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Abstract. In this paper we argue that the current paradigm for
AGN and quasars essentially incomplete and rivision is needed.
Remind that the current paradigm for AGN and quasars is that
their radio emission is explained by synchrotron radiation from
relativistic electrons that are Doppler boosted through bulk moti-
on. In this model, the intrinsic brightness temperatures cannot
exceed 1011 to 1012 K. Typical Doppler boosting is expected to
be able to raise this temperature by a factor of 10.The observed
brightness temperature of the most compact structures in BL
Lac, constrained by baselines longer than 5. 3G�, must indeed
exceed 2 � 1013K and can reach as high as ~ 3 � 1014K.This is
difficult to reconcile with current incoherent synchrotron emissi-
on models from relativistic electrons, requiring alternative models
such as emission from relativistic protons.However the proton, as
we know, is 1836 times heavier than an electron and absolutely
huge energy is required to accelerated it to sublight speed.These
alternative models such as emission from relativistic protons can
be suported by semiclassical gravity effect finds its roots in the
singular behavior of quantum fields on curved distributional space-
times presented by rotating gravitational singularities.

1. Introduction
The classical Cartan’s structural equations show in a compact way the relation
between a connection and its curvature, and reveals their geometric interpretation
in terms of moving frames [1]-[2]. In order to study the mathematical properties of
singularities, we need to study the geometry of manifolds endowed on the tangent
bundle with a symmetric bilinear form which is allowed to become degenerate or
singular (or both degenerate and singular) on semi Riemannian manifold �M, g� or
on submanifolds of semi Riemannian manifold �M, g�. But if the fundamental tensor



is allowed to be degenerate or singular, there are some obstructions in constructing
the geometric objects normally associated to the fundamental tensor. Also, local
orthonormal frames and coframes no longer exist, as well as the metric connection
and its curvature operator.
Degenerate semi Riemannian manifolds arise naturally in the semi-Riemannian
category: for example the restriction of a non-degenerate metric to a degenerate
submanifold is a degenerate metric and the Killing-Cartan form on a non-semi-
simple Lie Group is a degenerate metric.
Definition 1.1. (i) Semi Riemannian manifold �M, g� is nonclassical if the
fundamental tensor g is allowed to be degenerate or singular, (ii) semi Riemannian
manifold �M, g� is internally nonclassical if the fundamental tensor g is not allowed
to be degenerate or singular but there exists semi Riemannian submanifold
�M�, g��, M� � M, g� � g|M� such that the fundamental tensor g� is allowed to be
degenerate or singular,(iii) otherwise we will be say that �M, g� is classical.
In nonclassical case the main problem arises from the degeneracy of the
det�gij�x� �� on some isolated points: det�gij�x� 0�� � 0, x� 0 � M or some submanifold
det�gij�x� �� � 0 for all x� � M� � M and consequantly the corresponding Christoffel
symbols bicome infinity.Let �M, g� be a nonclassical semi Riemannian manifold.
Let �x� 0be closed contour and let ��

x�0 � M be a surface spanning by �x� 0 , We

assume now that christoffel symbols �kl
i �x� � are smooth on �� � �\�x� 0� and

�kl
i �x� � � � if x� � x� 0.The classical formula for the change in a smooth vector A i�x� �

after parallel displacement around infinitesimal closed contour �

�Ak��� � �
�

�Ak � �
�

�kl
i �x� �Akdx l. �1. 1�

no longer hold since �Ak��� � �.
In mathematical literature more than 50 yers accepted that a nonclassical semi
Riemannian manifold mentioned above impossible treated classically, i.e. by using
canonical apparatus of the Riemannian geometry. However in the contemporary
mathematical literature, manifolds with degenerate metric tensors have been studied
only fore some special case called a Reinhart manifold [3]-[4].
In order to avoid these difficultness with divergence �Ak��x� 0 � � �,etc. we
consider the canonical imbedding �M, gi,j,0�x� �� � �M, �gi,j,��x� ����,and we extend the
classical formula (1.1) from a nonclassical semirimannian manifold �M, gi,j,0�x� �� up to
Colombeau manifold �M, �det�gij,�����,where �gij,�� � G���n�, i, j � 1, . . . , n [5]-[8].
In contemporary mathematics, a Colombeau algebra of Colombeau generalized
functions is an algebra of a certain kind containing the space of Schwartz distri-
butions. While in classical distribution theory a general multiplication of distri-
butions is not possible, classical Colombeau algebras provide a rigorous frame-
work for this [9]-[11].
Through whole this paper we shall apply the following definitions and notations [1].
Definition 1.2. The algebra moderate functions CM

