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Abstract

This paper is a revision and consolidation of two different but related
methods to prove that there are infinitely many twin primes. The proofs
are presented in the opposite order in which they were developed, largely
due to the fact that a statement used at the end of the original proof,
requiring its own proof, inspired and lead to the second method. The
original technique uses surfaces, parabolas, and a number of lines. The
2nd proof, presented 1st, is actually the more direct and formal method.
It primarily uses 2 surfaces, and also includes the extra steps needed to
prove an analogous statement to one that was treated trivially in the
first. Together these proofs compliment each other, and contain my body
of work on the subject in a single resource.
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1 Introduction

Over the last decade I explored finding a proof for the twin prime conjecture.
During that time I developed 2 related but different approaches. One is based on
dragging lines across hyperbolas and parabolas, and how that relates to certain
surfaces. This approach is adequate, though in its final steps, it relies on a
statement that the range of 2 surfaces is not a basis for all but a finite amount
of odd numbers. While for some it may seem readily apparent from the surfaces
that the statement is true, a complete proof requires something more rigorous,
and so I sought to explicitly prove that same statement about the surfaces in
question. This led to the other, more recent proof. It forgoes the parabolas and
lines, working solely with 2 surfaces related to but different than those in the
first proof, and it explicitly proves that the range of those surfaces is not a basis
for the natural numbers.

When I wrote the original proof, I was still learning Latex, and instead
wrote it using MS Word and the math software that I had on hand. Later,
as I improved it, I wrote a small revision in an attempt to explain it more
clearly. However, these were not well composed, at least to the standards of
Latex formatting, and to what many people commonly expect from a proof. A
few years later, when I wrote the 2nd proof, I was much more familiar with
proofs in general and the mark up formatting. Eventually, I also wrote a tiny
update to the 2nd proof, trying to add even more explanation.

At this point, I feel the original version and its update are inaccessible to
most readers due to their format and informal style, and that since they do
still offer something to the topic, that they would benefit from being more
properly updated into Latex with complete explanations. I also feel that all
the information from both proofs would be better served together in a single
paper. As such, this paper serves as a revision and consolidation of my methods
for proving infinite twin primes. If you happen to find an error or issue with
either method, please consider the other separately, as though one did inspire
the other, they are related but different techniques. And again, if you do find
any errors, or have any questions, please contact me.
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2 Proof 1 - Infinite Twin Primes from the
Rows of Twin Surfaces

This part of the paper starts as it did when it was written as a standalone
version, with a brief statement of the problem and its approach to the proof.

The Twin Prime Conjecture is the well known topic within the field of math-
ematics regarding whether or not there are an infinite number of prime numbers
separated by a difference of 2. This proof uses a strategy that is most generally
split into 2 halves. First, 2 surfaces are determined such that choosing any nat-
ural number which is not found on either surface generates a Twin Prime Pair.
Then, the proof shows that there are infinite such natural number generators.

2.1 Infinite Twins from 2 Surfaces

Begin with the given that all primes except the number 2 are odd. This means
that all primes, other than the number 2, can be expressed in the form of 2n+1
for some natural number n. Next, use the fact that all odd numbers except 1
are either prime or an odd composite. This means that all odd numbers greater
than 1, which are not odd composites, are prime. Thirdly, use the fact that
all odd composites are the product of 2 odd numbers greater than 1. These 3
givens are expressed as equation 1, which is interpreted as stating that primes
are all odds greater than 1 that are not odd composites, for positive natural
number inputs n,a, and b.

primes = 2n + 1 6= (2a + 1) (2b + 1) a, b, n = N (1)

Since twin primes have a difference of 2, if 2n + 1 is the smaller prime of a
pair, then 2n + 3 is the larger. Using the same logic as equation 1 means that
2n + 3 must also not be an odd composite. This is stated in equation 2 for
positive natural inputs n, c, and d.

upper twin = 2n + 3 6= (2c + 1) (2d + 1) c, d, n = N (2)

Simplifying equations 1 and 2 gives equations 3 and 4 respectively.

n 6= 2ab + a + b (3)

n 6= 2cd + c + d− 1 (4)

Equations 3 and 4 represent basic surfaces in 3 coordinates, or rather ”anti-
surfaces” due to the does not equal sign, stating what the values can not be.
Moreover, the second surface, eq.4, graphically represents the same surface as
the first, eq.3, only slid down by a value of 1. Figures 1 and 2 show truncated
tables of the positive values of the surfaces, beginning outside the origin for
natural inputs ≥ 1.
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Figure 1: 2ab+a+b

Figure 2: 2cd+c+d-1

What these 2 surfaces dictate is the following. Surface 1, eq.3, restricted to
the natural domain, is all n such that 2n+1 will be an odd composite. Therefore,
choosing any natural value for n that is not on that surface, i.e. values not from
the table represented by figure 1, will make 2n+ 1 a prime number. In fact, the
natural numbers n that are not from the natural range of surface 1, generate all
the primes except the number 2, without exception, and when ordered, generate
them in order.

Similarly, surface 2 is all n such that 2n + 3 will be an odd composite. So,
choosing a natural value n that is not found on either surface, ensures that
both 2n + 1 and 2n + 3 are prime, and it generates a Twin Pair. In fact, like
surface 1 does alone for the primes, choosing numbers not on either, generates
all Twin Pairs without exception, and when ordered, generates them in order.
Since choosing a natural value n that is on neither surface will always generate a
unique Twin Pair, showing that there are infinite such generating values proves
the Twin Prime Conjecture.

At this point, it may intuitively seem that there are an infinite number
of Twin Primes, since one can always find another value not on either surface,
2ab+a+b or 2ab+a+b−1, and this makes sense. As a quick initial verification,
try the first few values. The first value not on either chart is the number 1.
Applying 2n + 1 gives 3, corresponding to 3 and 5, the first Twin Pair. The
next missing value is 2. This time 2n+1 gives 5, corresponding to 5 and 7. Let’s
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do 2 more. Next is n = 5, since 3 and 4 do appear, and 2(5) + 1 is 11 for 11 and
13. The last example is the next missing number n = 8, giving 2n + 1 = 17 for
the pair 17 and 19. Remember, these charts are only portions of the full surfaces
which extend infinitely, so you’ll have to consult expanded versions when using
them to confirm values beyond 45 in the first row.

To reiterate, in order to prove the Twin Prime conjecture, it must be shown
that there is an infinite number of natural numbers not in the range of either
surface when their domains are natural numbers. In concept it’s straightforward,
but for me, this is easier said than done. Over time, I have found a few similar
strategies to do so, some better in ways, or easier to explain than others, and it
is here that I describe what is currently the easiest of those for me to explain.
I suspect that others know, or can devise, more direct methods to show it than
compared to the technique that I offer below.

