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Abstract

We study a Garo to English School Dictionary. We draw the natural logarithm of the number

of entries, normalised, starting with a letter vs the natural logarithm of the rank of the letter,

normalised. We conclude that the Dictionary can be characterised by BP(4,βH = 0.02) i.e. a

magnetisation curve for the Bethe-Peierls approximation of the Ising model with four nearest

neighbours with βH = 0.02. β is 1
kBT where, T is temperature, H is external magnetic field and

kB is the Boltzmann constant.
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I. INTRODUCTION

Garo people comes from Garo Hills of Meghalaya, India. The people are referred to as

Garos, their language is known as Garo. ”Bachi?” meaning where, ”cha.a ringa?” meaning

to eat and drink, ”da.al nama?” meaning ”are you fine today?”, are the commonest way

of conversations among them. A common man smiles as he talks. They laugh profusely.

There are twelve clans. Am.beng, A.we, etc; four surnames; plenty of middle names, each

referring to one ancestral place in the Garo Hills. Each clan has their respective places.

A.we comes from Rishibelpara. The dialects vary as one goes from one region to another.

The Rishibelpara dialect is the ”official” version. In this language, ”Balgito” means a

lily, ”Miktoksi” means a white flowering small tree, ”boka” means white, ”salanti” means

everyday, ”salaram” means the east, ”janera” means a mirror, ”grit” means a sugarcane,

”matcha” means a tiger, ”matchu” means a bull.

In this article, we try to do a thorough study of magnetic field pattern behind a dictionary

of the Garo language,[1]. We have started considering magnetic field pattern in [2], in the

languages we converse with. We have studied there, a set of natural languages, [2] and

have found existence of a magnetisation curve under each language. We have termed this

phenomenon as graphical law. Then, we moved on to investigate into, [3], dictionaries of five

disciplines of knowledge and found existence of a curve magnetisation under each discipline.

This was followed by finding of the graphical law behind the bengali language,[4] and the

basque language[5]. This was pursued by finding of the graphical law behind the Romanian

language, [6], five more disciplines of knowledge, [7], Onsager core of Abor-Miri, Mising

languages,[8], Onsager Core of Romanised Bengali language,[9], the graphical law behind

the Little Oxford English Dictionary, [10], the Oxford Dictionary of Social Work and Social

Care, [11] and the Visayan-English Dictionary, [12], respectively.

In our first paper, [2], we have studied the Garo to English School Dicionary,[1]. There

we took resort to average counting i.e. finding an average number of words par page and

multiplying by the number of pages corresponding to a letter we obtained the number

of words starting with a letter. We deduced that the dictionary,[1], is characterised by

BP(4,βH=0.01). Here, in this paper we leave behind the approximate method. We count

thoroughly, one by one each word. Moreover, we augment the analysis. But the conclusion

is very close to that of [2]. We conclude here, that the dictionary can be characterised by
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BP(4,βH=0.02). It is desirable that this analysis is to be followed for other Garo language

dictionaries to find out whether the same conclusion one reaches to for all of those.

The planning of the paper is as follows. We give an introduction to the standard curves of

magnetisation of Ising model in the section II. In the section III, we describe analysis of the

entries of the Garo language, [1]. Sections IV, V are Acknowledgement and Bibliography

respectively.

II. MAGNETISATION

A. Bragg-Williams approximation

Let us consider a coin. Let us toss it many times. Probability of getting head or, tale is

half i.e. we will get head and tale equal number of times. If we attach value one to head,

minus one to tale, the average value we obtain, after many tossing is zero. Instead let us

consider a one-sided loaded coin, say on the head side. The probability of getting head is

more than one half, getting tale is less than one-half. Average value, in this case, after many

tossing we obtain is non-zero, the precise number depends on the loading. The loaded coin

is like ferromagnet, the unloaded coin is like paramagnet, at zero external magnetic field.

Average value we obtain is like magnetisation, loading is like coupling among the spins of

the ferromagnetic units. Outcome of single coin toss is random, but average value we get

after long sequence of tossing is fixed. This is long-range order. But if we take a small

sequence of tossing, say, three consecutive tossing, the average value we obtain is not fixed,

can be anything. There is no short-range order.

Let us consider a row of spins, one can imagine them as spears which can be vertically up

or, down. Assume there is a long-range order with probability to get a spin up is two third.

That would mean when we consider a long sequence of spins, two third of those are with

spin up. Moreover, assign with each up spin a value one and a down spin a value minus

one. Then total spin we obtain is one third. This value is referred to as the value of long-

range order parameter. Now consider a short-range order existing which is identical with

the long-range order. That would mean if we pick up any three consecutive spins, two will

be up, one down. Bragg-Williams approximation means short-range order is identical with

long-range order, applied to a lattice of spins, in general. Row of spins is a lattice of one
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dimension.