� ��n� on �n is the algebra of
families of smooth functions �f��x��� � �f��x���, x � �n,� � �0,��,� � 1 (smooth
�-regularisations, where � is the regularization parameter), such that: (i) for all
compact subsets K of �n and all multiindices α, there is an N 	 0 such that



x�K

sup
	 |� |f��x�

�	x1��1 � � ��	xn��n
� O��
N�,� � 0, �1. 2�

with addition and multiplication defined by natural way:

�f��x��� 
 �g��x��� � �f��x� 
 g��x��� �1. 3�

and

�f��x��� � �g��x��� � �f��x� � g��x���. �1. 4�

Definition 1.3.The ideal N���n� of negligible functions is defined in the same way but
with the partial derivatives instead bounded by O�εN� for all N 	 0, i.e.

x�K

sup
	 |� |f��x�

�	x1��1 � � ��	xn��n
� O��N�,� � 0. �1. 5�

Definition 1.4.The Colombeau Algebra G���n� [1] is defined as the quotient algebra

G���n� � CM
� ��n�/N���n�. �1. 6�

Elements of G���n� are denoted by:

u � cl��u���� � �u��� 
 N���n�. �1. 7�

Embedding of distributions

The space of Schwartz distributions D���n� can be embedded into the Colombeau

algebra G���n� by (component-wise) convolution with any element �φε�� of the
algebra G���n� having as representative a �-net, i.e. a family of smooth functions φε
(�-net) such that φε � δ in D���n� as ε � 0.Note that the embedding
� : D���n� � G���n� is non-canonical, because it depends on the choice of the �-net.
However note that embedding D���n� � G���n� does not meant the full
equivalence of the Schwartz distributions and corresponding by embedding
Colombeau generalized functions. In contrast with the Schwartz distributions
Colombeau generalized functions has well defined walue at any point x � �n these
point values of the Colombeau generalized functions is the Colombeau generalized

numbers �� [1].

Designation 1.1. (I) We denote by ��,� � 1 the ring of real Colombeau generalized

numbers. Recall that by definition �� � E����/N���� where [34],[36],[37]:

E���� � ��x��� � ��0,�� |��a � �
����0 � �0, 1����� � �0��|x� | � �
a ��,

N���� � ��x��� � ��0,�� |��a � �
����0 � �0, 1����� � �0��|x� | � �a ��.
�1. 8�

(II) In this subsection we will be write for short � instead ��.

Notice that the ring � arises naturally as the ring of constants of the Colombeau

algebras G����.Recall that there exists natural embedding �r : � � � such that
for all r � �,�r � �r��� where r�  r for all � � �0, 1�.We say that r is standard

number and abbreviate r � � for short. The ring � can be endowed with the

structure of a partially ordered ring: for r, s � � � � �
,� � � we abbreviate r �
�,�

s

or simply r �
�

s if and only if there are representatives �r��� and �s��� with r� � s�
for all � � �0,��.

Colombeau generalized number r � � with representative �r��� we abbreviate



cl��r��� �.

Definition 1.5. (i) Let �� � cl������ � � �. We say that �� is infinite small Colombeau
generalized number and abbreviate �� �

�

�
0 if there exists representative ����� and

some q � � such that |�� | � O��q� as � � 0. (ii) Let � � �. We say that � is infinite
large Colombeau generalized number and abbreviate � �

�
� if �

�

1 �

�

�
0. (iii) Let ��

be � � ��� We say that � � �� is infinite Colombeau generalized number and
abbreviate � �

�
 �

�
if there exists representative ����� where |�� | � � for all

� � �0, 1�.Here we abbreviate E����� � E��� � ����, N����� � N��� � ����

and �� � E�����/N�����

Definition 1.6. (Standard Part Mapping). (i) The standard part mapping st : � � �
is defined by the formula:

st�x� � sup r � �|r �
�

x . �1. 9�

If x � �, then st�x� is called the standard part of x.

(ii) The mapping st : � � � � ��� is defined by (i) and by st�x� � � for x � �

and for x � ��, respectively.

Definition 1.7.Let �f��x��� � G���n� and x� � �, then cl��f��x� ��� � � �.We will say
that Colombeau generalized number cl��f��x� ��� � is a point values of Colombeau
generalized function �f��x��� at point x� � �n.