2.2 The Values Within or Outside the Range of the
Surfaces

The general method that shows that there are infinite numbers outside both
ranges takes the following path. Treat one variable as constant, in order to
decompose the surfaces into an infinite number of lines, and thus assign each
line to a row as shown in the tables. Show that there are infinite numbers
outside the range of each specific row/line. Next, show that there are infinite
numbers outside the range of any 2 adjacent rows. Finally, show that there are
infinite numbers outside the range of any number of consecutive rows, and thus
not on the surfaces.

Examine the form of the values generated in each row on both tables. These
are the result of choosing a row number and setting one variable for the input
of the surfaces to that value using equations 3 and 4. Notice that the surfaces
are symmetric from the variable’s standpoints, that is diagonalized, and so it
doesn’t matter which variable you use for this purpose. In this case, a and c
were chosen as rows, and b and d for columns. The values can be written as
1 line per row per table, such that an infinite family of lines represent all the
values on either surface.

Since the values on the 2nd surface are simply 1 less than those on the
first, the y intercepts are one less for the corresponding lines. Look at the
values in rows one, where a and c are held constant and set equal to 1. That
is, 2(1)b+1+b and 2(1)d+1+d−1. The surfaces simplify into the following lines.

All values appearing in row 1 of either surface.

3x + 1 and 3x + 0 x = N (5)

This can be repeated for any row, and gives the following pattern. The next
3 rows are shown as a reference.

All values appearing in row 2 of either surface.
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5x + 2 and 5x + 1 (6)

All values appearing in row 3 of either surface.

7x + 3 and 7x + 2 (7)

All values appearing in row 4 of either surface.

9x + 4 and 9x + 3 (8)

Notice that the slopes are the set of odd numbers, that the y intercepts differ
by 1 between surfaces per a given row, and that they also increase by 1 down
the rows.

Now take a look at the form of the values NOT generated in the rows by
the surfaces; that is, outside the range of the surfaces. There are an increasing
odd amount of lines and values per row, determined by the row number, which
represent all the values not appearing in that row on either surface.

All values not appearing in row 1 of either surface.

3x + 2 (9)

All values not appearing in row 2 of either surface.

5x + 3, 5x + 4, 5x + 5 (10)

All values not appearing in row 3 of either surface.

7x + 4, 7x + 5, 7x + 6, 7x + 7, 7x + 8 (11)

Notice that the slopes are again the set of odd numbers, that the y intercepts
span a consecutive range per row between surfaces, and that they increase by 1
for the elements of that range down the rows.

In order for an integer n to not be in the range of either surface, it must
not appear in any row on either table for the surfaces. Equations 9, 10, and 11
show the general pattern for all values not in any specific row. The next step is
to use that pattern to find values that do not occur in any and all rows. Also
note, that due to the modular nature of the lines, y intercepts greater than or
equal to the slope create congruent sets of values with another line and set of
values that could be associated with that row. For example, 7x + 8 from eq.11,
generates the same range of values as 7x+1, except for the first value of course.

2.2.1 Values not Occurring on any Row or Rows

To find at least one set of values not in any row on either surface, and thus not
on either surface, begin by noticing for rows 1, that all the values greater than
the first elements of those rows, which do not appear in either row, are all the
natural values of the line 3x + 2, eq.9. That is, that the infinite set 3x + 2 =
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{5,8,11,14,17,20,...}, and so on, are not on either row 1. Put that aside for the
moment and look now at the 2nd row.

Using eq.6, 5x + 1 and 5x + 2 are excluded, because they produce values
on the 2nd rows. However, eq.10 shows that there are 3 sets of values that are
never on rows 2. The first set is 5x + 3. Repeating this for rows 3, for the first
set of values never on the rows, yields 7x + 4, for rows 4, it yields 9x + 5, for
rows 5, 11x + 6, and so on.

This means that numbers in the intersection of the sets 3x + 2 and 5x + 3
are not on the first 2 rows of either surface. Numbers from that intersection
that are also in the set 7x + 4 are then not on the first 3 rows. Continuing the
process means that finding an infinite number of values in the intersection of
the sets of all those lines shows that there is an infinite number of values not on
any row, and therefore, not on either surface.

2.3 Infinite Values not Within the Range

Going forward, it is very handy when explaining, to have a table of the values
generated by these lines, in order to help visualize the relations between each
row or to check some values. The general formula of the family of lines that
were chosen for each row r, showing values on neither surface for that row, is
equation 12.

(2r + 1)x + r + 1 (12)

In Figure 3, values that would continue to the right have been broken into
2 more groups and moved below so that more values could be shown. The lines
for the rows are labeled on the left column.

Figure 3: (2r+1)x+r+1
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2.3.1 Infinite Values in the Intersection of Adjacent Rows

When comparing 2 rows, the full intersection of the sets is of interest, requiring
each line to get its own variable. For the first 2 rows, the relationship is equation
13.

3x + 2 = 5y + 3 (13)

This has the integer solutions in eq.14 for an integer s.

x = 5s + 2 y = 3s + 1 (14)

The integer solutions and adjacent row relation are used to calculate the
positions and values of the intersection between those rows. Starting with s = 0
in eq.14, and using the resulting values in eq.13, shows that the first element of
row 2, 8 in this case, will map to the 2nd element of row one, again 8, and that
every 3rd element thereafter on row 2, will map to every 5th element thereafter
on row 1. Checking the s = 1 case gives y = 4 and x = 7, and we indeed see
the 4th element on row 2, value 23, mapping to the 7th element of row 1. The
next shared value in this instance would be s = 2 with row 2 element 7 value
38, and row 1 element 12 value 38.

This establishes an infinite number of values in the intersection of these 2
rows, 1 for each s, and therefore shows an infinite number of values not within
the first rows of the 2 surfaces. Using the general formula for rows from eq.12
allows for the solution between any 2 adjacent rows. Using rows r and r + 1, in
the same way as was done in eq.13 for rows 1 and 2, gives eq.15.

(2r + 1)x + r + 1 = (2(r + 1) + 1)y + (r + 1) + 1 (15)

This has the integer solutions in eq.16 for a row r and an integer s.

x = (2r + 3)s + r + 1 y = (2r + 1)s + r (16)

This verifies that there is an infinite number of solutions in the intersection
of any two adjacent rows, and therefore an infinite number of values not on
those rows of the 2 surfaces.

