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Abstract

A brief review of the essentials behind the construction of a Chern-
Simons-like brane action from the Large N limit of Exceptional Jordan
Matrix Models paves the way to the construction of actions for membranes
and p-branes moving in octonionic-spacetime backgrounds endowed with
octonionic-valued metrics. The main result is that action of a membrane
moving in spacetime backgrounds endowed with an octonionic-valued met-
ric is not invariant under the usual diffeomorphisms of its world volume
coordinates σa → σ′a(σb), but instead it is invariant under the rigid
E6(−26) transformations which preserve the volume (cubic) form. The
star-product deformations of octonionic p-branes follow. In particular,
we focus on the octonionic membrane along with the phase space quan-
tization methods developed by [26] within the context of Nonassociative
Quantum Mechanics. We finalize with some concluding remarks on Dou-
ble and Exceptional Field theories, Nonassociative Gravity and A∞, L∞
algebras.

Keywords: Jordan, Division Algebras, Branes, Matrix Models, Star products,
Nonassociative Geometry.

1 Introduction : The Large N limit of Excep-
tional Jordan Matrix Models and Chern-Simons
Membranes

Exceptional, Jordan, Division, Clifford and Noncommutative algebras are deeply
related and essential tools in many aspects in Physics, see for instance [1], [2], [3],
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[5]. [6], [8]. Sometime ago, Ohwashi [9] constructed Exceptional Jordan Matrix
Models based on the compact E6 group and involving a double number of the
required physical degrees of freedom due to a complex-valued action [9]. This
led Ohwashi to interpret his complex action as representing an interacting pair
of mirror universes within the compact E6 matrix model and equipped with
a Sp(4,H)/Z2 symmetry based on the quaternionic valued symplectic group.
The interacting picture resembles that of the bi-Chern-Simons gravity models.
A nonassociative formulation of bosonic strings in D = 26 using Jordan algebras
was presented a while back by [25].

In this introduction we briefly review how the large N limit of the Ex-
ceptional Matrix Models proposed by [9] leads to a novel version of Chern-
Simons branes beyond those formulated by Zaikov [11]. Ohwashi [9] defined
his E6 Matrix model based on the algebra Jc ⊗ G, with Jc being the com-
plex Exceptional Jordan algebra of degree three J3[C⊗O], and G is the u(N)
Lie algebra corresponding to the U(N) group with structure constants fABC :
[TA, TB ] = fABCTC . TA, A = 1, 2, · · · , N2 are the u(N) generators. The matrix
MATA elements of the Jc ⊗G algebra are of the form AA1 TA ΦA3 TA Φ̄A2 TA

Φ̄A3 TA AA2 TA ΦA1 TA
ΦA2 TA Φ̄A1 TA AA3 TA

 (1.1)

where AI , (I = 1, 2, 3) are complex-valued numbers and ΦI are elements of the
complex Graves-Cayley octonion algebra comprised of the complex octonions
C⊗O :

X ≡ Xoeo + Xmem = (ao+ibo)eo + (am+ibm)em, m = 1, 2, 3, ...., 7 (1.2)

The bar operation Φ̄ denotes the octonionic-conjugation

(ao + ibo)eo − (am + ibm)em (1.3)

that must not be confused with complex conjugation

(ao − ibo)eo + (am − ibm)em (1.4)

The Noncommutative and Nonassociative algebra of octonions is determined
from the relations

e2
o = eo, eo em = em eo = em, em en = − δmn eo + σmnp ep, m, n, p = 1, 2, 3, ....7.

(1.5)
where the fully antisymmetric structure constants σmnp are taken to be 1 for the
combinations (123), (516), (624), (435), (471), (673), (672). The quadratic form
is defined by

( X,X ) = Re(X̄ X) = (Xo Xo +Xm Xm) =
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(ao + ibo)
2 +

m=7∑
m=1

(am + ibm)2 ∈ C (1.6)

The real part of X is Xo = ao + ibo and must not be confused with the real
parts of the complex entries defining the complex octonion.

The non-vanishing associator is defined by

{X,Y,Z} = (XY)Z−X(YZ) (1.7a)

In particular, the associator of the imaginary units is

{el, em, en} = dlmnp ep, dlmnp = εlmnprst σ
rst (1.7b)

The Hermitian product is defined in terms of the ordinary complex conjugate
∗ and the quadratic form (1.6) as

< X,Y > ≡ ( X∗, Y ) = (ao−ibo) (co+ido) +

m=7∑
m=1

(am−ibm) (cm+idm)

(1.8)

< X,X > ≡ ( X∗, X ) = (ao−ibo) (ao+ibo) +

m=7∑
m=1

(am−ibm) (am+ibm) =

a2
o + b2o +

m=7∑
m=1

(a2
m + b2m) (1.9)

The action of Ohwashi was based on the cubic form

S = ( ρ2(M[A), ρ(MB), MC] ) fABC (X,Y, Z) = tr ( X · (Y ×F Z) ) (1.10)

ρ, ρ3 = 1 is the cycle mapping (based on the triality symmetry of SO(8)) that
takes the index I → I + 1, modulo 3. It is essential to introduce the cycle
mapping in (1.10) otherwise the expression would have been identically equal to
zero due to the fact that the cubic form is symmetric in its three entries while
fABC is antisymmetric . The product Y ×F Z is the symmetric Freudenthal
product

Y ×FZ = Y ·Z− 1

2
tr (Y ) Z− 1

2
tr (Z) Y +

1

2
tr (Y ) tr (Z) − 1

2
tr (Y ·Z) 1. (1.11)

and X · Y is the commutative but non-associative Jordan product given by
the anti-commutator 1