Definition 1.8. (i) Let u � cl��u��x��� � be the Colombeau generalized function
such that �u��x��� � G���n� and let � be a vector ����� � ��1,�, . . . ,�i,�, . . . ,�n,��� �

� ���1,���, . . . , ��i,���, . . . , ��n,���� where cl���i,��� � � ��, i � 1, . . . , n are
Colombeau generalized numbers with the representatives ��i,��� � E����.

Thus, we have a mapping ũ : �� n � �� that is defined in a natural way by
the following formula:

ũ������ � � �u������� � E����. �1. 10�

(ii) Let u1 � �u1,��x��� and u2 � �u2,��x��� Colombeau generalized functions such
that u1, u2 � E����n�. The algebra moderate function E�� �� �

n on �� �
n is the algebra

of functions ũ : E�� �� �
n � E� �� � defined by Eq.(1.10) such that, for all compact

subsets K of �� �
n and all multi indices � � ��1, . . . ,�i, . . . ,�n�, there are N 	 0 and

�0 � �
 such that, for � � �0

sup���K
	 |� |u��1,�, . . . ,�i,�, . . . ,�n,��

�	�1,���1 . . . �	�i,��� i . . . �	�1,���n
�

� O���
N��� �1. 11�

and with the addition and multiplication defined by a natural way by the following
formulas:

�ũ1 
 ũ2�������� � �ũ1,����� 
 ũ2,������� �1. 12�

and

�ũ1 � ũ2�������� � �ũ1,����� � ũ2,������� �1. 13�

correspondingly.

(iii) The ideal N�
� �� of negligible functions on �� is defined in the same way

but with the derivatives instead bounded by for all N 	 0; i.e.,



sup���K
	 |� |u��1,�, . . . ,�i,�, . . . ,�n,��

�	�1,���1 . . . �	�i,��� i . . . �	�1,���n
�

� O���N��� �1. 14�

for all � � �0.
(iv) The point free Colombeau algebra G���� n� defined as the quotient algebra

G���� n� � E�� �� �
n N�

� �� . �1. 15�

The elements of G���� n� are denoted by the following:

Definition 1.9. Let �f��x��� � G���� and cl��x� ��� � � ��.Assum that cl��f��x� ���� � � ��.
We will say that Colombeau generalized number cl��f��x� ���� � is a point values of

Colombeau generalized function �f��x��� at point �x� ��� � ��.

We briefly recall now the basic supergeneralized Colombeau construction [11]-[14].
Colombeau supergeneralized functions on � � �n, where dim��� � n are defined
as equivalence classes u � ��u���� of nets of functions u� � C���\��,� � �0,�� such
that any u� is a net of functions smooth on �\� and has a discontinuity on a subset
� � �, where dim��� � n.We assume that for any � � �0,�� the derivative

	 |m|u�

	x1
k1 . . .	xn

kn
, m � �k1, . . . , kn� exists in the sense of the theory of canonical generalized

functions and 	 |m|u�

	x1
k1 . . .	xn

kn
� D����.The basic idea of generalized Colombeau’s theory

of nonlinear supergeneralized functions [11]-[14] is regularization by sequences (nets)
of nonsmooth functions with derivatives in D���� and the use of asymptotic estimates
in terms of a regularization parameter �. Let �u�����0,��,� � 1 with u� such that: (i)
u� � C��M\�� and (ii) L	1�L	ku� � D��M�, for all � � �0,��,where M a separable,
smooth orientable Hausdorff manifold of dimension n.
Definition 1.10. The supergeneralized Colombeau’s algebra G � G�M,�� of
supergeneralized functions on M, where � � M, dim�M� � n, dim��� � n , is defined
as the quotient:

G�M,�� � EM�M,��/N�M,�� �1. 15�

of the space EM�M,�� of sequences of moderate growth modulo the space N�M,�� of
negligible sequences. More precisely the notions of moderateness resp. negligibility
are defined by the following asymptotic estimates (where X�M\�� denoting the space
of smooth vector fields on M\�):

EM�M,�� � �u���| �K�K � M\���k�k � ���N�N � ��

�	1,�,	k�	1,�,	k � X�M\���
p�K

sup |L	1�L	k u��p�|� O��
N�,� � 0 &

�K�K � M��k�k � ���N�N � ����f � C��M���	1,�,	k�	1,�,	k � X�M��

�L	1
w �L	k

w u�� �
f�C��M�

sup L	1
w �L	k

w u��f� � O��
N�,� � 0 ,

�1. 16�



2.Generalized Einstein’s field equations
The general theory of relativity is a nonlinear theory of gravity. The mathematical
theory of distributions,on theother hand,is a linear theory that uses avariety of
technique swhich cannot be implemented in the nonlinear framework of semi
Riemannian geometry. This is also true with regard to canonical Colombeau’s
nonlinear theory of generalized functions [6]–[8], which, though capable of solving
an impressive spectrum of problems associated with the treatment of distributionsin
gravitational physics does not always allow a rigorous treatmentof the simultaneously
singular and nonlinear field equations of theory.