2.3.2 Specific Shared Values For the First 3 Rows

The goal is to show an intersection common to all rows. To do this, it helps
to show the common values through the first 3 rows. When the term position
is used going forward, it generally refers to the ordinal value or location of a
member within a set, not the actual value of that element. This can also be
thought of as the column value in Figure 3, though not to confuse things, rather
what would be those column’s proper values were they not all offset by 1 to the
right due to the labels in column A as pictured.

It has already been shown that all values from the first row, 3x + 2, are not
on the first rows of the surfaces. It was also shown that an infinite number of
elements will map between any row r and row r+ 1. The question is now which
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specific elements map between rows? Start by examining the second row, 5x+3.
Eq.14 showed that the elements that map from 5x + 3 in the second row, into
the first row, are in the 3s+1 positions of the second row. That is, the positions
{1,4,7,10,...} of row 2 that correspond to the values {8,23,38,53,...}.

Now repeat the question, this time asking not only which values will map
from row 3 to row 2, but which values will map from row 3 to the specific values
in row 2 that were mentioned, and thus allow them to intersect with row 1 also?
Using eq.16 with r = 2 gives the location of the overall elements that map from
row 3 to row 2 as the elements in the y = 5s + 2 positions of the 3rd row. It
also shows that they map to x = 7s + 3 positions in the 2nd row. Since it was
shown that all 3s+ 1 locations in the 2nd row map to the first, this means that
whenever 3x+ 1 = 7y + 3, eq.17, an element in a 5s+ 2 position of row 3 maps
to a position in row 2 that will then go on to map to row 1.

3x + 1 = 7y + 3 (17)

This has the integer solutions in eq.18 for an integer s.

x = 7s + 3 y = 3s + 1 (18)

Since there are integer solutions of x = 7s + 3 and y = 3s + 1, it also means
that there is an infinite number of such elements. However, because of the
3x + 1 = 7y + 3 requirement, it must now be noted that though an infinite
number do map through, not all of the elements in 5s + 2 positions on the 3rd
row will map to a location on the 2nd row that continues on to row 1.

As an example, the first integer solution for y is y = 3s + 1 with s = 0,
giving y = 1. Since the 5s+ 2 positions on the 3rd row map to the 7s+ 3 spots
on the 2nd, it means that the 5(1) + 2 = 7th element on row 3 maps to the
7(1) + 3 = 10th element on row 2. When checked, the value 53 maps between
those locations, and also continues on and is found in the first row. The next
solution, with s = 1, gives y = 4. This translates to the 5(4)+2 = 22nd element
on row 3 mapping to the 7(4) + 3 = 31st element on the 2nd row. Again, when
checked, the value 158 maps between those locations, and also continues on and
is found in the first row.

2.3.3 Intersections Across Subsequent Rows

In order to proceed to the 4th and subsequent rows, the question must first be
answered of which specific subset of elements from the 5s + 2 positions in the
3rd row map to the proper positions in the 2nd row. Also note that the s = 0
position actually represents the first member of a set, s = 1 the second, and so
on, and as such, that the ordinal location value of an element within a set is 1
greater than that integer s when spoken of in terms of being the first, second,
or ”xth” element of that set. As shown in the above example, the first value
on row 3 that meets all the requirements is 53. Inserting the 5s + 2 positions
mapping from row 3 to row 2 into its row value of 7x + 4 for x, gives 35s + 18.
Set it equal to the first intersection of all 3 rows, 53, eq.19.
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7(5s + 2) + 4 = 35s + 18 = 53 (19)

Solving for s gives s = 1, which corresponds to the 2nd member of the 5s+2
subset, which remember, are the positions of values that map from row 3 to row
2. Repeating the process for the next value of 158, gives s = 4, corresponding
to the 5th member of that subset. Solving for all values that map back to row
1 gives s = 3t+ 1 for a generic integer t, which again could also be spoken of as
being the 3x+2 member of the 5s+ 2 subset for an integer x. That is, in terms
of the members, that the 3x + 2 positions of the 5s + 2 locations in row 3, are
those that continue to row 2 in positions that will then continue on to row 1.
To help avoid confusion, and to make it more explicit, the 5s + 2 locations are
columns {2,7,12,17,22,27,32,37,42,...}, and the 3x + 2 elements {2,5,8,11,...}, of
those locations, are then the corresponding columns {7,22,37,...}.

This can now be put in terms of the row 3, 7x + 4 set directly, and can
answer the question at the beginning of this section. Inserting the 3s+1 integer
relation that selects continuing 5s + 2 positions into 5s + 2, which remember
represents all positions that map from row 3 to 2 in general, now puts directly
in terms of the 7x + 4 set, only those locations which also map to row 1. This
is equation 20.

5(3s + 1) + 2 = 15s + 7 (20)

This states that the 15s + 7 elements of the 7x + 4 set are those that map
through row 2 to row 1; that is, row 3, columns {7,22,37,52,...}. Now that it is
known which values on row 3 intersect with both rows 1 and 2, the process can
be repeated asking which values on row 4 will map to those specific locations
on row 3.

Row 4 Using r = 3 in eq.16 gives the location of the overall elements that
map from row 4 to row 3 as the elements in the y = 7s + 3 positions of the 4th
row. It also shows that they map to the x = 9s + 4 positions in the 3rd row.
This means that wherever 9x + 4 = 15y + 7, an element in a 7s + 3 position of
row 4 maps to a position in row 3 that will then go on to map through to row
1 and intersect all 4 rows.

9x + 4 = 15y + 7 (21)

This has the integer solutions in eq.22 for an integer s.

x = 5s + 2 y = 3s + 1 (22)

Like before, the question is which specific subset of elements from the 7s+ 3
positions of the 4th row map to the proper positions in the 3rd row. For s = 0
in eq.22 gives y = 1, and then 15y + 7 = 22. The 22nd value of row 3, and the
first value to intersect all 4 rows, is 158. Insert the 7s + 3 position value that
maps from row 4 to row 3 into its row 4 element value of 9x + 5 for x, and set
it equal to 158, eq.23.
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9(7s + 3) + 5 = 63s + 32 = 158 (23)

Solving for s in eq.23 gives s = 2, which corresponds to the 3rd member of
the 7s+ 3 subset. Repeating the process for s = 1 in eq.22 gives the next value
of 473, and gives s = 7 when it’s used in eq.23, corresponding to the 8th member
of that subset. Solving for all values gives the relation s = 5t + 2, for a generic
integer t, which again could also be spoken of as being the 5x + 3 member of
the set for an integer x.

This can now be put in terms of the row 4, 9x+ 5 set directly. Inserting the
5s + 2 integer relation that selects continuing 7s + 3 positions into 7s + 3, now
puts directly in terms of the 9x + 5 set, only those locations which also map to
row 1. This is equation 24.