2 (XY + Y X) obeying the Jordan identity (X · Y ) ·X2 =
X ·(Y ·X2). The cubic form (1.10) is very different from the trilinear form trace
(X · (Y · Z)) used by Smolin [10] to construct the F4 matrix model based on
the Exceptional J3[O] algebra rather than the complex Exceptional J3[C × O]
algebra. The action of Ohwashi is complex-valued while that of Smolin is real-
valued. The explicit evaluation of the expression (1.10) can be found in [9]
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where he includes a detailed appendix with numerous important formulae that
are indispensable to be able to write down all the explicit terms of the cubic
form. The Ohwashi action [9] after very lengthy algebra becomes

S = Trace [ εIJK( AI [AJ , AK ] + ηij Φ0I [ΦiJ , ΦjK ] +

σijk ΦiI [ΦjJ , ΦkK ] + ηij AI [ΦiJ , ΦjK ] + AI [Φ0J , Φ0K ] +

Φ0I [Φ0J , Φ0K ] ) + σijk
I=3∑
I=1

ΦiI [ΦjI , ΦkI ] ], i, j, k = 1, 2, 3, · · · , 7; I, J,K = 1, 2, 3

(1.12)
where the matrix-valued quantities are denoted by the bold-face letters AI =
AAI TA; ΦiJ = ΦAiJTA, etc...

The large N limit of the E6 Exceptional Matrix Model action described
by eq-(1.12) was obtained in [12]. This limit is given by the following Chern-
Simons-like brane action

S =

∫
V

d3σ εabc [ εIJK( ∂aAI ∂bAJ ∂cAK + ηij ∂aΦ0I ∂bΦiJ ∂cΦjK +

σijk ∂aΦiI ∂bΦjJ ∂cΦkK + ηij ∂aAI ∂bΦiJ ∂cΦjK + ∂aAI ∂bΦ0J ∂cΦ0K +

∂aΦ0I ∂bΦ0J ∂cΦ0K ) + σijk
I=3∑
I=1

∂aΦiI ∂bΦjI ∂cΦkI ], a, b, c = 1, 2, 3. (1.13)

The bulk 3-dim action (1.13) is such that its 2-dim boundary action is given
by the large N limit of eq-(1.12). The action (1.13) furnishes a novel Chern-
Simons membrane model (not to be confused with the Zaikov’s Chern-Simons
membrane [11]).

The crux of this large N → ∞ limit correspondence relies on the fact that
N ×N matrices M→ X(σ1, σ2, σ3) become the 27 membrane complex coordi-
nates in the continuum limit. The complex dimension of the Jc algebra is 27.
The traceN×N →

∫
d3σ becomes an integral ; the commutators → brackets

and the Jordan algebra non-associator [X,Y, Z] = X · (Y · Z)− (X · Y ) · Z has
a correspondence with the Nambu-Poisson brackets {X(σa), Y (σa), Z(σa)} as
discussed by [5]. Similar results can be obtained in the large N limit of the F4

Matrix Models of [10], with the only difference that one must use the trilinear
form based on Jordan products instead of the cubic form (based on the Jordan
and Freudenthal product).

The action (1.13) in condensed form can be written as

S =

∫
V

d3σ εabc ( ∂aJ, ∂b ρ(J), ∂c ρ
2(J) ). (1.14)

The above action can also be recast in terms of Nambu-Poisson brackets as∫
d3σ [ εIJK( { AI , AJ , AK } + ηij { Φ0I , ΦiJ , ΦjK } +
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σijk { ΦiI , ΦjJ , ΦkK } + ηij { AI , ΦiJ , ΦjK } + { AI , Φ0J , Φ0K } +

{ Φ0I , Φ0J , Φ0K } ) + σijk
I=3∑
I=1

{ ΦiI , ΦjI , ΦkI} ]. (1.15)

The integrand is a total derivative that can be integrated over a two-dim
boundary domain Σ ≡ ∂V giving

S =

∫
∂V

[d2Σ]a ε
abc [ εIJK( AI ∂bAJ ∂cAK + ηij Φ0I ∂bΦiJ ∂cΦjK +

σijk ΦiI ∂bΦjJ ∂cΦkK + ηij AI ∂bΦiJ ∂cΦjK +AI ∂bΦ0J ∂cΦ0K +

Φ0I ∂bΦ0J ∂cΦ0K ) + σijk
I=3∑
I=1

ΦiI ∂bΦjI ∂cΦkI ]. (1.16)

To sum up, the novel Chern-Simons action (1.16) is the large N limit of the
Ohwashi action (1.12) and is associated with the 2-dim boundary of an open 3-
dim region, the world volume of an open membrane, and is the candidate action
for a non-perturbative bosonic formulation of M theory in D = 27 dimensions
[12] first proposed by Horowitz and Susskind [14].

Having reviewed the essentials behind the construction of the Chern-Simons-
like brane actions, the outline of this work goes as follows. In section 2 we
present the construction of membranes and p-branes in octonionic-spacetime
backgrounds endowed with octonionic-valued metrics. The main result of this
section is that action of a membrane moving in spacetime backgrounds endowed
with an octonionic-valued metric is not invariant under the usual diffeomor-
phisms of its world volume coordinates σa → σ′a(σb), but instead it is invariant
under the rigid E6(−26) transformations which preserve the volume (cubic) form.
Section 3 is devoted to the star-product deformations of octonionic membranes
and quantized Nambu-Poisson Brackets. In particular, we focus on the octo-
nionic membrane, along with the phase space quantization methods developed
by [26] within the context of Nonassociative Quantum Mechanics. This work
is an extension of the previous work [18] on Octonionic Gravity, Exceptional
Jordan Strings and Nonassociative Ternary Gauge Field Theories. We final-
ize with some concluding remarks on Double and Exceptional Field theories,
Nonassociative Gravity and A∞, L∞ algebras.

