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Abstract

Relativity of simultaneity is shown to limit the accuracy in simultaneous measurement of position

and momentum of a moving body by an inertial observer. The inaccuracy or uncertainty product

derived from special relativity theory is found to be similar to the much known quantum mechanical

uncertainty relation. However, whether the above two uncertainty relations indicate the same physics

is debatable and any conclusion is not attempted here. A modification of this relativistic uncertainty

formula under gravitational field is achieved using general relativity principles, and a small

gravitational correction term has to be introduced. This gravitational term being small remains

negligible in ordinary conditions but becomes appreciable at small time scale.

Keywords: Special theory of relativity; Gravitation; General theory of relativity; Uncertainty

principle
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Introduction

Even before Albert Einstein, it was well recognized that the synchronization of distant clocks

to be a key problem but viewed only as an experimental difficulty[1]. Einstein's special

relativity paper[2] in 1905 first pointed out the fundamental problem in synchronizing clocks

placed in different inertial frames and defined simultaneity as a relative phenomenon. This

relativistic principle is now famously known as relativity of simultaneity. It is often

considered as a crucial breakthrough Einstein achieved in his 1905 paper. Briefly, the

relativity of simultaneity states that events that are simultaneous in one observer’s frame may

occur at an interval in another inertial observer’s frame. An important consequence of the

simultaneity principle, the relativistic time dilation phenomenon, has therefore been verified

experimentally[3, 4]. The aim of the present study is to understand how the consideration of

relativistic simultaneity may change the accuracy and precision in an otherwise perfect

classical measurement. It could be realised through simple mathematics that relative

simultaneity between different inertial frames leads to unsurpassable inaccuracy in the

measured position ( �� ) and momentum ( �� ) of a moving body. This new uncertainty

relation derivable from special relativity equations would be shown as ��t�� � �
� , which

has similar form to the much known Heisenberg’s uncertainty relation. However,

Heisenberg’s uncertainty is a quantum mechanical principle, and points to the restriction on

obtaining the simultaneous knowledge of canonically conjugate variables of quantum

mechanical systems[5-7]. Originally Heisenberg proposed the uncertainty relation

heuristically, pointing to the constraints on joint measurability of variables resulting from a

trade-off between accuracy and disturbance. The uncertainty product was derived on the basis

of a supposed experiment observing an electron using a γ-ray microscope[5] and a detailed

physical picture about the origin of the said inaccuracies was not fully explained. In the

Hilbert space the uncertainty relation has been shown to imply, that it is impossible to prepare
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systems that have both their position probability distribution and their momentum probability

distribution sharply concentrated around single values, and the uncertainty product could only

be derived under quantum mechanical formalisms[6, 7]. Therefore, identification of the

present relativistic uncertainty with that of Heisenberg’s relation may not be concluded in a

straightforward manner and will not be attempted here.

Whereas special relativity accounts for the Lorentz invariance involving inertial

observers, the general relativity theory was proposed by Einstein to account for gravitation[8].

In essence general relativity describes how a massive object causes distortion to the space-

time surrounding it. An important consequence of general relativity theory is that clocks run

slowly in the curved space-time near massive objects[8-11]. Since firstly we shall derive the

uncertainty relation using the concept of relative simultaneity in the flat Minkowsky space-

time[12], we shall further seek a simple extension of it under curved space-time from the

general relativity principles. It will lead to a modified uncertainty relation having the above

mentioned flat space term (��t�� � �
� � and an additional gravitational correction term.

When the modified uncertainty relation is evaluated at large cosmological scale, the ratio

between the gravitational correction and the flat space term could be estimated to be ~ 10-121,

a value similar to the ratio between the observed dark energy density and quantum field

theory estimation for the vacuum energy density.

Measurement uncertainty and special theory of relativity

Let us suppose the two inertial frames � and �� , with spatial origins � and �� and

coordinates labels �晦�晦 晦䁞 and ���晦 ��晦 �晦䁞�� , are attached to an observer/measuring device

stationary in the laboratory frame of reference and an electron moving with an uniform

relative velocity � (� R, the speed of light) respectively. Isotropy of space allows us to orient
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the spatial axes so that the relative velocity between the frames is along � and ��. Considering

the relationship between the other coordinates as trivial, we shall ignore them and assume

  R  � R 䁞 R 䁞� R � , and focus only upon �晦� and ���晦 ��� . � and �� represent the epochs

recorded by similar clocks at rest in � and �� . The measurement method used by the

observer can be arbitrarily chosen as we shall see the results of our analysis are independent

of the measurement method. For sake of completeness of description, we may assume the

observer to be equipped with a hypothetical noiseless measurement apparatus. Now, to meet

both position and momentum measurements, the observer need to carry out the measurement

over an interval ��, during which the electron moves by distance ��. Let the measurement be

described by freely chosen start and end points, which represent two events (x1, ct1) and (x2,

ct2) in the Minkowski space, where �� R �� � �� and �� R �� � �� . The intervals �� and ��

can be chosen arbitrarily small. It is worthwhile to mention here that we take �� � � , since

�� R � implies no measurement performed by the observer.