The generalized action functional for the gravitational field reads [9]-[14]:

� R� 
g� d��
�
. �2. 1�

The invariant Colombeau integral (2.1) can be transformed by means of Gauss’
theorem to the integral of an expression not containing the second derivatives.
Thus Colombeau integral (2.1) can be presented in the following form

� R� 
g� d��
�
� �G� 
g� d��

�

 � 	 
g� w�

i

	x i d��

�

, �2. 2�

where �G��� contains only the tensor �gik,��� and its first derivatives, and the
integrand of the second integral has the form of a divergence of a certain quantity
�w�

i ��. According to Gauss’ theorem, this second integral can be transformed into
an integral over a hypersurface surrounding the four-volume over which the
integration is carried out in the other two integrals. When we vary the action, the
variation of the second term on the right vanishes, since in the principle of least
action, the variations of the field at the limits of the region of integration are zero.
Consequently, we may write

� � R� 
g� d�
�
� � � R� 
g� d�

�
� � �G� 
g� d�

�
. �2. 3�

The left side is Colombeau scalar; therefore the expression on the right is also
Colombeau scalar (the quantity �G��� itself is, of course, not Colombeau scalar).
The quantity �G���satisfies the condition imposed above, since it contains only the
�gik,��� and its Colombeau derivatives. Thus finally we obtain

�S��g��� � � 
 c3

16
�
� �G� 
g� d�

�
� 
 c3

16
k
� � R� 
g� d�

�
. �2. 4�

The constant � is called the gravitational constant. The dimensions of � follow from
(2.4). Its numerical value is � � 6. 67 � 10
8sm3 �gr
1 � sec
2.We now proceed to



the derivation of the equations of the gravitational field. These equations are obtained
from the principle of least action ���Sm,��� 
 �Sg� ��� � 0

�
,where �Sm,��� and �Sg� ��are

the distributional actions of the gravitational field and matter respectively. We now
subject the gravitational Colombeau metric field, that is, the quantities gik, to variation.
Calculating the variation ��Sg� ��, we get

� � R� 
g� d�
�
� � � R� 
g� d�

�
� � � g�

ikR ik,� 
g� d�
�
�

� R ik,� 
g� �g�
ikd�

�

 � R ik,�g�

ik� 
g� d�
�

 � g�

ik 
g� �R ik,�d�
�

� R ik,� 
g� �g�
ik

�

 R ik,�g�

ik� 
g� �

 g�

ik 
g� �R ik,� �
d�.

�2. 5�

Thus, the variation S��g��� � is equal to

S��g��� � � 
 c3

16
� � R ik,� 
 1
2

gik,�R� 
g� �g�
ikd�

�
. �2. 6�

We note that if we had started from the expression

�Sg��g��� � � 
 c3

16
�
� �G� 
g� d�

�
�2. 7�

for the action of the field, then we get

�S��g��� � �


 c3

16
� � ��g�
ik��d�

	 G� 
g�

	g�
ik

�


 	
	x l

	 G� 
g�

	 	g�
ik

	x l
�

.
�2. 8�

Comparing Eq.(2.8) with Eq.(2.6), we get

�R ik,��� 

1
2
�gik,�R��� �

1

g� �

	 G� 
g�

	g�
ik

�


 	
	x l

	 G� 
g�

	 	g�
ik

	x l
�

.
. �1. 9. 13�

For the variation of the action of the matter we can write

��Sm,��� � 1
2c � Tik,� 
g� �g�

ikd�
�
, �2. 9�

where �Tik,��� � G��4� is the generalized energy-momentum tensor of the matter
fields.

