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Abstract: This paper examines the thermal ionization in the core of a main-sequence stable star, 

with an assumption that the main-sequence stellar core behaves like an ideal 3-Dimensional (D) 

Fermi gas. This assumption has been based on the fact that the stellar core persists as a region of 

very high temperature, typically in a range between 15 × 106K and density near 150 g cm−3,like 

that of our Sun where the classical gas description fails and Fermi-Dirac (F-D) distribution becomes 

important. Finally we compare our ionization equation with the Saha’s thermal ionization equation 

based on classical Maxwell-Boltzmann (M-B) distribution. The final non-relativistic mathematical 

calculation provides us with the result that the ionization fraction is exponentially proportional to 

the Fermi energy and has volume dependency, under the 3-D ideal Fermi gas consideration. 
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1.  Introduction :  

At the super high temperature inside a star’s core, the electrons are ionized from their parent atoms 

and an energetic state of charged particle is formed, known as plasma. The constituents of this 

plasma state are identical particles with half integral spins. These   particles are fermions which obey 

the Pauli’s exclusion principle, according to which no two fermions can have all identical quantum 

energy states. The statistical consideration of Fermi-Dirac (F-D) distribution in stellar cores was first 

realized by Prof. R.H Fowler (1926) and letter developed under relativistic transformation by Prof. S. 

Chandrasekhar (1931; 1932) to apply it in the structure and stability of white-dwarfs. Because of 

very high density at the core, fermions (in this case electrons) are packed very closely to each other 

creating a degenerate electron gas which in addition to thermo-nuclear pressure, generates an 

electron degeneracy pressure (although it is negligible in the core of a main-sequence stable star) 

which counteracts the inward gravitational collapse to maintain the so called hydrostatic equilibrium 

of the stellar core. The thermal ionization formulation in turn provides us with an initial 

understanding of the mechanism of energy transfer (in addition to another important factor of 

conduction method which will be discussed in future research) from the star’s core to the inter-

atmospheric envelopes. Here, in the following discussions we have considered the outer envelope of 

the stellar core as 3-D Fermi gas in a weakly degenerate state where the dominant particle 

distribution is governed by the F-D distribution and formulated a non-relativistic thermal ionization 

equation for a main-sequence stellar core.                          

2. Thermal ionization in main-sequence stellar cores:                                  

The main-sequence stars are characterized by their energy generating mechanism deep inside their 

cores where primarily four hydrogen nuclei combine to form a helium nucleus through thermo-

nuclear fusion. Once a star of mass comparable to that of the Sun forms, after a period of 10 million 

years, the star’s core reaches a state of thermal equilibrium and becomes radiative. This results in 

the energy transportation by radiation (also through conduction) rather than convection .Thus, 

based on the above argument, we provide a thermal ionization equation to understand the radiative 

energy properties in a main-sequence stellar core.                                                                   

3, Methodology                                                                                                                                                               
In this section we are going to discuss some important quantum-statistical nature of isotropic 3-D 
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Fermi gas and will proceed to derive a thermal ionization equation for a main-sequence stellar core 

non-relativistically.       

3.1   Fundamental ideas regarding a 3-D Fermi gas:  

 A 3-D isotropic homogenous and non-relativistic Fermi gas is called a Fermi sphere. This can   be 
considered as a 3-D infinite square potential (i.e. a cubical box) well of infinite length L, where the 

potential can be given as �̃�(𝑥, 𝑦, 𝑧) = {
0, ∀(𝑥, 𝑦, 𝑧) ∈ (−

𝐿

2
,

𝐿

2
)

∞,   for any other value of 𝑥
.                      (i)                                          

For this model, applying the standard formulation of quantum mechanics, it can be shown that the 
energy for energy levels 𝑛𝑥, 𝑛𝑦 𝑎𝑛𝑑 𝑛𝑧 is 

  𝐸𝑛 = 𝐸0 + (
ℏ2𝜋2

2𝑚𝐿2) (𝑛𝑥
2 + 𝑛𝑦

2 + 𝑛𝑧
2)    (ii), where∀(𝑛𝑥, 𝑛𝑦, 𝑛𝑧) ∈ ℤ+, for the 𝑛𝑡ℎ energy level.𝐸0 is 

the ground-state potential energy, 𝑚 is the mass of the single fermion and ℏ is the reduced Plank’s 
constant. Because fermions obey Pauli’s exclusion principle, for 𝑁 Fermions with ½ integral spin in 
the square well potential, two fermi particles cannot have exactly all similar quantum numbers. The 