For simultaneous knowledge of the position and momentum of the electron, we must

have ��� R � in the inertial frame attached to the electron. This implies the events (x1, ct1)

and (x2, ct2) occur simultaneously in the electron’s frame. Under this simultaneity

requirement we will try to find out the limits for values of �� and �� in the observer’s frame.

It is pertinent to note here that in the semi-classical approach adopted for the present analysis,

the electron’s velocity � should be taken equal to the corresponding group velocity of the

associated de Broglie wave packet[13].

In Minkowsky space-time, the relative position and time intervals in the electron’s

frame are given as[14],

RΔ��
Δ�� R � � � �

� � �
RΔ�
Δ� (1)
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Where, � R � R and � R � � ��
R� . The condition of simultaneity is obtained by letting

��� R �. Hence,

�Δ� R R�� (2)

or Δ�tΔν R Rh�, since the electron can be associated with its de Broglie wave with Δν � �
��
,

phase velocity ��� R R
� R ν� , where � is the wavelength and ν is the frequency. The

momentum of the electron is related to the wavelength by the de Broglie formula, � R �
� R

�ν ���, where � is the Planck’s constant. Taking Δ� R ��ν�hR, we get

��t�� R � (3)

Considering this as the lower limit,

��t�� � � (4)

It is important to mention here that recognizing the reciprocal nature of Lorentz

transformations, the above uncertainty relation should also be valid when simultaneous

values are sought in the observer’s frame. Further, since statistically the errors in

measurements can be assumed to be similarly distributed between the events (x1, ct1) and (x2,

ct2), we can write in terms of measurement precisions,

��� �� t��� �� � �h� (5)

Since virtually in all set of measurements we may work with the precision values, we may

conveniently write,

��t�� � �h� (6)
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Uncertainty relation (6) is of the similar form as the Heisenberg’s uncertainty relation.

But whether the two relations should refer to the same physical phenomenon is outside the

scope of the present paper. However, it is pertinent to mention here that an uncertainty

relation involving position and momentum measurement of an electron with a light signal,

had been derived earlier by Rosen and Vallera from special relativity principles and they

found ��t�� should have values around h with upper and lower bound depending on the

electron’s velocity[15].

Additionally, since Δ�tΔν R Rh�, multiplying by h and using (2) we can also write,

��t�� R ��t�� � �h� (7)

Gravitational correction

The above uncertainty relations are valid only in a flat space-time geometry. It will be

therefore worthwhile to seek for an extension of (6) and (7) that will be also consistent in

curved space-time under a gravitational field. In this effort we will consider only basic

general relativistic concepts to obtain a first order approximation. The kinematical effects of

special relativity and the general relativistic warping of space-time often expected to be

coupled in the situation where a frame moves in a gravitational field in an arbitrary way.

Therefore, here we would try to achieve a first order approximation for the extension of (6)

by considering the simple case when a neutral particle is moving along a radial trajectory in

an isotropic static gravitational field near a spherical mass (M). If we consider measurements

only performed away from the Schwarzschild radius, the gravitational effects can be suitably

described by the Schwarzschild metric[9, 10],

��� R� �� � �ꕰ
�R�

R���� � �� � �ꕰ
�R�

��
��� � ������ � �th���t�� (8)
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We shall ignore the variations introduced in space-time by any quantum effects or

from any other origin. These considerations, of course, can be a source of more uncertainty

but not important in the present analysis. Our aim is to find out how uncertainty relations (6)

and (7) may change when the local observation frame of particle’s motion is positioned inside

the gravitational field of M and the final observer is at a far away place so that a difference of

potential exists between them.

A simple analysis comprising of two observers, one positioned locally to the particle

and another at a far place, can be carried out to understand the measurement. First, let us

assume a stationary observer A (shell observer) is positioned at a radial distance r (>r*,

Schwarzschild radius) from M and the test particle is freely falling towards M. Observer A

performs her measurements as the particle passes by. Since in that scenario, both are

positioned locally to each other, that is in the same tiny region of space around the massive

object, for an infinitesimal measurement interval the particle approximately undergoes

inertial motion with respect to observer A. Hence locally we can build Minkowskian

coordinate by transforming the metric tensor of general coordinate ���ν� to the metric tensor

of inertial coordinate ���ν� that is ��ν � ��ν. Hence the observer A’s measurement becomes

similar as in the case of the flat space-time and the uncertainties are given by (2), say ���h

��� R Rh�. Next, we consider another observer B, situated at a far away place along the radial

coordinate so that the gravitation field is weak at B ( ��ν � ��ν� . The measurements

performed by observer A are relayed to the far away Observer B, who then looks into the

measurement results of observer A, and adjust for her own coordinates. Taking into account

the Schwarzschild metric, the observer B will find the earlier measured ��� and ��� should be

corrected to �� and ��, where
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��
��
R