2 Octonionic p-branes

2.1 Membranes in Octonionic-Metric Backgrounds

A complexification of ordinary gravity (not to be confused with Hermitian-
Kahler geometry ) has been known for a long time. Complex gravity requires
that gµν = g(µν) + ig[µν] so that now one has gνµ = (gµν)∗, which implies that
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the diagonal components of the metric gz1z1 = gz2z2 = gz̃1z̃1 = gz̃2z̃2 must be
real.

A treatment of a non-Riemannan geometry based on a complex tangent space
and involving a symmetric g(µν) plus antisymmetric g[µν] metric component was
first proposed by Einstein-Strauss [21] (and later on by [23] ) in their unified
theory of Electromagentism with gravity by identifying the EM field strength
Fµν with the antisymmetric metric g[µν] component.

Borchsenius [22] formulated the quaternionic extension of Einstein-Strauss
unified theory of gravitation with EM by incorporating appropriately the SU(2)
Yang-Mills field strength into the degrees of a freedom of a quaternionc-valued
metric. Oliveira and Marques [24] later on provided the Octonionic Gravita-
tional extension of Borchsenius theory involving two interacting SU(2) Yang-
Mills fields and where the exceptional group G2 was realized naturally as the
automorphism group of the octonions. In [19] we formulated a R⊗C ⊗H ⊗O-
valued gravitational theory as a plausible candidate for a grand unified field
theory based on the composition algebra involving the four division algebras
R,C,H,O.

In the first part of this section we shall describe membranes moving in space-
time target backgrounds endowed with an octonionic-valued Hemitian metric
gµν = go(µν)eo + gi[µν]ei; (gµν)† = gµν . The real part is symmetric in its indices,
while the imaginary components are antisymmetric. As a result of embedding
the membrane’s world volume into the target spacetime background, the mem-
brane’s world-volume Hermitian metric gab is given by the pullback of the D-dim
background octonionic-hermitian metric gµν

gab = go(ab)eo + gi[ab]ei = ∂aX
µ ∂bX

ν gµν = ∂aX
µ ∂bX

ν ( go(µν)eo + gi[µν]ei )
(2.1)

with µ, ν = 1, 2, · · · , D; a, b = 1, 2, 3; i = 1, 2, · · · , 7. The D spacetime
coordinates Xµ(σa) are real-valued, and the infinitesimal line interval ds2 =
gµνdX

µdXν is also real-valued since (gi[µν]ei)dX
µdXν = 0.

The explicit matrix elements of the metric gab are

gab =

 g11 go(12) + gi[12]ei go(13) + gi[13]ei
go(12) − gi[12]ei g22 go(23) + gi[23]ei
go(13) − gi[13]ei go(23) − gi[23]ei g33

 (2.2)

Our proposal for the Dirac-Nambu-Goto-like action associated with a mem-
brane moving in a D-dim background endowed with an octonionic-valued metric
gµν is

SDNG = − T2

∫
d3σ

√
|DetF (gab)| (2.3)

T2 is the membrane tension, and the minus sign in (2.3) is chosen based on the
ordinary actions associated to membranes moving in spacetime backgrounds
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endowed with real-valued metrics with signature (−,+,+,+, · · ·). Since the
determinant of a matrix with octonionic-valued entries is not defined, in the
very special case when the 3×3 octonionic matrix is Hermitian, one can borrow
the construction of the well-defined Freudenthal determinant DetFX of the 3×3
Jordan matrices X which is given by the cubic form Det(X) = 1

3 (X,X,X) in
eq-(1-10).

Thus, after setting the following correspondence among the entries of the
Jordan matrix (1.1) and those of the metric gab in eq-(2.2)

g11 ↔ A1, g22 ↔ A2, g33 ↔ A3

g23 ↔ Φ1, g31 ↔ Φ2, g12 ↔ Φ3, (2.4)

one can then write down the Freudenthal determinant

DetF (gab) = g11 g22 g33 − g11 g23 ḡ23 − g22 g31 ḡ31 − g33 g12 ḡ12 + 2 Re{ g23 g31g12}
(2.5)

The bilinear products in (2.5) are g23ḡ23 = ḡ23g23 = (go(23))
2 + (gi[23])

2, · · ·.
And the real part of the triple product is given by

Re{g23 g31 g12} =

go23 g
o
31 g

o
12 − δij(go23 g

i
31 g

j
12 + gi23 g

o
31 g

j
12 + gi23 g

j
31 g

o
12) − σijk gi23 g

j
31 g

k
12 (2.6)

The relation respecting the cyclicity property

Re((xy) z) = Re(x (yz)) = Re(xyz) = Re(zxy) = Re(yzx) =

xo yo zo − xo yi zi − xi yo zi − xi yi zo − xi yj zk σijk (2.7a)

is what allows us to unambiguously evaluate the real part of the triple product,
despite the nonassociativity. The diagonal metric components g11, g22, g33 are
real-valued, and the off-diagonal components are octonionic-valued

g12 = go(12)eo + gi[12]ei, g13 = go(13)eo + gi[13]ei, g23 = go(23)eo + gi[23]ei
(2.7b)

Consequently, due to the complicated expression of DetF (gab) (2.5), the
membrane action (2.3) involving the Freudenthal determinant (2.5) is far more
complicated than ordinary actions involving determinants of real-valued metrics.