3-D Fermi energy for a Fermi sphere is given by EF
3−D ≡ EF =

ℏ2

2m
(

3π2𝑁

V
)

2

, where 𝑉 =

volume when replaced by 𝐿2 → 𝑉
2

3. Hence the total energy of a Fermi sphere for N fermions is 
given by (as given in En. wikipedia.org.2020. Fermi Gas)                                                                          

𝐸𝐹
𝑇 ≡

3

5
𝐸𝐹𝑁 + 𝐸0𝑁 = (

3

5
𝐸𝐹 + 𝐸0) 𝑁                                                                                 (iii).                                              

Within a thermodynamic limit (i.e. the total number of particles N are so large that the quantum 
energy number n may be treated as a continuous variable. In this case, the overall number density 
profile in the box is indeed uniform), the degenerate degree can be calculated as                       

𝑔(𝐸)  =
1

𝑉

𝜕𝑁(𝐸)

𝜕𝐸
=

1

2𝜋2 (
2𝑚

ℏ2 )

3

2 (𝐸 − 𝐸0)
1

2                                                                           (iii-a)                 

where the number of particles as a function of energy N(E) is obtained by substituting equation (iii) 

by a varying energy (𝐸 − 𝐸0) as  𝑁(𝐸) =
𝑉

3𝜋2 [
2𝑚

ℏ2
(𝐸 − 𝐸0)]

3

2.                                     (iii-b)                      

Thus, we begin our derivation based upon the above stated assumption regarding the 3-D Fermi gas 
model of the stellar core.  

3.2   Derivation of thermal ionization equation for 3-D Fermi gas model : 

The Fermi energy for the thermodynamic limit in 3-D Fermi gas is given according to equation (iii) 

with an assumption 𝐸𝐹
𝑇 ≡ 𝐸𝐹

(0)
, where 𝐸𝐹

(0)
 is the ground-state Fermi energy. Let the probability 

(entropy) function be defined as 𝑆(𝑁𝑒 , 𝑁)for a Fermi gas that has 𝑁𝑒  electrons out of N Fermi 
particles in a given ensemble. The grand canonical ensemble as calculated by Kelly (2002) for such a 
case can be written as  

 𝑍𝑞 = ∑ exp [−𝛽(𝐸𝑞 − 𝜇𝐹𝑁𝑞)]{𝑞}                                                                                     (iv),                           

where 𝛽 =
1

𝑘𝑏𝑇
   and 𝑘𝑏 is the Boltzmann’s constant and 𝑇 is the absolute temperature of the 

system. Where {q} indexes the ensemble of all possible microstate for electrons (e), protons (p) and 
hydrogen atoms (H).                                                                                                                                          
Thus for 𝑒, 𝑍𝑒 = ∑ exp [−𝛽(𝐸𝑒 − 𝜇𝐹𝑁𝑒)]{𝑒}                                                                  (v).                           

Similar expressions could be found out for H and p. The chemical potential 𝜇𝐹 (Fermi level) of the 
three-dimensional ideal Fermi gas as given by Kelly (2002) is related to the zero temperature Fermi 
energy 𝐸𝐹 by a Sommerfeld Expansion                     

    𝜇𝐹 = 𝐸0 + 𝐸𝐹[1 −
𝜋12

12
(

𝑘𝐵𝑇

𝐸𝐹
)

2
−

𝜋4

80
(

𝑘𝐵𝑇

𝐸𝐹
)

4
+ ⋯ ]                                                   (vi)                                 



Considering a semi-classical limit, the entropy (probability) function for indistinguishable fermions as 
calculated by Ghosh et al. (2019) is    

   𝑆(𝑁𝑒, 𝑁) = (
𝑍𝑒

𝑁𝑒!
) (

𝑍𝑝

𝑁𝑝!
) (

𝑍𝐻

𝑁𝐻!
)                                                                                      (vii).                                                             

For the exact momentum distribution calculation of a Fermi gas, we assume that the fermions have 
an anti-symmetric wave function 𝜓𝑖𝑗(𝑖≠𝑗) which are the functions in Fermi space 

𝐶𝑘 and 𝐶𝑘
ℶ(for Bose field). Thus the resulting wave functions for fermions are as                 

𝜓𝑖𝑗(𝐶𝑘 , 𝐶𝑘
ℶ) = 𝜓𝑖(𝐶𝑘) 𝜓𝑗(𝐶𝑘

ℶ) − 𝜓𝑖(𝐶𝑘
ℶ)𝜓𝑗(𝐶𝑘).                                                                                          