7(5s + 2) + 3 = 35s + 17 (24)

This states that the 35s+17 elements of the 9x+5 set are those that intersect
the first 4 rows. By now, you may begin to see the pattern, and/or, it begins
to emerge. Continue the technique for the transition from row 5 to row 4.

Row 5 Using r = 4 in eq.16 gives the location of the overall elements that
map from row 5 to row 4 as the elements in the y = 9s + 4 positions of the 5th
row. It also shows that they map to the x = 11s + 5 positions in the 4th row.
This means that whenever 11x + 5 = 35y + 17, an element in a 9s + 4 position
of row 5 maps to a position in row 4 that will then go on to map through to
row 1 and intersect all 5 rows.

11x + 5 = 35y + 17 (25)

This has the integer solutions in eq.26 for an integer s.

x = 35s + 17 y = 11s + 5 (26)

As previously, the question is which specific subset of elements from the
9s+ 4 positions of the 5th row map to the proper locations in the 4th row. For
s = 0 in eq.26 gives y = 5, and then 35y + 7 = 192. The 192nd value of row 4,
and the first value to intersect 5 rows, is 1733. Insert the 9s + 4 position value
that maps from row 5 to row 4 into its row 5 element value of 11x + 6 for x,
and set it equal to 1733, eq.27.

11(9s + 4) + 6 = 99s + 50 = 1733 (27)

Solving for s in eq.27 gives s = 17, which corresponds to the 18th member
of the 9s + 4 subset. Repeating the process for s = 1 in eq.26 gives the next
value of 5198, and gives s = 52 when it’s used in eq.27, corresponding to the
53rd member of that subset. Solving for all values gives the relation 35t + 17,
for a generic integer t, which again could also be spoken of as being the 35x+18
member of the set for an integer x.
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This can now be put in terms of the row 5, 11x + 6 set directly. Inserting
the 35s+ 17 integer relation that selects continuing 9s+ 4 positions into 9s+ 4,
now puts directly in terms of the 11x + 6 set, only those locations which also
map to row 1. This is equation 28.

9(35s + 17) + 4 = 315s + 157 (28)

This states that the 315s + 157 elements of the 11x + 6 set are those that
intersect the first 5 rows.

Row 6 At this point, the technique for finding the next set of values is estab-
lished, and a general formula can be described. When doing so, it is also helpful
to have the information from row 6, and rather than walk through the procedure
again, the associated equations for row 6 are simply provided as follows.

13x + 6 = 315y + 157 (29)

x = 315s + 157 y = 13s + 6 (30)

13(11s + 5) + 7 = 22523 (31)

11(315s + 157) + 5 = 3465s + 1732 (32)

2.3.4 The General Formula for All Rows

To generate the formula for all rows, examine equations 17, 21, 25, and 29.
For ease, these are relisted as eq.33, which also includes the next corresponding
relation from row 7.

Row 3 3x + 1 = 7y + 3

Row 4 9x + 4 = 15y + 7

Row 5 11x + 5 = 35y + 17

Row 6 13x + 6 = 315y + 157

Row 7 15x + 7 = 3465y + 1732

(33)

Now ask, from where do the values in these equations emerge, and what is
being compared between the left and right side of the equations? The process
began with all values of 3x+2 on the first row not being on the first rows of the
surfaces. From there, it was determined that the 3x + 1 values on row 2 were
the ones that intersected the first row. Using r = 2 with x in eq.16 showed the
members mapping in from row 3 to row 2 into the 7x+3 positions. In eq.17, the
set was arbitrarily assigned by me into the right side of the relation as 7y + 3
as to set the precedent going forward of the lesser valued parameters on the left
when comparing sets. These are the sets represented and compared in Row 3
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of eq.33, and they went on to generate the 15y + 7 set, using equations 17-20,
as seen in the right side of Row 4 of eq.33.

From that point forward, the left equations of the comparisons are from
eq.16 for x with r = R − 1. That is, the left side of the Row 4 comparison in
eq.33 uses the r = 3 value with x in eq.16, the Row 5 uses r = 4, and so on.

As for the right sides of the comparisons, the Row 4 sets went on to generate
the 35y + 17 set, using equations 21-24, as seen in Row 5 of eq.33. From that
point forward, the right equations are generated using the right set from the
previous row as the input for the sets from eq.16, but this time for y and with
r = R−2. That is, the right side of the Row 6 comparison in eq.33 is generated
by inserting the right side of Row 5 into the y value in eq.16 with r = 4, the right
side of the Row 7 comparison in eq.33 is generated by inserting the right side of
Row 6 into the y value in eq.16 with r = 5, and so on. Because of the r to r+ 1
relation in eq.16, this turns out to be the same as inserting a given Right side
set into the previous Left side for x. For example, 9(35y+ 17) + 4 = 315y+ 157,
and 11(315y + 157) + 5 = 3465y + 1732.

The Left side sets for comparison in row R, from Row 4 onward, are simply
(2R + 1)x + R. For the Right side sets and Row 5 onward, the slopes m of the
sets are the products of the first R− 3 consecutive odd numbers beginning with
the odd number 5, and the y intercepts are (m − 1)/2. That is, the slope for
Row 5 is 5x7, for Row 6 it’s 5x7x9, for Row 7 it’s 5x7x9x11, and so on, and the
intercepts are half of 1 less than those slopes.

The left set for row R≥ 4.

(2R + 1)x + R (34)

The right set for row R≥ 5.(
R−2∏
k=2

(2k + 1)

)
y +

(∏R−2
k=2 (2k + 1)

)
− 1

2
(35)

The product can also be expressed as:

(2R− 3)!

3 ∗ 2R−2 ∗ (R− 2)!
(36)

Setting eq.34 equal to eq.35 has the following integer solutions in eq.37 for
Row R and an integer s.

x =

(
R−2∏
k=2

(2k + 1)

)
s +

(∏R−2
k=2 (2k + 1)

)
− 1

2
y = (2R + 1)s + R (37)

Equation 38 is eq.37 in terms of the factorial expression.
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x =

(
(2R− 3)!

3 ∗ 2R−2 ∗ (R− 2)!

)
s +

(
(2R−3)!

3∗2R−2∗(R−2)!

)
− 1

2
y = (2R + 1)s + R (38)

This shows that there is an infinite number of natural number solutions in
the intersection of any and all rows R. Note that it does not give the specific
elements in that set, but simply proves the existence of the set. It shows that
there is no row that exists such that an infinite subset can not be mapped
from the first row, through the intersection of all subsequent rows, to that row.
Because these are numbers that are not in the range of either surface, there
is an infinite amount of natural numbers not in the range of those surfaces.
Therefore, since all numbers not in the range of those surfaces generate unique
Twin Pairs, there is an infinite number of Twin Prime Pairs.