Now let us imagine an arbitrary lattice, with each up spin assigned a value one and a down

spin a value minus one, with an unspecified long-range order parameter defined as above by

L = 1
N
Σiσi, where σi is i-th spin, N being total number of spins. L can vary from minus one

to one. N = N++N−, where N+ is the number of up spins, N− is the number of down spins.

L = 1
N
(N+ −N−). As a result, N+ = N

2
(1 + L) and N− = N

2
(1− L). Magnetisation or, net

magnetic moment , M is µΣiσi or, µ(N+ −N−) or, µNL, Mmax = µN . M
Mmax

= L. M
Mmax

is

referred to as reduced magnetisation. Moreover, the Ising Hamiltonian,[13], for the lattice of

spins, setting µ to one, is −ϵΣn.nσiσj −HΣiσi, where n.n refers to nearest neighbour pairs.

The difference △E of energy if we flip an up spin to down spin is, [14], 2ϵγσ̄ + 2H, where

γ is the number of nearest neighbours of a spin. According to Boltzmann principle, N−
N+

equals exp(− △E
kBT

), [15]. In the Bragg-Williams approximation,[16], σ̄ = L, considered in the

thermal average sense. Consequently,

ln
1 + L

1− L
= 2

γϵL+H

kBT
= 2

L+ H
γϵ

T
γϵ/kB

= 2
L+ c

T
Tc

(1)

where, c = H
γϵ

, Tc = γϵ/kB, [17].
T
Tc

is referred to as reduced temperature.

Plot of L vs T
Tc

or, reduced magentisation vs. reduced temperature is used as reference curve.

In the presence of magnetic field, c ̸= 0, the curve bulges outward. Bragg-Williams is a Mean

Field approximation. This approximation holds when number of neighbours interacting with

a site is very large, reducing the importance of local fluctuation or, local order, making the

long-range order or, average degree of freedom as the only degree of freedom of the lattice.

To have a feeling how this approximation leads to matching between experimental and Ising

model prediction one can refer to FIG.12.12 of [14]. W. L. Bragg was a professor of Hans

Bethe. Rudlof Peierls was a friend of Hans Bethe. At the suggestion of W. L. Bragg, Rudlof

Peierls following Hans Bethe improved the approximation scheme, applying quasi-chemical

method.

B. Bethe-peierls approximation in presence of four nearest neighbours, in absence

of external magnetic field

In the approximation scheme which is improvement over the Bragg-Williams, [13],[14],[15],[16],[17],

due to Bethe-Peierls, [18], reduced magnetisation varies with reduced temperature, for γ
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FIG. 1. Reduced magnetisation vs reduced temperature curves for Bragg-Williams approximation,

in absence(dark) of and presence(inner in the top) of magnetic field, c = H
γϵ = 0.01, and Bethe-

Peierls approximation in absence of magnetic field, for four nearest neighbours (outer in the top).

neighbours, in absence of external magnetic field, as

ln γ
γ−2

ln factor−1

factor
γ−1
γ −factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (2)

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For a snapshot of different

kind of magnetisation curves for magnetic materials the reader is urged to give a google

search ”reduced magnetisation vs reduced temperature curve”. In the following, we describe

datas generated from the equation(1) and the equation(2) in the table, I, and curves of

magnetisation plotted on the basis of those datas. BW stands for reduced temperature in

Bragg-Williams approximation, calculated from the equation(1). BP(4) represents reduced

temperature in the Bethe-Peierls approximation, for four nearest neighbours, computed

from the equation(2). The data set is used to plot fig.1. Empty spaces in the table, I, mean

corresponding point pairs were not used for plotting a line.
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BW BW(c=0.01) BP(4,βH = 0) reduced magnetisation