One of the most salient features of the action (2.3), based on the cubic form
(1.10), is that it is invariant under E6(−26) transformations. As shown by Yokota
[7], see also [9], the Freudenthal determinant DetFX; X ∈ J = J3(O), defined
by the cubic form (1.10), is invariant under the rigid E6(−26) transformations
which are implemented via the following isometries α : J→ J,

X→ αX, α ∈ IsoR(J,J)| 1

3
(αX, αX, αX) =

1

3
(X,X,X) = DetF (X) (2.8)
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Consequently, the action SDNG in eq-(2.3) is E6(−26)-invariant. The compact
E6, and complexified Ec6, belong to the isometries IsoC(Jc,Jc) of the complex
Exceptional Jordan algebra Jc = J3(C⊗O) [7] instead of the Exceptional Jor-
dan algebra J = J3(O). Whereas F4 is the group of isometries IsoR(J,J) which
preserve the trilinear form tr(αX, αY, αZ) = tr(X,Y,Z). The trilinear form
trace (X · (Y · Z)) differs from the cubic form trace (X · (Y ×F Z)).

The main conclusion is that the action (2.3) for a membrane moving in
spacetime backgrounds endowed with an octonionic metric is not invariant under
the usual diffeomorphisms of its world volume coordinates , σa → σ′a(σb), but
instead it is invariant under the rigid E6(−26) transformations which preserve
the volume (cubic) form (1.10).

2.2 Branes in Octonionic Spacetime Backgrounds

Next we shall construct actions for p-branes moving in octonionic spacetime
backgrounds Zµ(σa) = Zµo (σa)eo + Zµi (σa)ei; a = 0, 1, 2, · · · , p, and endowed
with octonionic-valued metrics gµν . Given an spacetime interval defined as

(ds)2 = Re ( dZµ gµν dZ
ν ) (2.9)

the real part of the pullback of the spacetime metric onto the p+ 1-dim world-
volume yields the embedding metric hab = Re(∂aZ

µgµν∂bZ
ν). We found earlier

that the real part of a triple octonionic product (2.7) is unambiguously defined
despite the nonassociativity. The real parts of a quartic, and higher products,
are not.

In the most general case, the octonionic metric gµν does not need to be
Hermitian; i.e. it does not need to have the form gµν = go(µν)eo + gi[µν]ei. The

reason being that by taking the real part of the triple products in eq-(2.9) one
ensures that (ds)2 is real-valued.

If the octonionic-valued metric gµν is chosen to be Hermitian (gµν)† = gµν ,
and ḡµν = gµ̄ν̄ , after a careful inspection, one arrives at the following relations

gµν = go(µν)eo + gi[µν]ei

goµν = goνµ = goµ̄ν̄ = goν̄µ̄

giµν = −giνµ = −giµ̄ν̄ = giν̄µ̄ (2.10)

Due to these relations among the components of gµν and gµ̄ν̄ , it is not necessary
to include the terms dZµ̄ gµ̄ν̄ dZ

ν̄ in eq-(2.9).
By the same token, one may also include an interval of the form

(ds)2 = Re ( dZµ gµν̄ dZ
ν̄ ) (2.11)

If the octonionic-valued metric is chosen to be Hermitian : gµν̄ = go(µν̄)eo +

gi[µν̄]ei, and ḡµν̄ = gµ̄ν , after a careful inspection it leads to the following Her-
miticity conditions
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goµν̄ = goν̄µ = goµ̄ν = goνµ̄

giµν̄ = − giν̄µ = − giµ̄ν = giνµ̄

Once again, due to these relations among the components of gµν̄ and gµ̄ν , it is
not necessary to include the terms dZµ̄ gµ̄ν dZ

ν in eq-(2.11). In both cases the
real components of the metric is symmetric in its indices, while the imaginary
components are antisymmetric.

To sum up, when gµν and the spacetime coordinates Zµ = Zµo eo +Zµi ei are
both octonionic-valued , one can construct a more general p-brane action of the
form

SDNG = − Tp

∫
dp+1σ

√
|det hab| =

− Tp

∫
dp+1σ

√
|det Re ( ∂aZµ gµν ∂bZν )| (2.12)

where Tp is the p-brane tension of physical dimension (mass)p+1, and the span
of the p-brane indices are a, b = 0, 1, · · · , p. Once again, it is the key relation

Re( (xy) z ) = Re( x (yz) ) = Re( xyz ) =

xo yo zo − xo yi zi − xi yo zi − xi yi zo − xi yj zk σijk (2.13)

which allows us to uniquely evaluate the real part of the triple product Re (∂aZ
µ gµν ∂bZ

ν )
despite the nonassociativity of the octonions.

Thus, the real part of the pullback of the octonionic target space Hermitian
metric gµν is explicitly given by

hab = ∂aZ
µ
o g

o
µν ∂bZ

ν
o − ∂aZ

µ
o g

i
µν ∂bZ

ν
i − ∂aZ

µ
i g

o
µν ∂bZ

ν
i

− ∂aZ
µ
i g

i
µν ∂bZ

ν
o − σijk ∂aZ

µ
i g

j
µν ∂bZ

ν
k (2.14)

with i, j = 1, 2, · · · , 7, and repeated indices are summed over. The determinant
of the above expression for hab is very complicated since hab is comprised of
the sum of many different terms. Inserting this complicated expression for
the det(hab) into eq-(2.12) furnishes the DNG action for a p-brane moving in
an octonionic spacetime background and endowed with an octonionic-valued
Hermitian metric.