Some Notes About the Integer Solutions Some notes should be included
about the nature of the integer solutions. The first note involves the behaviors
of eq.35 and eq.37/38. Eq.37/38 gives an infinite set of integer solutions based
on the integer s, which is enough for generating infinite sets for a given Row,
however, in cases where the slopes in comparison between x and y have a com-
mon divisor, it does not give all integer solutions. This happens every 3rd row.
The full integer solutions for those Rows simplify to have smaller slopes, and
thus generate even more members to the sets, however, adjusting to include all
of those complicates eq.35, and it is not necessary, since it’s still using every
3rd solution from those infinite sets for those rows as stated; which is of course
still an infinite subset. It actually means that there are even more elements in
the infinite intersection than the ones shown by eq.37/38. This is similar to the
second note.

Remember that this entire process was done using only the first set of values
that were not in each row. Recall from equations 10 and 11 how each row has
an increasing number of sets not in that row. While the first row must use
3x + 2, there are an infinite number of other combinations with different sets
from other rows that generate their own infinite intersections.

Lastly, using a given row R for eq.37/38, and then generating integer solu-
tions with integers s for all rows ≤ R, does significantly increase the chance that
the corresponding n will be a Twin Pair generator, but does not guarantee it.
However, because the set is diagonalized, for any n that is generated for a given
R, it is never needed to check for values past row x, where x is the ceiling to
the solution for x of 2x2 + 2x + 1 = n, the equation for the diagonal.

2.4 Conclusion

In summary, the proof used the fact that all Prime numbers greater than 2 are
odd numbers that are not odd composites. It generated 2 surfaces from that
requirement, one for each member of a Twin Pair, and showed that numbers
not in the range of either surface always generate unique Twin Pairs. It then
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showed that there is an infinite number of elements in the set outside of that
range, and therefore that there are infinite Twin Prime pairs.

I hope you enjoyed the proof. If you know or find a more concise method to
show an infinite number of natural elements not on the surfaces, or would like
to discuss the proof in some other manner, such as improvements, corrections,
or errors, I am interested to know.

Q.E.D.

3 Proof 2 - Infinite Twin Primes from
Surfaces, Lines, and Parabolas

This proof begins with 2 basic surfaces of z(x,y) above the first quadrant. Nat-
ural values of z are looked at in terms of y, using the x-y plane, by ”scanning”
those values with lines using a given range of y-intercept. The intersection of
the lines with the value functions leads to a map through various equations to
2 additional surfaces, which are used along with some parabolas to show the
existence of infinite twins.

3.1 Defining and Analyzing the Initial Surface

Begin with the first quadrant of the surface z = xy, and require x, y, and z to
be natural numbers. Along the slices x = 1 and y = 1, the range of the surface
gives the counting numbers, and over the rest of the field, where x ≥ 2 and
y ≥ 2, it returns all the composites.

z = xy x, y, z = N (1)

Therefore, if a specific value for z has a natural solution within that field,
apart from the first row and column, it is composite, and likewise, if it has no
natural solution, it is prime. Going forward, when the field of z is mentioned, it
is assumed to refer to the composite portion outside of the first row and column
as needed, unless otherwise noted. Analyze this surface by treating each height
z as a value to be checked, and then solving for y. This yields equation 2.

y =
z

x
(2)

Next, a line y = −x + b is ”scanned” and moved across equation 2 for any
given value of z by incrementing the natural y-intercept b with 4 ≤ b ≤ z

2 + 2.

y = −x + b for 4 ≤ b ≤ z

2
+ 2 b = N (3)

The lower limit on b ensures that the (1,1) answer is ignored, and more
specifically comes from the intersection of the line with the first composite in
the field, namely the number z = 4. The lower limit can and will be refined
further later. The upper limit comes from there being no factors greater than
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1/2 of a number, other than the number, and making b greater than that would
lead to natural solutions on the first row and column which are supposed to be
ignored. This is shown in the picture for z = 4.

Figure 4: Scan reaching a curve with a natural solution

Set equations 2 and 3 equal and solve for x. If there are natural solutions for
x within b’s domain, then z is composite, and if there are no natural solutions,
then it is prime. Equations 4 to 6 show the solutions using the quadratic formula.

z

x
= −x + b (4)

x2 − bx + z = 0 (5)

x =
b±
√
b2 − 4z

2
(6)

As another example, z = 7 is shown along with the lines within the domain of
b. Notice that the lines do not intersect the curve at any of the natural number
grid intersections, and that the curve only crosses the major grid at (1,7) and
(7,1).
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Figure 5: A prime showing no natural solutions

Lastly, z = 12 is shown, displaying multiple solutions on multiple lines,
namely at x equals 2, 3, 4, and 6.

Figure 6: A curve with multiple natural solutions

3.2 The Twin Surface

Next allow z − 2 = xy to represent a 2nd surface that will check values 2 less
than a given number z, in this case looking for the smaller prime of a twin pair.
Graphically, this is the first surface slid up the z-axis by 2. Solving for x by
repeating the process in the previous section is shown in equations 7 to 11.

z − 2 = xy (7)

y =
z − 2

x
(8)
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z − 2

x
= −x + b (9)

x2 − bx + z − 2 = 0 (10)

x =
b±
√
b2 − 4z + 8

2
(11)

The example below shows the curves for both surfaces, and is checking the
pair (z,z-2) = (14,12).

Figure 7: A pair of curves with solutions

For both surfaces, and according to equations 6 and 11, since the values are
natural, x can only be natural, and therefore make z composite, when the square
roots evaluate to a whole number. Just as the original curve, equation 2, was
scanned with a line to look for natural solutions, the current square roots can
be scanned with a new line. Before scanning, also note that since z is all natural
numbers, and 4z is just a subset of those, that if the root does not evaluate to
a whole number for all z, that it will certainly not evaluate to a whole number
for any 4z. This allows a substitution. Let 4z = s. Then from eq.6, and a line
in variable b with y-intercept c, write equation 12.√

b2 − s 6= −b + c c = N (12)

Solving for s for disallowed values yields:

s = −c2 + 2bc (13)

This is just another surface in s(b,c), which has translated a requirement of
the surface, y-value curve, and line intersection to this new surface, however, the
letters being used as variables at this point are not following a traditional z(x,y)
convention. For familiarity, personal preference, and rather than talk about b-c
space, I rewrite the current surface in terms of the familiar x and y, where b
becomes x, and c becomes y. This is simply a syntactical rewrite of eq.13.

s = −y2 + 2xy (14)
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Repeating steps 12-14 for the root of the Twin Prime surface, eq. 11, gives
equation 15:

s = −y2 + 2xy + 8 (15)

The question is now, ”what do these 2 new surfaces say about the original
values of z being checked?”