Thus, from the principle of least action

��S��g��� � 
 �Sm,���� � 0
�

�2. 10�

one obtains


 c3

16
� � R ik,� 
 1
2

gik,�R� 
 8
�
c4 Tik,� 
g� �g�

ikd�
�
� 0

�
. �2. 11�

From Eq.(2.11), since of the arbitrariness of the ��g�
ik�� � G��4� finally we get

�R ik,��� 

1
2
�gik,�R��� � 8
�

c4 �Tik,��� �2. 10�



or, in mixed components,

�R i,�
k �� 


1
2
�i

k�R��� � 8
�
c4 �Ti,�

k ��. �2. 13�

They are called the generalized Einstein equations.
Contracting (2.13) on the indices i and k,we get

�R��� � 
 8
�
c4 �Ti,�

i �� � 
 8
�
c4 �T���. �2. 14�

Therefore the generalized Einstein equations of the field can also be written in the
form

[6]-[7]

�R ik,��� � 8
�
c4 �Tik,��� 


1
2
�gik,�T��� . �2. 15�

Note that the generalized Einstein equations of the gravitational field are nonlinear
Colombeau type equations.
3.The current paradigm for Active Galactic Nuclei.High energy emission
from galactic jets.
The current paradigm for AGN and quasars is that their radio emission is explained
by synchrotron radiation from relativistic electrons that are Doppler boosted through
bulk motion [15]-[18].

Fig.1.Jet from Black Hole in a Galaxy Pictor A

The active galaxy Pictor A lies nearly 500 million

light-years from Earth and contains a

supermassive black hole at its centre.

This is a composite radio and X-ray image.

Fig.1. Accretion of gas onto the supermassive Kerr black holes lurking at the
center of active galactic nuclei (AGN) gives rise to powerful relativistic jets.
However in this model, the intrinsic brightness temperatures cannot exceed 1011

to 1012 K. Typical Doppler boosting is expected to be able to raise this temperature
by a factor of 10.The observed brightness temperature of the most compact structures
in BL Lac, constrained by baselines longer than 5. 3G�, must indeed exceed 2 � 1013K
and can reach as high as ~ 3 � 1014K. As well known, these visibilities correspond to
the structural scales of 30 
 40 �as oriented along position angles of 25� 
 30�.These
values are indeed close to the width of the inner jet and the normal to its direction.The



observed, Tb,obs, and intrinsic, Tb,int, brightness temperatures are related by [19]

Tb,obs � ��1 
 z�
1Tb,int �3. 1�

where where δ � �1 
 β2�1/2�1 
 βcosφ�
1 is the Doppler factor, β is the jet bulk velocity
in

units of the speed of light, φ is the jet viewing angle, and z is the redshift of the source.
Variability argument and kinematical analyses yield consistent value of � � 7. 2.The
estimeted by Eq.2.1 a lower limit of the intrinsic brightness temperature in the core
component of our Radio Astron observations of Tb,int 	 2. 91012 K [19]. It is commonly
considered that inverse Compton losses limit the intrinsic brightness temperature for
incoherent synchrotron sources, such as AGN, to about 1012K [19].In case of a strong
flare, the "Compton catastrophe" is calculated to take about one day to drive the
brightness temperature below 1012K [19]. The estimated lower limit for the intrinsic
brightness temperature of the core in the Radio Astron image of Tb,int 	 2. 91012K is
therefore more than an order of magnitude larger than the equipartition brightness
temperature limit established in [19] and at least several times larger than the limit
established by inverse Compton cooling.

Fig.2.2.Fourier coverage (uv-coverage) of the fringe fitted data

(i.e.,reliable fringe detections) of the Radio Astron observations

of BL Lac on 2013 November 10-11at 22 GHz.

Color marks the lower limit of observed brightness temperature

obtained from visibility amplitudes. Adopted from [19].

Remark 2.1.Note that if the estimate of the maximum brightness temperature given
in [], is closer to actual values, it would imply Tb;int � 5 � 1013K. This is difficult to
reconcile with current incoherent synchrotron emission models from relativistic
electrons,requiring alternative models such as emission from relativistic protons.
Remark 2.2. However the proton, as we know, is 1836 times heavier than an
electron and absolutely huge energy is required to accelerated it to sublight speed.
We argue that these alternative models such as emission from relativistic protons
can be suported by semiclassical gravity effect finds its roots in the singular
behavior of quantum fields on curved distributional spacetimes presented by
rotating gravitational singularities [1],[6].
3.The Colombeau distributional Kerr spacetime in Boyer- Lindquist form.
The classical Kerr metric in Boyer-Lindquist form reads



ds2 � 
��r,��dt2 
 4mra sin2�
2 dtd� 


2

�a
dr2 
 2d�2 


r2 
 a2 
 2mra2 sin2�
2 sin2�d�2,

�3. 1�

where 2 � 2�r� � r2 
 a2 cos2�,�a � �a�r� � r2 
 2mr 
 a2,
��r,�� � �r2 
 2mr 
 a2 cos2��/2.
Note that