A similar action can be constructed based on the metric gµν̄

S′DNG = − Tp

∫
dp+1σ

√
|det Re ( ∂aZµ gµν̄ ∂bZν̄ )|, a, b = 0, 1, · · · , p

(2.15)
And in the most general case, one can combine both metrics gµν ,gµν̄ into the
more general action
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S′′DNG = − Tp

∫
dp+1σ

√
|det Re ( ∂aZµ gµν ∂bZν + ∂aZµ gµν̄ ∂bZν̄ )|

(2.16)
When the metric is real (gµν → gµν), and the spacetime coordinates are real

( Zµ → Xµ) one recovers for the determinant of hab the usual expression given
by the sums of the squares of Nambu-Poisson-brackets [29]

hab = ∂aX
µ gµν ∂bX

ν ⇒

det(hab) = {Xµ1 , Xµ2 , · · · , Xµp+1} {Xν1 , Xν2 , · · · , Xνp+1} gµ1ν1 gµ2ν2 · · · gµp+1νp+1

(2.17a)
where the Nambu-Poisson brackets are defined as

{Xµ1 , Xµ2 , · · · , Xµp+1} ≡ εa1a2···ap+1 ∂a1
Xµ1 ∂a2

Xµ2 · · · ∂ap+1
Xµp+1 (2.17b)

In general, in a curved background one has gµν = gµν(Xρ). Because the embed-
ding spacetime coordinates Xρ(σ1, σ2, · · · , σp+1) are functions of the p-brane’s
p+ 1-dimensional world-volume coordinates, one cannot pull the metric factors
inside the Nambu-Poisson brackets in eq-(2.17). Only when the background
metric is independent of the Xρ coordinates (it is flat) that one can pull the
metric factors inside the brackets leading to

det(hab) = {Xµ1 , Xµ2 , · · ·Xµp+1} {Xµ1
, Xµ2

, · · · , Xµp+1
} (2.18)

and the DNG action becomes

SDNG = − Tp

∫
dp+1σ

√
|det ( ∂aXµ ∂bXν ηµν )| =

− Tp

∫
dp+1σ

√
( {Xµ1 , Xµ2 , · · · , Xµp+1}NPB )2 (2.19)

A Polyakov-Howe-Tucker octonionic p-brane action Sp based on the metric
gµν is of the form

Sp = − Tp
2

∫
dp+1σ

√
|det(hab)| hab Re ( ∂aZ

µ gµν ∂bZ
ν ) +

(p− 1)

∫
dp+1σ

√
|det(hab)| (2.20)

where a, b = 0, 1, · · · , p and hab is an auxiliary real-valued world-volume metric.
Eliminating hab via its equations of motion and inserting it back into the action
(2.20) yields the DNG action (2.12). A similar action can be constructed based
on the metric gµν̄

S′p = − Tp
2

∫
dp+1σ

√
|det(hab)| hab Re ( ∂aZ

µ gµν̄ ∂bZ
ν̄ ) +
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(p− 1)

∫
dp+1σ

√
|det(hab)| (2.21)

And a more general action combining both metrics gµν ; gµν̄ is of the form

S′′p = − Tp
2

∫
dp+1σ

√
|det(hab)| hab Re ( ∂aZ

µ gµν ∂bZ
ν + ∂aZ

µ gµν̄ ∂bZ
ν̄ ) +

(p− 1)

∫
dp+1σ

√
|det(hab)| (2.22)

To get a picture of what an octonionic spacetime background endowed with
an octonionic metric looks like, let us concentrate in the very special case of
diagonal metrics. Namely gµν = 0 when µ 6= ν, and such that the nonzero
diagonal components are all real-valued

gµµ = go(µµ)eo + gi[µµ]ei = go(µµ)eo, µ = 1, 2, · · · , D (2.23)

there is no sum over µ in eq-(2.23). Hence, the interval (ds)2 (2-10) becomes

(ds)2 = ( dZ1
o g

o
11 dZ

1
o − dZ1

i g
o
11 dZ

1
i ) + ( dZ2

o g
o
22 dZ

2
o − dZ2

i g
o
22 dZ

2
i ) + · · · +

( dZDo goDD dZDo − dZDi goDD dZDi ) (2.24)

One may then identify the coordinates

Z1
o ↔ t(1), Z2

o ↔ t(2), · · · , ZDo ↔ t(D) (2.25)

with D temporal directions t(1), t(2), · · · , t(D). And the coordinates

Z1
i ↔ x

(1)
i , Z2

i ↔ x
(2)
i , · · · , ZDi ↔ x

(D)
i ; i = 1, 2, · · · , 7 (2.26)

can be identified with 7×D spatial coordinates. By setting

go11 < 0, go22 < 0, go33 < 0, goDD < 0 (2.27)

the interval (ds)2 (2-24) can be written as the direct sum of D eight-dimensional
spacetimes intervals (ds)2

8, each one of signature (−,+,+,+, · · · ,+),

(ds)2
8 = dt(1) go11 dt

(1) − go11 dx
(1)
i δij dx

(1)
j , go11 < 0 (2.28a)

(ds)2
8 = dt(2) go22 dt

(2) − go22 dx
(2)
i δij dx

(2)
j , go22 < 0, · · · · · · (2.28b)

(ds)2
8 = dt(D) goDD dt(D) − goDD dx

(D)
i δij dx

(D)
j , goDD < 0 (2.28c)

This direct sum of D eight-dimensional spacetimes intervals has the appearance
of an 8-fold periodicity : OD ↔ M8 ⊕ M8 ⊕ M8 · · · ⊕ M8. On the other
hand, there is also the correspondence O2 ↔ M (14,2) ↔ SO(14, 2), conformal
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group in D = 14. O3 ↔ M (21,3) ↔ SO(21, 3). O4 ↔ M (28,4) ↔ SO(28, 4),
quasi-conformal group in D = 28.