��� ����ꕰ
�R�

�h�

��� ����ꕰ
�R�

��h� R
R
�
� � � �ꕰ

�R�
(9)

The corresponding uncertainty becomes,

��t�� � �
�
� � � �ꕰ

�R�
(10)

or Δ�tΔ� � �
�
� � ��

�
(11)

where the Schwarzschild radius given as, �� R ��ꕰ
R� . Conditions (10) and (11) represent

the modified uncertainty relation in a curved space-time. It is pertinent to note here that

considering the coordinate singularities of the Schwarzschild metric at r = r*, (10) and (11)

are valid only in the region r ˃ r*. It is also important to mention here that since measurement

uncertainties originate from the finite values of ��� and ��� as described in the flat space case,

modification of the values of ��� and ��� to �� and �� due to the gravitational effects should

be adequate to describe the errors in the far away observer’s frame. Under ordinary situations,

like for an observer carrying out measurements on phenomena occurring on earth’s surface

from a space station, the change in equation (6) will be only about � � ����� , and therefore

can be easily ignored. Hereafter, we refer to the first term in (10) and (11) as the flat space

term and the second as gravitational term.

For the far away observer, from (2), (7) and (10) we also have,

��t�� � �
�
� � � �ꕰ

�R�
(12)

This is the modified energy time uncertainty relation in curved space-time.

Now, in the case when an external gravitational field is not present, we may consider

the particle to experience its own gravitational field by taking particle’s self-mass as M and �
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should define the volume within which we expect to find the particle. Since the uncertainties

may be taken to be equal to the corresponding absolute values of the variables, we have � R

R�� and �� R ꕰR�. Therefore, we may write (12) as,

�� � �
���

� � ��
R����

� ��
R����

�
� ��

R����
�
�� (13)

For ��
R����

� �,

�� � �
���

� � ��
R����

��
(14)

��
R����

R � gives, �� R ��
R� R ��(say), which is of the same order as Plank time ( ��

R� �

5.39x10-44 s)[16]. The corresponding energy is �� R �
���

R �
�

�R�

�
R ��(say). Considering the

equality limit, the variation of �� with �� is shown in Fig. 1. It can be seen from Fig. 1 that

while for �� ≫ �� the energy uncertainty asymptotically merges with the flat space value,

�� R �
���, the gravitational term becomes appreciable as we approach near �� R �� , and a

noticeable difference between the energy curves can be seen.
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Fig. 1. The variations �� and the flat space term, ��� with ��. The energy and time axes are scaled

by �� and �� respectively. The total energy �� asymptotically merges into flat space term (���) for

larger �� but deviates from ��� near �� R �� . The dark line shows the variation of the first

gravitational correction term ���h�R���� , which remain negligible at larger �� but becomes

noticeable near �� R ��.

It is also pertinent to note here that since at the cosmological scale, ��
R����

� � , hence

(14) can be written as,

�� � �
���

� ���
�R����

(15)

A careful inspection of (15) suggests, while the first term in the right hand side represents the

energy as seen by a local observer, the second correction term, coming from the curvature of

space-time, has an opposing sign. This second term is missing when measurements carried

out by any local observer and only appear for an observer situated at a far away place. The

opposite sign of the second term suggests that it points to an apparent small loss of energy

due to curved space-time when measured from a distance. Therefore, it is reasonable to say,

the second term represents a fraction of energy, relatively hidden into the curved space-time
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fabric over distances to a far away observer and its effects should be best seen at

cosmological scale. Hence, considering the ratio between the second and first term,

���
R���

�
�
��

��
R ��

R�
t �
��
� � �thh � ������ (16)

Where, �� � ��� ��t� � ��h years[16], the age of our universe in the present epoch, given

as,

�� R �
�� ��� R �

� ��
�t

� (17)

H being the scale dependent Hubble parameter and a is the scale factor of the universe.

Interestingly, equation (16) is in excellent agreement with the estimated ratio between

the observed dark energy density in our present epoch and vacuum energy density calculated

from quantum field theory[9, 16].

Conclusion

To conclude our analysis has shown that consideration of simultaneity of relativity during

joint measurement of position and momentum of a moving point particle prohibits arbitrary

accuracy in the measured quantities and the indeterminacy or uncertainty relation has a

similar form as that of quantum mechanical Heisenberg’s relation. The uncertainty relation

could be extended using simple general relativity principles to account for measurements

carried out near a spherical gravitational mass and the modified uncertainty relation

comprised of an additional small gravitational term of opposite sign contributed by curved

space-time. While under usual circumstances this gravitation term remains small and can be

neglected for most of the purposes, it may have implications at small time scale.
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Figure caption:

Fig. 1. The variations �� and the flat space term, ��� with �� are shown. The energy and time axes

are scaled by �� and �� respectively. ��� is the flat space energy term. The total energy ��

asymptotically merges into flat space term (���) for larger �� but deviates from ��� near �� R �� .

The dark line shows the variation of the first gravitational correction term ���h�R���� ,

which remain negligible at larger �� but becomes noticeable near �� R ��.
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Figure 1