3.3 A Recap of the Method So Far

So far we started to develop a method to plug values into the range of the
field on the surface z = xy, using it to check whether those values are prime
or composite. Initially, the domain of x and y are restricted to 1 < x < z and
1 < y < z, otherwise products of 1 and the number contaminate the field. The
left boundary can be restricted further by noting that eq. 2 has x-y symmetry,
and that the first place the scanning line will touch the curve is along y =
x. Solving for x gives

√
z. It was also noted that since there are no factors

greater than half a number, when 1 and the number itself are ignored, that the
right restriction can be cut in half. This gives,

√
z ≤ x, y ≤ z/2, and for the

2nd surface,
√
z − 2 ≤ x, y ≤ (z − 2)/2. For the scanning line, those domain

restrictions can be put in terms of the y-intercept, b, and this will be calculated
in the next section.

Next, the value checking equations were rearranged to determine the value
of x in terms of the value z being checked and the y-intercept, and it was noted
that when there is no natural x for all y-intercepts in the appropriate domain,
that the value being checked is prime. These were rearranged further, and a
second scanning line was introduced based on conditions on the square roots.
Finally, these were put in terms of conventional variables, x now representing
the 1st scanning line’s y-intercept, and y now representing the second scanning
line’s y-intercept. These were equations 14 and 15.

Equations 14 and 15 tell us that if s takes any natural value from these
surfaces within the appropriate domains of y-intercepts, that the square roots
will evaluate to whole numbers, leaving the original values with a chance to be
composites. Likewise, if s is a value that does not appear on the surfaces within
the appropriate domains, then the roots will not be whole numbers, and the
original value is prime. The Twin conjecture can now be restated as, ”are there
an infinite number of individual values that do not appear on the new surfaces,
thus making an infinite number of corresponding z and z-2 prime numbers?”

3.4 The Values of the Secondary Surfaces

In order to analyze the values that do not appear on the new surfaces, one
needs to understand the practical restrictions on x and y in eqs.14 and 15.
The current x, originally b, is the 1st scanning line’s y-intercept, and using the
domain restrictions put forth for that line in the recap section translates into a
domain of 2

√
z ≤ x ≤ (z + 4)/2 for eq.14. Note, remember that s = 4z. For
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the second surface, eq.15, it is 2
√
z − 2 ≤ x ≤ (z + 2)/2. To find the domain

for y, originally c, the 2nd line’s intercept, insert those extremes of the domain
for b, now x, into eq.12. This leads to 2

√
z ≤ y ≤ z for eq.14. Repeating the

process for the second surface, using its analog of eq.12, not shown, results in
2
√
z − 2 ≤ y ≤ (z − 2) for eq.15.
For the first translated surface, eq.14:

2
√
z ≤ x ≤ (z + 4)/2 AND 2

√
z ≤ y ≤ z (16)

For the second translated surface, eq.15:

2
√
z − 2 ≤ x ≤ (z + 2)/2 AND 2

√
z − 2 ≤ y ≤ (z − 2) (17)

For these surfaces, a table of values along with a few examples helps make
the technique clear and the needed information accessible. Charting the values
of equation 14, with columns x and rows y, shows the squares down the diagonal
when x = y. Equation 15, the lower table, has the same values plus 8.

Figure 8: Values of Equations 14 and 15 with columns x and rows y

3.4.1 5 Examples

Example 1: Use the top table to test if z = 4 is a prime number. Plug z
into eqs.16 and 17. According to the domains, 2

√
4 ≤ x ≤ (4 + 4)/2, and

2
√

4 ≤ y ≤ 4. This means looking at the table in column 4 and row 4 for the
value 4z, in this case 16. If the value appears then 4 is composite, if it does not,
than 4 is prime. Indeed, 16 shows up at that location indicating the number is
composite.

Example 2: Test if z = 11 is prime. According to the domains, 2
√

11 ≤ x ≤
(11 + 4)/2, and 2

√
11 ≤ y ≤ 11. Because we’re dealing in natural numbers,

this becomes 7 ≤ x ≤ 7, and 7 ≤ y ≤ 11. This means looking at the table in
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column 7, from rows 7 to 11, for the value 4z, in this case 44. In this example,
we need to check up to and including row 11, but the table is only shown to row
10, however, this is a good time to point out that the table is diagonalized, and
that the values of a given column below the diagonal simply mirror those above
it. One can see, either by looking at the mirrored values, or by expanding the
table, that the number 44 does not appear on those specific rows, and thus 11
is prime.

Example 3: Test if z = 12 is prime. According to the domains, 2
√

12 ≤ x ≤
(12 + 4)/2, and 2

√
12 ≤ y ≤ 12. Because we’re dealing in natural numbers, this

becomes 7 ≤ x ≤ 8, and 7 ≤ y ≤ 12. Checking those columns and rows for the
value 4z = 48, one sees the value appear both in col.7, row 8, and in col.8 row
12. Thus 12 is composite. Also note that each time a value appears in a given
range, that it represents a pair of factors of the number being tested. In this
case, the 48 in col.7 corresponds to the factors of 12 being (2,6), and the one in
col.8 to the factors (3,4).

Example 4: Test if z = 13 and z = 11 are a twin prime pair. Note that instead
of checking both numbers individually against the top surface, we instead check
the larger number against both surfaces. For the top table, the domains are,
2
√

13 ≤ x ≤ (13 + 4)/2, and 2
√

13 ≤ y ≤ 13. Because we’re dealing in natural
numbers, this becomes 8 ≤ x ≤ 8, and 8 ≤ y ≤ 13. For the bottom table, the
domains are, 2

√
13− 2 ≤ x ≤ (13 + 2)/2, and 2

√
13− 2 ≤ y ≤ (13 − 2). This

becomes 7 ≤ x ≤ 7, and 7 ≤ y ≤ 11. We are looking for the number 4z = 52.
Because the number 52 does not show up in the proper locations, 13 and 11 are
indeed a twin pair.

Example 5: Test if z = 17 and z = 15 are a twin prime pair. For the top
table, the domains are, 9 ≤ x ≤ 10, and 9 ≤ y ≤ 17. For the bottom table, the
domains are, 8 ≤ x ≤ 9, and 8 ≤ y ≤ 15. We are looking for the number 4z =
68. Notice that the number 68 does not show up on the top table, signifying
that 17 is prime, however it does appear within our range in col.8, row 10 of the
bottom table, signifying 15 is composite. Thus 17 and 15 do not make a pair.

