The Mind, Strings and Flux

John Peel
6/9/2020

Abstract

Here we discuss that consciousness is an iterative process, contained within the brain. That is if awareness is a state of flux, it is contained approximately within the brain. Decisions are crucial in awareness and work, charge, energy and force are key variables. Essentially equality implies a form of awareness, and the decision term \(\mu \) controls the equations, as do the choice functions \(E \) and \(B \) (see previous papers). If we let the number of occurrences, \(n \) be analogous to frequency \(\omega \), we can set up exponential solutions that demonstrate the role of curves (strings) in consciousness.

Introduction: Here we use a few simple formulae:

\[
\text{Force} = F = qE \\
\text{Work} = W = \pm qEx \\
\text{Flux} = F_s = EdA = E x^2
\]

Where here \(E \) is the electric field, distinct from \(E \) the choice function. It should be obvious from context which is used.

The following is a simple paper designed to show that the brain can control its own electric flux. The decision term \(\mu \) inherent in this process and the generalised mass/energy spectrum operator:

\[
E \rightarrow B
\]

Are important.

Results: The decision heuristic \(D \) (included with \(I, C, A \) etc from previous papers) can be written to control force:

\[
D \rightarrow \Sigma qE
\]

And the work done can oscillate:

\[
D \rightarrow \pm qEx
\]

So charge can be written as:

\[
\frac{W_{i+1}}{xq_{i+1}} \left\{ h(\beta) e^{\pm int} \right\} \left\{ k(\beta') e^{\pm in't'} \right\}
\]

Is iterated as:

\[
\frac{W_i}{xq_i} \left\{ h(\beta) e^{\pm int} \right\} \left\{ k(\beta') e^{\pm in't'} \right\}
\]
Assuming the exponential term, with β is a form of charge q so that force is expressed as equal to the difference of the above two equations, resulting in:

$$= \mu_i \text{ the decision term.}$$

Thus:

$$[E-B]D = [E-B]\mu_i = \Delta \text{Force} = qE$$

The difference in charge is:

$$\frac{F_{i+1}}{E_{i+1}} - \frac{W_i}{xE_i} = \mu_j$$

The flux function F_s is:

$$\frac{F_s}{xW} = \frac{x}{\mu_i} - \frac{E}{Fx}$$

Such that the R.H.S has the form:

$$x - \frac{1}{x}$$

Doing some algebra we have:

$$\mu_i = \frac{-x^2W}{F_s - Ex}$$

Or:

$$F_s = -x^2 + Ex$$

Writing (with constant M), the spring constant K is equivalent to permittivity k'.

$$MF_s = -kx^2 + k'Ex$$

Which is an energy function. N.B

$$k = mf^2 = \frac{m}{t^2}$$

Which we shall use as a definition for Coulombs (in part):

N.B the duality:

$$\mu_i \rightarrow \frac{\mu_i}{x}$$

(see calculations later).

We can write charge as the ratio:

$$\frac{\partial}{\partial t(\phi)} t = \frac{\partial^2}{\partial t^2} \phi'$$

Which has exponential solutions, showing that curves are inherent in charge, where:
Thus strings (curves) are used in charge, flux, force etc. N.B it may be possible to show that for n bits, these can be written as frequencies \(\omega \). So for:

\[
P = \Phi^2 \rightarrow P = \frac{n}{\Sigma N}
\]

And we define charge \(q \) as:

\[
q = i P \Sigma N
\]

Calculations: To show that the permittivity \(k' \) is approximately equal to the spring constant \(k \), setting \(M \) suitably:

\[
M F_s = -k x^2 + k' E x
\]

We know permittivity is equal to:

\[
\varepsilon = 8.85 e^{-12}
\]

So for flux of a hydrogen atom of radius:

\[
x = 5.3 e^{-11} m
\]

We have, rearranging:

\[
k = \frac{F_s}{-x^2 + E x}
\]

So for an electric field of:

\[
100 \frac{V}{m} \text{ and an area of } x^2 \text{ we have the flux } F_s = 2.81 e^{-19}
\]

And \(k = 5.3 e^{-11} \text{ approximately half the permittivity of space.} \)

Thus using spring constant \(k \) is approximately equal to permittivity \(\varepsilon = k' \) we have the energy equation”

\[
M F_s = -k x^2 + k' E x
\]

N.B using the choice function \(B \) in dimensional analysis we can write: \(B k = \varepsilon = k' \) such that the brain can select dimensions in the sense of units.

(N.B the formulae, algebra and calculations need checking)

References:

Wikipedia, Value of electric field in the brain.