, b)[\text { sic }] . \text { However, akin to (6): } \tag{10}\\
E(a, b \mid \alpha)= & \frac{1}{2}\left[P\left(B^{+} \mid \alpha A^{+}\right)-P\left(B^{-} \mid \alpha A^{+}\right)-P\left(B^{+} \mid \alpha A^{-}\right)+P\left(B^{-} \mid \alpha A^{-}\right)\right] \\
= & \frac{1}{2}\left[\cos ^{2}(a, b)-\sin ^{2}(a, b)-\sin ^{2}(a, b)+\cos ^{2}(a, b)\right]: \text { replacing the probability } \\
& \quad \text { functions in (11) with } \alpha \text {-based laws akin to Malus' Law for light-beams. } \tag{12}\\
= & \cos ^{2}(a, b)-\sin ^{2}(a, b)=\cos 2(a, b) . \text { So RHS (10) is refuted: QED again. } \tag{13}
\end{align*}
$$

Conclusions: (i) In (7) \& (12) we provide the first of a family of laws that refute Bell's theorem in any setting. (ii) For (we note), even in Malus' time: 'The aim of physics is to discover the laws of Nature governing our objectively-existing world. ... to search for the abstract mathematical description that allows us to explain and predict-in a quantitative way-the regularities observed or to be discovered in physical phenomena which exist independent of any agent,' after Kupczynski (2015:2).

References:

1. Aspect, A. (2004). "Bell's theorem: The naive view of an experimentalist." 1-34. http://arxiv.org/pdf/quant-ph/0402001v1.pdf
2. Bell, J. S. (1964). "On the Einstein Podolsky Rosen paradox." Physics 1, 195-200. http://cds.cern.ch/record/111654/files/vol1p195-200_001.pdf
3. Kupczynski, M. (2015). "Greeks were right: critical comments on Qbism." 1-7. https://arxiv.org/pdf/1505.06348.pdf
4. Watson, G. S. (2020F.v3). "To Wiseman and Cavalcanti (2015): All Bell inequalities are false; the principle of relativity is true and the world is relativistically local." 1-4. https://vixra.org/abs/2007.0225
5. Wiseman, H. M. \& E. G. Cavalcanti (2015). "Causarum Investigatio and the Two Bell's Theorems of John Bell." 1-24. https://arxiv.org/abs/1503.06413.

[^0]: ${ }^{1}$ eprb@me.com [Ex: 1989.v0, 2019R.v1, 2020E.v1b] Ref: 2020H.v1 20201001