Now we can return the focus to the question asked at the end of section
3.3 regarding if an infinite such number of locations can be found. The goal is
then to find values not appearing on either surface over appropriate domains of
columns and rows. If it is shown that there is always a new domain that includes
a new number that does not appear on either surface, then there are infinitely
many twin prime pairs. It may be considered preferred, more complete, or of
more interest, to scan a given domain collecting all the missing values, however,
only at least one regular missing value on neither surface per each new domain
is needed.

3.5 Finding Non-Occurring Values

So how does one go about finding values that do not appear on either chart for
a given domain of columns and rows? As it turns out, there is a sort of trick,
with a good bit of logic, and a location in the tables where such new values
repeatedly appear. First, notice that the minimum value for rows and columns,
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y and x, is the same per surface. That is, 2
√
z from eq.16, and 2

√
z − 2 from

eq.17. This corresponds to starting on the diagonal of the upper table. Next,
notice that the maximum value for the rows, y always becomes greater than for
the columns, x, namely z > (z+4)/2 for z > 4 from eq.16, and z−2 > (z+2)/2
for z > 6 from eq.17. This means that for z > 6 one will always check a number
of rows within any given range of columns greater than or equal to the number
of columns in that range. However, since the tables are diagonalized, and all
values below the diagonal in a column are also found above it, no matter how
many rows are called on to be checked, checking all the rows above the diagonal
in a column are the same as checking below it.

For small z, this may include values to be checked that one would normally
skip, and thus lead to missing certain primes, however this only makes the
criteria more stringent, and doesn’t matter anyways once the number of rows
being checked is greater than the greatest column number within a given domain.
Specifically, this is when z−2

√
z ≥ (z+4)/2, which is z ≥ 4(3+2

√
2), or rather

z ≥ 24 for natural numbers.
Now notice that the lower limit of the domain for the columns x of the 2nd

surface is slightly lower than that of the first, namely 2
√
z − 2 vs 2

√
z, whereas

the upper limit is slightly greater on the first, namely (z + 4)/2 vs (z + 2)/2.
This means that by using the lesser lower limit from the second surface, and
the larger upper limit from the first surface, that one is guaranteed to cover
the domain fielded by both surfaces. Once again, this may rule out primes and
twins that would otherwise be fine, when checking values that are found in the
beginning or ending columns of a range of columns, however this only narrows
and strengthens the criteria.

We’re almost ready to find a source of values that never appear, but a
bit more logic is needed first. Looking at the upper bound (z + 4)/2, which
determines the greatest column to be checked, shows that the column increases
by 1 each time z increases by 2. Increasing z by 1 each time looking for primes,
one may have to go through many numbers, and thus many columns, until they
find the next prime, however, we know as a given that there are an infinite
number of primes, so we know that eventually z will hit the next prime and
correspond to a number 4z that does not appear in the appropriate domain of
columns on the first surface. Since the 4z will not be in any of the corresponding
columns, it is known that this includes the rightmost column of the set.

Thinking about treating each column as the rightmost column of a set cor-
responding to some z to be checked, leads to the question, ”are there values
in a column that do not appear in any previous columns?” It turns out there
are, and this occurs among the ”trailing” values of the greatest column within
a given range, which are the values in that column greater than the value of the
previous column’s diagonal. That is, greater than the square of the previous
column number.

As an example, compare columns 7 and 8 on the first chart. The diagonal
square value in column 7 is 49, and all the other values in that column and
previous columns are less than 49. Column 8 has a square of 64. Therefore all
values greater than 49 and less than 64, which do not appear in the 8th column,
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are also guaranteed to not show up in any previous column. This concept can
also be applied to the 2nd surface by still using the diagonal, and by simply
adding 8 to all the square values since it is literally the first surface plus 8.
These are what were referred to as the ”trailing” values of a column.

Lastly, one can restrict the search to numbers not appearing within the range
of trailing values for the columns on the 2nd surface. That is for a given column
x, to the values between x2 and x2 + 8. They won’t appear on the first surface
since they are strictly larger than the values in that range, and they won’t show
up in previous columns of the 2nd surface due to the diagonalization and squares
as was just described. Technically, it should be noted this is not true for the
first 4 columns, after which it is always true. Restricting the search for values
that do not appear on either surface to this subset of values greatly increases the
chances of finding primes and twin pairs. However, now there is a new problem.
Sure it’s great to be able to only check among the trailing values of columns,
but as was mentioned, there is no guarantee that a given column corresponds
to a maximum domain of a prime. Another way to think about it, is that while
a number may not appear in the trailing range for a given column, that it may
end up appearing in a greater column, but lesser row, as the 4z check for some
other z.

A good example of this is column 9 and the value 84. Using the method,
in col.9, one is looking for values greater than 81 and less than 89 that are not
on chart 2. While 84 meets the criteria, it then appears later in col.10, row 6,
chart 1 as the check for z = 21.

Yet as also mentioned, it is known that eventually some larger column will
correspond to a greater prime, and that this happens infinitely often. It is in
those cases where we want to verify and sort out all of the values that now do
not correspond to primes. It turns out that this can be done using a parabola
and a few other filters.

3.6 Defining some Parabolas

At this point, a range of 8 values is being checked due to the x2, x2 + 8, and
the fact that the surfaces are 8 apart. Those values are checking each 4z. By
returning the surfaces to be directly in terms of z, that range of 8 shrinks to
only 2 values. Substitute back in for s in eqs.14 and 15.

z =
−y2 + 2xy

4
AND z =

−y2 + 2xy + 8

4
(18)

These 2 surfaces have a difference of 2, as they represent the original prime
and pair surfaces. When they evaluate to whole numbers, the difference of 2
lands on those whole numbers, and therefore contains only 1 whole number value
in between those 2 that does not show up on the surfaces in that range. When
the surfaces evaluate to mixed number fourths, the difference of 2 contains 2
whole number values in between those 2 that do not appear on the surfaces.
This is shown plotted with y along the horizontal axis.
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Figure 9: Whole number solutions with a single value in between at x=6

The value ranges being worked with were based on the diagonal squares when
x = y, so they are both either even or odd in this instance. From eq.18 one can
show that when the values are both even then the numerators are multiples of 4,
and thus the surfaces evaluate to whole numbers. The single value sandwiched
between them then alternates between even and odd. Whenever that number
is composite, it will appear in at least 1 later column and fail as a number not
on the surfaces. (This may not be immediately apparent as to why, and it is
discussed in a section at the end of the paper. Furthermore, even if it were not
the case, one could simply choose to only work with the mixed number fourth
values anyways, as is done in the next paragraph, since it doesn’t matter which
source gives the generating values so long as it gives an infinite number of them.)