The exact momentum distribution calculated by Setlur (2020) is      

< 𝐶𝑘  𝐶𝑘
ℶ > = 𝑛𝐹(𝑘) + (2𝜋𝑘𝐹) ∫

𝑑𝑞1

2𝜋
[Λ𝑘−

𝑞1
2

∞

−∞
(−𝑞1)/{(2𝜔𝑅(𝑞1) (𝜔𝑅(𝑞1) +

ω𝑘−
𝑞1
2

 (– 𝑞1))

2

(
𝑚3

𝑞1
4 ) (cosh(𝜆(𝑞1)) − 1)}] − (2𝜋𝑘𝐹) ∫

𝑑𝑞1

2𝜋
[Λ𝑘+

𝑞1
2

∞

−∞
(−𝑞1)/{(2𝜔𝑅(𝑞1) (𝜔𝑅(𝑞1) +

ω𝑘+
𝑞1
2

 (– 𝑞1))

2

(
𝑚3

𝑞1
4 ) (cosh(𝜆(𝑞1)) − 1)}]                                                                  (viii)                                                                               

where  𝜆(𝑞) = (2𝜋𝑞)(
1

𝑣𝑞
)  , where 𝑣𝑞 is the fermi velocity of q particle. And                                         

𝜔𝑅 = (
|𝑞|

𝑚
) √

(𝑘𝐹+
𝑞

2
)

2
−(𝑘𝐹−

𝑞

2
)

2
exp(−

𝜆

2
)

1−exp(−𝜆(𝑞))
 , Λk  ≡

V

(2πℏ)d  where V is the volume of d dimensional phase 

(ɸ)-space and 𝑘𝐹 is the radius of the Fermi sphere. Thus from equation  (viii) (which can be found in 
a detailed form in Setlur’s 2019 paper given in the reference), we can say that the Fermi momentum 
(𝑝𝐹 = 𝐸𝐹/𝑘𝐵) is continuous and the sum of the grand canonical distribution function is the integral                                                                                                                                  

 𝑍𝑖 = ∫ 𝑔𝐹
𝑑(𝜀𝑖)𝑒

[−

𝑝2

2𝑚𝑒
𝑘𝐵𝑇

]

 (𝑑𝑛𝑥𝑑𝑛𝑝)/ℎ3                                                                          (ix),                                                                     

𝑝𝐹 = √2𝑚𝐸𝐹 =>
𝑝𝐹

2

2𝑚
= 𝐸𝐹                                                                                                                                                            

where 𝑔𝐹
𝑑 is the (statistical weight) degenerate fermi level , 𝜀𝑖  are the individual fermions’ energy 

states. We now proceed to calculate 𝑍𝑖  within a thermodynamical limit in a 6-dimensional (d) ɸ-
space, so we can assume n = 3. Thus 𝑑3𝑥 is the volume V and 𝑑3𝑝 is the momentum, 

(𝑑𝑝𝑥𝑑𝑝𝑦𝑑𝑝𝑧) ≡ 𝑑3𝑝 = 4𝜋𝑝2𝑑𝑝. Now, taking  𝑝𝐹 → 𝑝, equation (ix) can be re-written as 

  𝑍𝑖 =
4𝜋𝑔𝐹

𝑑

ℎ3 ∬ 𝑝2exp [−
𝑝2

2𝑚

𝑘𝐵𝑇
] 𝑑3𝑥𝑑3𝑝  ,          which implies that                                                                                                        

=>  𝑍𝑖 =
4𝜋𝑔𝐹

𝑑

ℎ3 ∫ 𝑑3𝑥 ∫ 𝑝2 exp [−
𝑝2

2𝑚

𝑘𝐵𝑇
] 𝑑𝑝

∞

0
                                                              (x). 

Let’s take 𝑡2 =
𝑝2

2𝑚𝑘𝐵𝑇
   => 2𝑡𝑑𝑡 =

𝑝

𝑚𝑘𝐵𝑇
𝑑𝑝.  => 2𝑡𝑑𝑡 𝑚𝑘𝐵𝑇 = 𝑝𝑑𝑝.            (xi)                                     

and making equation (xi) as substitution, equation (x) can be re-written as 

𝑍𝑖 =
4𝜋𝑔𝐹𝑉

𝑑

ℎ3  (2𝑚𝑘𝐵𝑇)
1

2 ∫ (2𝑚𝑘𝐵𝑇)𝑡2𝑒−𝑡2
𝑑𝑡2∞

0
 .                                                                                                        

=> 𝑍𝑖 =
4𝜋𝑔𝐹𝑉

𝑑

ℎ3  (2𝑚𝑘𝐵𝑇)
3

2 √(
𝜋

4
)  =   

𝑔𝐹𝑉
𝑑

ℎ3  (2𝑚𝑘𝐵𝑇)
3

2                                              (xii).   