0 0 0 1

0.435 0.439 0.563 0.978

0.439 0.443 0.568 0.977

0.491 0.495 0.624 0.961

0.501 0.507 0.630 0.957

0.514 0.519 0.648 0.952

0.559 0.566 0.654 0.931

0.566 0.573 0.7 0.927

0.584 0.590 0.7 0.917

0.601 0.607 0.722 0.907

0.607 0.613 0.729 0.903

0.653 0.661 0.770 0.869

0.659 0.668 0.773 0.865

0.669 0.676 0.784 0.856

0.679 0.688 0.792 0.847

0.701 0.710 0.807 0.828

0.723 0.731 0.828 0.805

0.732 0.743 0.832 0.796

0.756 0.766 0.845 0.772

0.779 0.788 0.864 0.740

0.838 0.853 0.911 0.651

0.850 0.861 0.911 0.628

0.870 0.885 0.923 0.592

0.883 0.895 0.928 0.564

0.899 0.918 0.527

0.904 0.926 0.941 0.513

0.946 0.968 0.965 0.400

0.967 0.998 0.965 0.300

0.987 1 0.200

0.997 1 0.100

1 1 1 0

TABLE I. Reduced magnetisation vs reduced temperature datas for Bragg-Williams approxima-

tion, in absence of and in presence of magnetic field, c = H
γϵ = 0.01, and Bethe-Peierls approxima-

tion in absence of magnetic field, for four nearest neighbours .

C. Bethe-peierls approximation in presence of four nearest neighbours, in pres-

ence of external magnetic field

In the Bethe-Peierls approximation scheme , [18], reduced magnetisation varies with reduced

temperature, for γ neighbours, in presence of external magnetic field, as

ln γ
γ−2

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (3)

Derivation of this formula ala [18] is given in the appendix of [7].

ln γ
γ−2

for four nearest neighbours i.e. for γ = 4 is 0.693. For four neighbours,

0.693

ln factor−1

e
2βH
γ factor

γ−1
γ −e

− 2βH
γ factor

1
γ

=
T

Tc

; factor =
M

Mmax
+ 1

1− M
Mmax

. (4)
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In the following, we describe datas in the table, II, generated from the equation(4) and

curves of magnetisation plotted on the basis of those datas. BP(m=0.03) stands for re-

duced temperature in Bethe-Peierls approximation, for four nearest neighbours, in presence

of a variable external magnetic field, H, such that βH = 0.06. calculated from the equa-

tion(4). BP(m=0.025) stands for reduced temperature in Bethe-Peierls approximation, for

four nearest neighbours, in presence of a variable external magnetic field, H, such that

βH = 0.05. calculated from the equation(4). BP(m=0.02) stands for reduced temperature

in Bethe-Peierls approximation, for four nearest neighbours, in presence of a variable exter-

nal magnetic field, H, such that βH = 0.04. calculated from the equation(4). BP(m=0.01)

stands for reduced temperature in Bethe-Peierls approximation, for four nearest neighbours,

in presence of a variable external magnetic field, H, such that βH = 0.02. calculated from

the equation(4). BP(m=0.005) stands for reduced temperature in Bethe-Peierls approxima-

tion, for four nearest neighbours, in presence of a variable external magnetic field, H, such

that βH = 0.01. calculated from the equation(4). The data set is used to plot fig.2. Empty

spaces in the table, II, mean corresponding point pairs were not used for plotting a line.
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BP(m=0.03) BP(m=0.025) BP(m=0.02) BP(m=0.01) BP(m=0.005) reduced magnetisation

0 0 0 0 0 1

0.583 0.580 0.577 0.572 0.569 0.978

0.587 0.584 0.581 0.575 0.572 0.977

0.647 0.643 0.639 0.632 0.628 0.961

0.657 0.653 0.649 0.641 0.637 0.957

0.671 0.667 0.654 0.650 0.952

0.716 0.696 0.931

0.723 0.718 0.713 0.702 0.697 0.927

0.743 0.737 0.731 0.720 0.714 0.917

0.762 0.756 0.749 0.737 0.731 0.907

0.770 0.764 0.757 0.745 0.738 0.903

0.816 0.808 0.800 0.785 0.778 0.869

0.821 0.813 0.805 0.789 0.782 0.865

0.832 0.823 0.815 0.799 0.791 0.856

0.841 0.833 0.824 0.807 0.799 0.847

0.863 0.853 0.844 0.826 0.817 0.828

0.887 0.876 0.866 0.846 0.836 0.805

0.895 0.884 0.873 0.852 0.842 0.796

0.916 0.904 0.892 0.869 0.858 0.772

0.940 0.926 0.914 0.888 0.876 0.740

0.929 0.877 0.735

0.936 0.883 0.730

0.944 0.889 0.720

0.945 0.710

0.955 0.897 0.700

0.963 0.903 0.690

0.973 0.910 0.680

0.909 0.670

0.993 0.925 0.650

0.976 0.942 0.651

1.00 0.640

0.983 0.946 0.928 0.628

1.00 0.963 0.943 0.592

0.972 0.951 0.564

0.990 0.967 0.527

0.964 0.513

1.00 0.500

1.00 0.400

0.300

0.200

0.100

0

TABLE II. Bethe-Peierls approx. in presence of little external magnetic fields

D. Onsager solution

At a temperature T, below a certain temperature called phase transition temperature, Tc,

for the two dimensional Ising model in absence of external magnetic field i.e. for H equal to

zero, the exact, unapproximated, Onsager solution gives reduced magnetisation as a function

of reduced temperature as, [19], [20], [21], [18],

M

Mmax

= [1− (sinh
0.8813736

T
Tc

)−4]1/8.