The most renowned case, when all the coordinates of Zµ are spatial, is the
Wilson’s construction of the 24-dim Leech lattice based on O3 [15]. Dixon [6]
has also offered a different construction of the 24-dim Leech lattice based on the
ternary products of O. Infinite extensions of the Exceptional algebras based
on the notion of an 8-fold Exceptional Periodicity can be found in [20].

To finalize this subsection, we should add that extreme caution must be
taken when one wishes to find the inverse of the octonionic metrics gab,gµν .
The inverse of the sum of two matrices with real or complex entries is given by
the Sherman-Morrison-Woodbery formula

M = (A + B)−1 = A−1 − ( A + AB−1A )−1 = M (ab) + M [ab] (2.29)

Lets asssume A is symmetric and B is antisymmetric and that one extracts
the symmetric and antisymmetric pieces of the right-hand side of eq-(2.29). In
doing so, one would obtain the symmetric matrix M (ab) = 1

2 (M + M̃) and the

antisymmetric matrix M [ab] = 1
2 (M − M̃). By inspection one can verify that

the matrix M (ab) 6= A−1, and M [ab] 6= B−1. On the contrary, the matrices
M (ab) and M [ab] turn out to be complicated functions of both matrices A,B.
Furthermore, the formula (2.29) is not valid for octonionic-valued matrices due
to the noncommutativity and nonassociativity of octonions.

3 Star Deformations of Octonionic Membranes,
and Quantized Nambu-Poisson Brackets

The quantization of the membrane has been an extremely difficult task for many
reasons. It is our belief that a nonassociative extension of QM [26] may hold the
key. The latter approach differs from the old methods based on the geometry
of the Moufang plane and Octonionic Quantum Mechanics [28]. In this section
we shall present two different approaches in the construction of star product
deformations of the DNG action. A quantization of branes as a conglomeration
of quantum fields has been proposed by [13].

3.1 The Star Product Deformed Octonionic Membrane

Rather than focusing on the bivector Θab∂a ∧ ∂b in Poisson manifolds which is
involved in the standard star product of two functions f(σa), g(σa)

(f ? g)(σa) = µA

(
exp [

ih̄

2
Θab∂a ∧ ∂b ] (f ⊗ g)

)
, a, b = 1, 2, 3 (3.1a)
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with µA(f⊗g) = fg, let us begin with the trivector Rabc∂a∧∂b∧∂c and construct
the following star-deformed product of three functions f(σa), g(σa), h(σa)

(f ? g ? h)(σa) = µA

(
exp [

h̄2

3!
Rabc∂a ∧ ∂b ∧ ∂c ] (f ⊗ g ⊗ h)

)
(3.1b)

with µA(f ⊗ g ⊗ h) = fgh, and a, b = 1, 2, 3.
Before proceeding, the immediate question which arises is where does the

trivector Rabc∂a ∧ ∂b ∧ ∂c come from ? In string-theory there is a 2-form B, the
Kalb-Ramond field, whose field strength R = dB is a 3-form. The trivector Rabc

components are directly related to closed superstring compactifications with
background R-fluxes. In our geometric setup, by recurring to the imaginary
(antisymmetric) components of the octonionic metric gi[ab], i = 1, 2, · · · , 7, one
can define the rank-2 antisymmetric tensor as

Bab(σ) ≡
i=7∑
i=1

gi[ab](σ) (3.2)

and leading to the rank-3 antisymmetric tensor Rabc ≡ ∂[cBab]. By raising

indices with the inverse of the real part of the metric (go(ab))
−1 = g

(ab)
o one can

then obtain the desired trivector Rabc∂a ∧ ∂b ∧ ∂c. In the most general case the
latter trivector is not necessarily constant.

In the previous section, we discussed how the nontrivial inverse of the sum
of two matrices with real or complex entries is given by the Sherman-Morrison-
Woodbery formula (2.29), and which is no longer valid for octonionc matrices.
For this reason, we must raise indices with the inverse of the real part of the
octonionic metric (go(ab))

−1. Whereas, the imaginary parts of the octonionic
metric are used to construct the Kalb-Ramond-like field Bab, and which in
turn, furnishes the rank-3 antisymmetric tensor Rabc leading to the trivector in
eq-(3.1b) after raising indices.

Being equipped with the star-deformed triple product of functions (3.1b)
one can evaluate the ?-deformed Freudenthal determinant Det∗F (gab) giving

Det∗F (gab) = g11 ? g22 ? g33 − g11 ? g23 ? ḡ23 − g22 ? g31 ? ḡ31 −

g33 ? g12 ? ḡ12 + 2 Re{g23 ? g31 ? g12} (3.3)

and, finally, one may write the sought-after ?-product deformed Octonionic
Membrane action in a very condensed manner as

S∗DNG = − T2

∫
d3σ

√
|Det∗F (gab)| (3.4)

This result (3.4) based on the triple product differs from the results found in
the next subsection. One should note also that we have the star-deformed
triple products of the metric components displayed explicitly in eq-(3.3), but not
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those involving the star-deformed metric components per se : g∗ab = ∂aX
µ(σ)?

∂bX
ν(σ) ? gµν(X(σ)). This would have complicated matters considerably. The

deformed action (3.4) is no longer E6(−26)-invariant.