Because electrons and protons are both fermions the degeneracy for electrons and protons is 

𝑔𝐹(𝑒)
𝑑 ≡ 𝑔𝐹(𝑝)

𝑑 = 2. Thus, based on equation (xii) the grand canonical partition function for e and p 

can be written as 𝑍𝑒 =
2𝑉

ℎ3  (2𝑚𝑒𝑘𝐵𝑇)
3

2  and 𝑍𝑝 =
2𝑉

ℎ3  (2𝑚𝑝𝑘𝐵𝑇)
3

2                     (xiii).                                              

Now, the derivation for 𝑍𝐻 is identical as of previous one for e or p except for fact that hydrogen 

atoms are not fermions so the inclusion of Fermi (𝐸𝐹 = 𝐸𝐹
(0)

) (binding) energy is necessary in 



equation (xii) as the derivation is carried out in a Fermi sphere as a 3-D Fermi gas along with the 

zero-level Bohr energy and taking  −𝐼 ≡
𝑧

𝑛2 (−13.6 𝑒𝑣). The degenerate state for H which if 

calculated as  𝑔𝐹(𝐻)
𝑑 = ∑ (2𝑙 + 1)𝑛−1

𝑙=0   where 𝑙 is the angular momentum quantum number. This 

degeneracy equation results in series expansion in 𝑛2 which for excited hydrogen atom is 2 i.e. n=2 

thus 𝑛2 = 4. Hence the degeneracy for excited hydrogen atom is given by 𝑔𝐹(𝐻)
𝑑 = 4, so, the grand 

canonical partition function for hydrogen atom is                                       

    𝑍𝐻 =
4𝑉

ℎ3  (2𝑚𝐻𝑘𝐵𝑇)
3

2 𝑒
[−

𝐸𝐹+(−𝐼)

𝑘𝐵𝑇
]
                                                                                   (xiv).                                

Going back to equation (vii) and taking logarithms of both the sides and using the Stirling’s 
approximation we have                                                                                                                                    
ln 𝑆 = 𝑁𝑒 ln 𝑍𝑒 + 𝑁𝑝 ln 𝑍𝑝 + 𝑁𝐻 ln 𝑍𝐻 − 𝑁𝑝 ln 𝑁𝑝 − 𝑁𝑝 ln 𝑁𝑝 − 𝑁𝑝 ln 𝑁𝑝 + 𝑁𝑒 + 𝑁𝑝 + 𝑁𝐻  (xv).                                                                                                         

The system is electronically neutral under the influence of electrons and ions, so we can write        
𝑁𝑒 ≡ 𝑁𝑝 𝑎𝑛𝑑 𝑁𝐻 = 𝑁 − 𝑁𝑒 . Then differentiating equation (xv), we have                                                  
𝑑(𝑙𝑛𝑆)

𝑑𝑁𝑒
= 0, which implies  ln [𝑍𝑒𝑍𝑝(𝑁 − 𝑁𝑒)] − ln[𝑍𝐻𝑁𝑒

2] = 0                         (xvi). 

 Which implies      
𝑍𝑃𝑍𝑒

𝑍𝐻
=

𝑁𝑒
2

𝑁−𝑁𝑒
                                                                                   (xvii).                              

Now, taking 𝑍𝑒 , 𝑍𝑝and 𝑍𝐻 from equations (xiii) and (xiv) and substituting in equation (xvi), we find   

[
2𝑉

ℎ3(2𝑚𝑒𝑘𝐵𝑇)
3
2] [

2𝑉

ℎ3 (2𝑚𝑒𝑘𝐵𝑇)
3
2]

4𝑉

ℎ3(2𝑚𝑒𝑘𝐵𝑇)
3
2 𝑒

[−
𝐸𝐹+(−𝐼)

𝑘𝐵𝑇
]
 

=  
𝑁𝑒

2

𝑁−𝑁𝑒
                                                                           (xviii).  