Graphically, the Onsager solution appears as in fig.3.
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FIG. 2. Reduced magnetisation vs reduced temperature curves for Bethe-Peierls approximation in

presence of little external magnetic fields, for four nearest neighbours, with βH = 2m.
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FIG. 3. Reduced magnetisation vs reduced temperature curves for exact solution of two dimensional

Ising model, due to Onsager, in absence of external magnetic field
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letter A B C D E F G H I J K L M

number 1208 1456 725 683 105 0 1220 80 110 697 798 52 1261

splitting 1192+16 1435+21 695+30 653+30 105+0 0 1205+15 80+0 108+2 682+15 774+24 51+1 1234+27

letter N O P Q R S T U V W X Y Z

number 562 266 618 0 1414 1374 528 128 0 428 0 0 0

splitting 530+32 265+1 611+7 0 1372+42 1340+34 520+8 116+12 0 422+6 0 0 0

TABLE III. Entries of the Garo to English Dictionary: the first row represents letters of the

english alphabet in the serial order, the second row is the respective number of entries, the third

row describes the splitting of entries.

III. METHOD OF STUDY AND RESULTS

The Garo language written in English alphabet is composed of twenty letters. We count

all the entries in the dictionary, [1], one by one from the beginning to the end, starting

with different letters. This has been done in two steps for the dictionary. First, we have

counted all entries initiating with A form the section for the letter A. The number is one

thousand one hundred ninety two. Second, we have enlisted all entries initiating with A form

the sections for the letters B, D,..,Z. Then we have removed from the list entries already

appearing in the section belonging to A. Then we have counted the number of the entries

in that list. The number is sixteen. As a result total number of words beginning with A

is one thousand two hundred and eight. This exercise was then followed for B,C,..Z. The

result is the following table, III. Highest number of entries, one thousand four hundred

fifty six, starts with the letter B followed by words numbering one thousand four hundred

fourteen beginning with R, one thousand three hundred seventy four with the letter S etc.

To visualise we plot the number of entries against the respective letters in the figure fig.4.

For the purpose of exploring graphical law, we assort the letters according to the number of

words, in the descending order, denoted by f and the respective rank, [22], denoted by k.

k is a positive integer starting from one. Moreover, we attach a limiting rank, klim, and a

limiting number of words. The limiting rank is maximum rank plus one, here it is twenty

one and the limiting number of words is one. As a result both lnf
lnfmax

and lnk
lnklim

varies from

zero to one. Then we tabulate in the adjoining table, IV, and plot lnf
lnfmax

against lnk
lnklim

in

the figure fig.5.

We then ignore the letter with the highest number of words, tabulate in the adjoining

table, IV, and redo the plot, normalising the lnfs with next-to-maximum lnfnextmax, and
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FIG. 4. Vertical axis is number of entries of the Garo to English school Dictionary,[1]. Horizontal

axis is the letters of the English alphabet. Letters are represented by the sequence number in the

alphabet.

starting from k = 2 in the figure fig.6. Normalising the lnfs with next-to-next-to-maximum

lnfnextnextmax, we tabulate in the adjoining table, IV, and starting from k = 3 we draw in the

figure fig.7. Normalising the lnfs with next-to-next-to-next-to-maximum lnfnextnextnextmax

we record in the adjoining table, IV, and plot starting from k = 4 in the figure fig.8.

Normalising the lnfs with 4n-maximum lnf4n−max we record in the adjoining table, IV,

and plot starting from k = 5 in the figure fig.9. Normalising the lnfs with 5n-maximum

lnf5n−max we record in the adjoining table, IV, and plot starting from k = 6 in the figure

fig.10, with 6n-maximum lnf6n−max we record in the adjoining table, IV, and plot starting

from k = 7 in the figure fig.11.
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k lnk lnk/lnklim f lnf lnf/lnfmax lnf/lnfnmax lnf/lnfnnmax lnf/lnfnnnmax lnf/lnfnnnnmax lnf/lnfnnnnnmax lnf/lnfnnnnnnmax