This prompts us to restrict the search to only odd values of x, and more
specifically, the odd value contained between the surfaces when they take values
of mixed number fourths. This now narrows the search to only 1 recurring
location on both charts which will produce a value not on the surfaces for some
range of columns. This number is found by adding 3/4 to the surface with lower
values, or by subtracting 5/4 from the greater. This gives:

z =
−y2 + 2xy

4
+

3

4
(19)

Since the value is coming from the surface where y = x, this simplifies the
equation into the parabola for odd x. This is shown below as the new upward
parabola selects the odd value between mixed number fourths for an odd x.

z =
x2 + 3

4
x = odd (20)
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Figure 10: A missing number from both surfaces for a given range

Therefore for any odd x, x2+3
4 will create a value that is not on either surface

for some appropriate domain of parameters. Because there are infinite odd

numbers, the parabola x2+3
4 generates infinite such values. It’s important to

remember that there are many other locations among the surfaces where values
can be found that do not appear on either surface. It’s also important to
remember that not all the values from this location will work, since we have no
idea yet if we are stopping on a column that corresponds to a prime. All that
remains is to remove any composite values from this location, as well as any
non-twin primes, and to show that an infinite number of generators still remain.

3.7 Filtering the Generating Parabola

Being odd, these values contain only primes and some remaining odd composites
for odd x. The next step is to filter those composites by writing them as the
product of 2 odd numbers.

(2n + 1) (2m + 1) = 4nm + 2n + 2m + 1 m,n = N (21)

x2 + 3

4
6= 4nm + 2n + 2m + 1 (22)

Which leads to the condition that:

x 6=
√

16nm + 8n + 8m + 1 (23)

Removing those values as input for x leaves only primes as the output. The
final step is to filter the regular primes from the twins. If a prime is an upper
twin prime, then 2 less than it will also be prime, however if it is not a twin,
then 2 less than it will be an odd composite. That is:
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x2 + 3

4
− 2 6= 4pq + 2p + 2q + 1 p, q = N (24)

Which gives the condition that:

x 6=
√

16pq + 8p + 8q + 9 (25)

Therefore, when x takes an odd value for which there are no natural solu-

tions to equations 23 and 25, then x2+3
4 will generate a value that is prime,

and which does not appear on either surface. Because it does not appear on
either surface, both square roots will not be whole numbers, and the origi-
nal value being checked, and 2 less than it, will both be prime. Therefore,
since there are an infinite number of odd numbers with no natural solutions
to x =

√
16nm + 8n + 8m + 1 and x =

√
16nm + 8n + 8m + 9, then there are

infinite generating values that create twin prime pairs.
At this point the proof concluded in a bit of a hurry, and one might notice

or still be left wondering a few things about the last few sections. Primarily,
what happened to worrying about whether a specific column represented the
maximum range for a prime, how do we know the value generated won’t be on
either surface within a domain field, and what about the 2 square roots at the
end not being a basis for the odds?

3.8 Quasi Circular Logic, Trivial Basis for the Odds, and
the Inspiration for the 1st Proof

So what is really happening with this proof when understood as a whole, can it
really serve to prove infinite twins, and what about the questions at the end of
the previous section? A key to this is understanding how the surfaces in eq.18
are being used, and how it relates to the original number being checked. The
surfaces are used such that one is checking to see if the number being queried
appears on the surfaces within a field; if it does not, than the number is prime.
In the case of primes, this means that the prime does not appear on the field,
so when the process is reversed, that is looking for values not on the field to
generate primes, it turns out one is looking for primes not on the field.

This is why it was referred to as quasi circular logic. It’s not that one actually
has to know the prime to find the prime, but rather that if a number happens
to be prime, then it won’t appear on a specific field of the surface, which in
turn means the square root won’t be whole, which in turn means the number is
prime. Note, it doesn’t mean that primes don’t appear on those surfaces, they
do, just not in the domains that would make them not prime.

We also know that there are infinite primes generating infinite values, ie the
primes themselves, not appearing in specific fields. Since each number being
checked only corresponds to one domain field, when a prime is found to not
appear in a trailing location it means that column is the maximum of a domain;
since it can’t be found in any lesser row and column. This is true for x2 >
(x− 1)2 + 8, or in other words when x ≥ 5. Again, there are other primes that
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are confirmed by not being found in their corresponding fields in a portion of
that field other than the trailing locations, but those aren’t used in this case.
This is why worrying about a column being a maximum range is not a concern,
since by demanding the value found in the trailing location to be prime, eq.22,
it’s ensured that it is.

These last facts, along with the statement about the basis for the odds,
are what lead to the need and desire for a better proof. That is, we go all
the way through this entire process just to arrive at eqs.22 to 25. At that
point one is using the reasoned parabola with odd inputs and outputs, and then
simply removing all the composites with eq.23, and all the twins with eq.25.
We’ve basically checked for twin primality right there, only to say that those
numbers mean that square roots aren’t whole and thus create twin primes. It’s
ok, because we needed to, and did this to find and prove an infinite generator,
but yet it seems redundant. It also relies on the statement that eqs.23 and 25
do not remove so many odds such that there are only a finite number of odds
remaining. While a plot of those surfaces, or a table of their values, seems
sparsely populated, and that they don’t remove too many odd numbers, it’s
better to show that explicitly.

It was some time later, and from those understandings, that I realized why
not just start directly from there; with all the odd numbers and remove all the
composites. I also realized some surfaces are easier than others to show for what
they are or are not a basis. This eventually lead to the second proof, presented
in the first half of this paper.

3.9 Conclusion

In conclusion, it was shown that using an odd x, which was properly filtered for
x2+3

4 , generates an infinite number of values that do not appear within a certain
field on 2 surfaces, and that those values always create twin prime pairs when
used as input in the original equations. It should follow, that one could replace
the z − 2 with z − 2n in equation 7, and show that the method can be used to
extend the proof to any even sized prime gap.

4 Summary

So there you have it, 2 different methods to show that there are infinitely many
twin prime pairs. Admittedly, I think the newer proof presented first is much
stronger, more efficient, and more clear than the original proof presented second.
However, it was the original proof that inspired the other, and I think it’s still
useful for expanding on the topic, showing another approach to the problem,
and thinking about it in general.

If you enjoyed the proofs, found errors, or wish to offer other critiques,
revisions, or to discuss the work further, please contact me.
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