3.2 Phase Space Quantization of Ordinary Membranes
and Nonassociative Quantum Mechanics

Having obtained the star-product-deformed octonionic membrane action (3.4),
in this subsection we shall concentrate on ordinary membranes; namely mem-
branes moving in ordinary spacetime backgrounds equipped with real-valued
metrics, and subsequently add a constant background R-flux and then follow
very closely the standard deformation quantization on the cotangent bundle
presented by the authors in [26].

Let us consider a manifold M of dimension d with trivial cotangent bundle
T ∗M = M × (Rd)∗ and coordinates xI = (xi, pi), where I = 1, ..., 2d;xi ∈
M,pi ∈ (Rd)∗, and i = 1, ..., d. Given a constant trivector R = 1

3!R
ijk∂i ∧

∂j ∧ ∂k; the algebra of functions A = C∞(M) on M , and µA(f ⊗ g) = fg the
pointwise multiplication of functions, the noncommutative and nonassociative
star product of two functions of the phase space coordinates f(xi, pi), g(xi, pi)
is [26]

(f ?g)(x, p) = µA

(
exp [

ih̄

2
(Rijkpk∂i ⊗ ∂j + ∂i ⊗ ∂̃i − ∂̃i ⊗ ∂i) ] (f ⊗ g)

)
(3.5)

with ∂i = ∂xi ; ∂̃i = ∂pi . In h̄ = c = 1 units, the physical dimension of Rijk is
(length)3, and [xi] = length, [pi] = (length)−1.

The integral formula for the nonassociative star product is [26]

(f ? g)(x, p) = (
1

πh̄
)2d

∫
d2dz

∫
d2dw f(x+ z) g(x+ w) e−

2
h̄ z

IΘ−1
IJ
wJ

(3.6)

with

Θ−1
IJ =

(
0 −δij
δij Rijkpk

)
, I, J = 1, 2, 3, · · · , 2d (3.7)

Nambu [29] suggested to consider nonassociative algebras for the quantiza-
tion of his bracket. In the nonassociative case, the authors [26] remarked that
one has to specify which operators are multiplied first. If one chooses the first
pair one may write the Nambu-Heisenberg bracket as

[A, B, C]NH = [A, B] C + [C, A] B + [B, C] A (3.8)

where [A,B]C = (AB)C − (BA)C. The nonassociative star product (3.5),
evaluated on a triple of coordinate functions, gives
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[xi, xj , xk]∗NH = ih̄
(
Rijlpl ? x

k + Rjklpl ? x
i + Rkilpl ? x

j
)

(3.9)

The opposite Nambu-Heisenberg bracket defined as

[A, B, C]′NH = C [B, A] + B [A, C] + A [C, B] (3.10)

is in general no longer equal to minus the original Nambu-Heisenberg bracket
due to the nonassociativity of the star product. Their sum gives the Jacobiator

[[A, B, C]] ≡ [ [A, B], C ] + [ [C, A] , B ] + [ [B, C], A ] =

[A ,B ,C]NH + [A ,B ,C]′NH 6= 0 (3.11)

For the nonassociative star product (3.5), evaluated on a triple of coordinate
functions, one obtains the non-zero Jacobiator [26]

[[xi, xj , xk]]∗ = ih̄
(
Rijl [pl, x

k]∗ + Rjkl [pl, x
i]∗ + Rkil [pl, x

j ]∗
)

= 3h̄2Rijk

(3.12)
where [f, g]∗ = f ? g − g ? f for all f, g ∈ C∞(M) and i, j, k = 1, ..., d.

The authors [26] showed that the Weyl-Wigner-Moyal-Groenowold phase
space formulation of quantum mechanics [27] is powerful enough to study Nonas-
sociative Quantum Mechanics. Observables are implemented as real functions
on phase space, states are represented by pseudo-probability Wigner-type den-
sity functions, and noncommutativity of operators enters via a star product of
functions, which is the deformation quantization of a classical Poisson struc-
ture. States, operators, eigenvalues, uncertainty relations of area and volume
operators, dynamics and transformations were rigorously studied in [26].

Having reviewed very briefly the findings of [26] let us begin with the follow-
ing 6-dim action associated with the motion of a 5-brane in a flat target D-dim
spacetime background

SDNG = − T5

∫
d6σ

√
{Xµ1 , Xµ2 , · · ·Xµ6}NPB {Xµ1

, Xµ2
, · · ·Xµ6

}NPB ,

(3.13)
where Xµ(σa) are the embedding maps of the 6-dim world hyper volume (swept
by the 5-brane) onto the flat target spacetime background; the indices a =
1, 2, · · · , 6 span the six dimensions of the world hyper volume, and T5 is the
5-brane tension. We intend to find what the star-product deformations of the
right-hand side of eq-(3.13) look like and which will guide us into constructing
a phase space quantization of the membrane.

Lets start by looking at the cotangent space of the membrane’s world volume.
The coordinates of the cotangent space of the 3-dim membrane’s world volume
T ∗M 'M× (R3)∗ are ξa ∈ M, ξ̃a ∈ (R3)∗; a = 1, 2, 3. We shall focus now on
the maps from the 6-dim phase space (corresponding to the dimension of the
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cotangent space of the 3-dim membrane’s world volume T ∗M), onto the flat
D-dim spacetime background described by the coordinates Xµ(ξa, ξ̃a). 1. Since
the 5-brane world hyper volume is also 6-dimensional, the idea is to match the
6-dim phase space of the membrane with the 6-dim world-volume of the 5-brane.