1 0 0 1456 7.283 1 Blank Blank Blank Blank Blank Blank

2 0.69 0.228 1414 7.254 0.996 1 Blank Blank Blank Blank Blank

3 1.10 0.361 1374 7.225 0.992 0.996 1 Blank Blank Blank Blank

4 1.39 0.455 1261 7.140 0.980 0.984 0.988 1 Blank Blank Blank

5 1.61 0.528 1220 7.107 0.976 0.980 0.984 0.995 1 Blank Blank

6 1.79 0.589 1208 7.097 0.974 0.978 0.982 0.994 0.999 1 Blank

7 1.95 0.639 798 6.682 0.917 0.921 0.925 0.936 0.940 0.942 1

8 2.08 0.683 725 6.586 0.904 0.908 0.912 0.922 0.922 0.928 0.986

9 2.20 0.722 697 6.547 0.899 0.903 0.906 0.917 0.921 0.923 0.980

10 2.30 0.756 683 6.526 0.896 0.900 0.903 0.914 0.918 0.920 0.977

11 2.40 0.788 618 6.426 0.882 0.886 0.889 0.900 0.904 0.905 0.962

12 2.48 0.816 562 6.332 0.869 0.873 0.876 0.887 0.891 0.892 0.948

13 2.56 0.842 528 6.269 0.861 0.864 0.868 0.878 0.882 0.883 0.938

14 2.64 0.867 428 6.059 0.832 0.835 0.839 0.849 0.853 0.854 0.907

15 2.71 0.889 266 5.583 0.767 0.770 0.773 0.782 0.786 0.787 0.836

16 2.77 0.911 128 4.852 0.666 0.669 0.672 0.680 0.683 0.684 0.726

17 2.83 0.930 110 4.700 0.645 0.648 0.651 0.658 0.661 0.662 0.703

18 2.89 0.949 105 4.654 0.639 0.642 0.644 0.652 0.655 0.656 0.696

19 2.94 0.967 80 4.382 0.602 0.604 0.607 0.614 0.617 0.617 0.656

20 3.00 0.984 52 3.951 0.542 0.545 0.547 0.553 0.556 0.557 0.591

21 3.05 1 1 0 0 0 0 0 0 0 0

TABLE IV. Entries of the Garo to English Dictionary: ranking, natural logarithm, normalisations
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FIG. 5. Vertical axis is lnf
lnfmax

and horizontal axis is lnk
lnklim

. The + points represent the entries

of the Garo language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.01 or, βH = 0.02. The uppermost curve is the Onsager

solution.

FIG. 6. Vertical axis is lnf
lnfnext−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Garo language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.01 or, βH = 0.02. The uppermost curve is the Onsager

solution.
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FIG. 7. Vertical axis is lnf
lnfnn−max

and horizontal axis is lnk
lnklim

. The + points represent the entries

of the Garo language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.01 or, βH = 0.02. The uppermost curve is the Onsager

solution.

FIG. 8. Vertical axis is lnf
lnfnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Garo language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.02 or, βH = 0.04. The uppermost curve is the Onsager

solution.
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FIG. 9. Vertical axis is lnf
lnfnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Garo language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.02 or, βH = 0.04. The uppermost curve is the Onsager

solution.

FIG. 10. Vertical axis is lnf
lnfnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent the

entries of the Garo language with the fit curve being Bethe-Peierls curve in presence of four nearest

neighbours and little magnetic field, m = 0.02 or, βH = 0.04. The uppermost curve is the Onsager

solution.
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FIG. 11. Vertical axis is lnf
lnfnnnnnn−max

and horizontal axis is lnk
lnklim

. The + points represent

the entries of the english language with the fit curve being Bethe-Peierls curve in presence of four

nearest neighbours and little magnetic field, m = 0.05 or, βH = 0.1. The uppermost curve is the

Onsager solution. The points of the Garo language do not go over to Onsager’s solution.
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1. conclusion

From the figures (fig.5-fig.11), we observe that behind the entries of the dictionary, [1], there

is a magnetisation curve, BP(4,βH = 0.02), in the Bethe-Peierls approximation with four

nearest neighbours, in presence of liitle magnetic field, βH = 0.02.

Moreover, the associated correspondance with the Ising model is,

lnf

lnfmaximum

←→ M

Mmax

,

and

lnk ←→ T.

k corresponds to temperature in an exponential scale, [23]. As temperature decreases, i.e.

lnk decreases, f increases. The letters which are recording higher entries compared to those

which have lesser entries are at lower temperature. As the Garo language expands, the

letters which get enriched more and more, fall at lower and lower temperatures. This is a

manifestation of cooling effect as was first observed in [24] in another way.
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