Now, simplifying the equation (xviii) and cancelling the similar terms and taking 𝑚𝑝 ≈ 𝑚𝐻 , we find    

𝑉

ℎ3  (2𝑚𝑒𝑘𝐵𝑇)
3

2 𝑒
[

𝐸𝐹+(−𝐼)

𝑘𝐵𝑇
]

=  
𝑁𝑒

2

𝑁−𝑁𝑒
 ,                                                                                                                         

which implies   
𝑁𝑒

2

𝑁−𝑁𝑒
=

𝑉

ℎ3  (2𝑚𝑒𝑘𝐵𝑇)
3

2 𝑒
[

𝐸𝐹+(−𝐼)

𝑘𝐵𝑇
]
 ,                                                      (xix) 

 
𝑁𝑒

2

𝑁−𝑁𝑒
= 𝑉 (

𝑚𝑒𝑘𝐵𝑇

2𝜋ℏ2 )

3

2
exp (

𝐸𝐹+(−𝐼)

𝑘𝐵𝑇
) .                                                                  (xx).   

Where, 𝑁 is a function of 𝑇 as 𝑁(𝑇) = − (
𝜕Ω

𝜕𝜇
)

𝑉,𝑇
and Ω(𝑉, 𝑇, 𝜇) is the grand canonical potential and 

defined as Ω = −𝑔𝐹
𝑑Λk𝑘𝐵𝑇 ∫ ln[1 + 𝑒𝛽(𝜇−𝜀(𝑝))] 𝑑𝑑𝑝,    where  𝛽 = (

1

𝑘𝐵𝑇
)  is Boltzmann’s 

coefficient. As moving towards the upper atmospheric zones of high temperature and relatively low 
density range, and taking the classical limit of M-B distribution in equation (xv) and ; putting 𝐸𝐹 →

0 and 𝐸 ≡ −𝐼 in H partition function and taking  𝜒 =
𝑛𝑒

𝑛
 , we obtain the stellar atmospheric thermal 

ionization version of Saha’s equation(which in details is given in Saha’s 1920 paper)                    

𝜒2

  1−2𝜒
=

1

𝑛
(

2𝜋𝑚𝑒

ℎ2 )

3

2
exp (−

𝐼

𝑘𝐵𝑇
) .                                                                                   (xxi)                                                                                   

Result and Discussion:                                                                                                                                     
From equation (xx), we have derived the expression for thermal ionization for a main-sequence 
stellar core considering it as an ideal and weakly degenerate 3-D Fermi gas which is mathematically 
similar to that of the Saha’s equation (xxi). Comparing equations (xx) and (xxi), we find a difference 
due the fact that in the Fermi version the ionization factor is exponentially proportional to the zero 
(ground)-level Fermi energy which in contrast for Saha’s equation is proportional to the zero-level 
Bohr energy for the classical Maxwellian gas. We also find that ionization energy for the F-D 
distribution is more energetic (and vice-versa) as compared to the semi-classical ionization 
formulation. However, limitations arise when we compare a complex stellar core with a 3-D ideal 
Fermi gas, neglecting all other phenomenon like such as plasma collisions, magnetohydrodynamic 



(MHD) turbulence and relativistic motion of ionized particles.  As argued by Adams et al.(2004), 
pressure ionization due to relativistic electron degeneracy can safely be ignored in the above 
presented discussion because in the core of a main-sequence star, the hydrogen and helium is fully 
ionized (thermally) and is weakly degenerate, however they are more prominent in giant-stars of 
0.4-1.5 times the Solar mass, where the helium core becomes degenerate before it is hot enough for 
helium to start fusion and also in collapsed core like that of a white dwarf. This is a theoretical model 
which proceeded by considering simple assumptions regarding the quantum-statistical behaviour of 
a stellar core ionization but it provides a first-step towards the modification of actual stellar-core 
thermal ionization behaviour for a main-sequence star 

Conclusion:                                                                                                                                                             
In conclusion, we summarize the fact that considering a stellar core as weakly degenerate 3-D fermi 
(ideal and homogenous) gas, we have devised a theoretical model where we find that the degree of 
ionization at the star’s core depends on the net volume associated with the fermi gas and energy 
associated with such an ionization process is exponentially proportional to the Fermi energy for the 
constituent particles. In future, we consider to conduct a research paper considering the relativistic 
ionization and thermal conduction properties along with MHD in interior of main-sequence stars on 
the basis of 3-dimensional Fermi gas model.                                                                                                             
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