After establishing the following correspondence

(xi, pi) ↔ ξa, ξ̃a, f(xi, pi), g(xi, pi)↔ Xµ(ξa, ξ̃a), Xν(ξa, ξ̃a); i = 1, 2, 3; a = 1, 2, 3
(3.14)

in all of the above equations (3.5-3.12) it allows us to build the star products
of Xµ(ξa, ξ̃a) ? Xν(ξa, ξ̃a), and in turn, construct the ?-product deformations
of the Nambu-Poisson brackets appearing in the 5-brane action (3.13). This is
achieved through the following iterative procedure :

Starting with the ?-product deformation of the 2-bracket {Xµ1 , Xµ2}∗

{Xµ1 , Xµ2}∗ ≡ Xµ1 ? Xµ2 − Xµ2 ? Xµ1 (3.15)

where the noncommutative and nonassociative ? product Xµ1 ?Xµ2 is defined
by eq-(3.5) after using the correspondence (3.14), it allows to define the follow-
ing star-product deformation of the 3-brackets

{Xµ1 , Xµ2 , Xµ3}∗ = {Xµ1 , Xµ2}∗ ? Xµ3 + {Xµ3 , Xµ1}∗ ? Xµ2 +

{Xµ2 , Xµ3}∗ ? Xµ1 (3.16)

Having constructed the star-3-bracket (3.16) in terms of the star-2-bracket
(3.15) , the star-4-bracket is defined in terms of the star 3-brackets as follows

{Xµ1 , Xµ2 , Xµ3 , Xµ4}∗ = {Xµ1 , Xµ2 , Xµ3}∗ ? Xµ4 + {Xµ4 , Xµ1 , Xµ2} ? Xµ3 +

{Xµ3 , Xµ4 , Xµ1} ? Xµ2 + {Xµ2 , Xµ3 , Xµ4} ? Xµ1 (3.17)

Similarly, by iteration, the star-product deformation of the 5-brackets are
defined in terms of the star-4-brackets, and in turn, the star-product deforma-
tion of the 6-brackets is defined in terms of the star-5-brackets, and so forth.
After this very lengthy iterative procedure one finally has the expression for
{Xµ1 , Xµ2 , Xµ3 , · · ·Xµ6}∗NPB . The iteration process also provides the proper
location of the multiple parenthesis involved. Since the star product is nonas-
sociative one must specify unambiguously the location of the parenthesis.

Concluding, the ?-deformed DNG membrane action ends up being

S?DNG = − (T2)2

∫
d3ξ∧d3ξ̃

√
{Xµ1 , Xµ2 , · · ·Xµ6}∗NPB ? {Xµ1

, Xµ2
, · · ·Xµ6

}∗NPB
(3.18)

The physical units are chosen to be [ξa] = [ξ̃a] = [Xµ] = length. The mem-
brane tension T2 has (length)−3 units so its square (T2)2 has the same physical

1Note that the 6-dim phase space does not have two temporal directions because energy is
not time
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dimensions (length)−6 as those of a 5-brane tension T5. The 6-dim measure in
(3.18) is associated with the 6-dim phase space measure corresponding to the
6-dim cotangent space of the 3-dim world-volume swept by the membrane. It
is interesting that the 5 brane is the “electromagnetic” (EM) dual to the mem-
brane in D = 11. In general, a p-brane is the EM dual to a p′-brane in D-dim
if D = p+ p′ + 4.

One may include the alternative expressions to all of these brackets by
reversing the order of all the factors like it was performed in eq-(3.10). Due to
the nonassociativity of the star product (3.5) the results will not be equal to the
minuses of the brackets found above. Thus there are two different star-product
deformations of the membrane action due to the nonassociativity of the star
product (3.5).

To conclude, a more rigorous formulation of the embedding of the mem-
brane’s 6-dim cotangent space (phase space) into a target space background is
obtained via Finsler geometry. Embedding the 2(p + 1)-dim cotangent space
(phase space associated to a p-brane’s p+1-dim world-volume) into the 2D-dim
cotangent space associated with a target D-dim spacetime background leads to
the following relation between the respective cotangent space intervals

hij(x, p) dx
i dxj + hab(x, p) (dpa +Na

i (x, p)dxi) (dpb +N b
j (x, p)dxj) =

gµν(X,P ) dXµ dXν + gαβ(X,P ) (dPα +Nα
µ (X,P )dXµ) (dP β +Nβ

ν dX
ν)

(3.19)
The metric hij(x, p), hab(x, p), and the nonlinear connection Na

i (x, p) are the
“pullbacks” of gµν(X,P ), gαβ(X,P ) and the nonlinear connection Nα

µ (X,P ).
However, it is not clear how to relate all these quantities. The ordinary embed-
ding leads to

hij(x) dxi dxj = gµν(X) dXµ dXν ⇒ hij = gµν
∂Xµ

∂xi
∂Xν

∂xj
(3.20)

from the right-hand’s expression one constructs the DNG p-brane action (p +
1 = d; i, j = 1, 2, · · · , d) by taking the square root of the absolute value of the
determinant of hij . One can see that eq-(3.20) is very different from eq-(3.19).

This brings to our attention the very active ongoing research on Double
Field Theory and Exceptional Field Theory (see [16] for a review) which is a
generalization of Kaluza-Klein theory that unifies the metric and p-form gauge
field degrees of freedom of Supergravity into a generalized or extended geome-
try, whose additional coordinates may be viewed as conjugate to brane winding
modes. Clearly, the interval (3.19) inspired from Finsler-geometry involves ad-
ditional coordinates, a doubling of coordinates. This Finsler geometric approach
warrants further investigation in connection to Double, Exceptional Field theo-
ries. Finally, we should add that another very active field of research involving
the n-ary structures of NPB is L∞, A∞ algebras. Most recently these algebras
have been instrumental in the formulation of Nonassociative Gravity [17].
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