��r,�� � r2 
 2mr 
 a2 cos2�
2 �

�r 
 rE
�����r 
 rE_ ����
2 , �3. 2�

where rE��� � m  m2 
 a2 cos2� and

�a � r2 
 2mr 
 a2 � �r 
 r
��r 
 r
� �3. 3�

where r�a� � m  m2 
 a2 .
Let K�r,�� be a submanifold given by equation � � const, then the metric (3.1)
restricted on submanifold K�r,�� reads

ds2 � 
��r,��dt2 

2

�a
dr2 
 2d�2. �3. 4�

Note that: (i) the metric (3.4) is degenerates on outer ergosurface: r � rE
��� and
inner ergosurface r � rE_ ���, (ii) the metric (3.4) is singular on horizon r � r
, (iii)
the metric (3.4) is singular on submanifold given by equation r � r
.

Pic.4.1.1.Ergosurface,horizon,and singularity for slow

Kerr black hole.

We introduce now the following regularized above (below) ergosurface r � rE
���
quantities

��

�r,�� �

�r 
 rE_ ���� �r 
 rE
����
2 
 �2

2�r�
, �3. 5�

��

�r,�� � 
��


�r,�� and regularized above (below) horizon quantities

�a,�

 � �r 
 r
�a�� �r 
 r
�a��2 
 �2 . �3. 6�

Thus Colombeau generalized metric corresponding to classical Kerr metric
(3.1) reads



�ds�2�� � 
����
�r�,���� �dt2 
 4ma sin2� r�

�
2

�

dtd� 


�
2

��a,��r����
��dr�2�� � 
 ���

2�� �d�
2 
 r�2 
 a2 
 2mr�a2 sin2�

�
2

�

sin2�d�2.

�3. 7�

Fig.3.1.Rotatin gravitational singularity.

Let �Ra�m�r�,���� be Colombeau generalized curvature scalar corresponding to
the metric (3.7) with a � m.By straightforward calculation from Eq.(3.7) one
obtains that main singular part sing��Ra�m�r�,�,���� � of the Colombeau generalized
curvature scalar �Ra�m�r�,�,���� with �r� 
 rE
����� �

�
0
�

, corresponding to the metric

(3.7) reads

sing��Ra�m�r�,�,���� � ��

 r� 
 rE_ ���

r�2 
 a2 cos2�
�2

���r�� �r� 
 rE
����
2 
 �2 3/2

�
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where

���r�� � ���
�r,���

2�r��
��a,��r���


 8mr�a sin2�
r�2 
 a2 cos2�

. �3. 9�

From Eq.(3.8)-Eq.(3.9) on outer ergosurface �r��� � rE
��� we obtain

sing��Ra�m�rE
���,���� � ��

rE
��� 
 rE_ ���
8marE
��� sin2�

��
1�� �
�

m2 
 a2

4marE
��� sin2�
��
1�� �

�
c1�m, a,����
1��.
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Note that main singular part sing��Ra�m�r�,�,���� � of the Colombeau generalized
curvature scalar �Ra�m�r�,�,���� with �r� 
 r
�� �

�
0
�

, corresponding to the metric

(3.7) reads

sing��Ra�m�r�,�,���� � ��
�3. 11�



Let R���a�m��r�,��R��
�a�m��r�,��

�
be Colombeau generalized quadratic scalar

�R���r�,��R���r�,���� corresponding to the metric (3.7) with a � m. From

Eq.(3.7) one obtains that main singular part sing R���a�m��r�,��R��
�a�m��r�,��

�

of the Colombeau generalized quadratic scalar R���a�m��r�,��R��
�a�m��r�,��

�
reads

sing R���a�m��r�,��R��
�a�m��r�,��

�
�
�

�4

4�rE
����
4 �2 
 �r� 
 2m�2 3

�

. �3. 11�

Let R����a�m��r�,��R���
�a�m��r�,��

�
be Colombeau generalized quadratic

scalar �R����r�,��R����r�,���� corresponding to the metric (3.7) with a � m. From

Eq.(3.7) one obtains that main singular part sing R����a�m��r�,��R���
�a�m��r�,��

�

4.Distributional Kerr spacetime induced vacuum dominance. Classical
distributional background.
Let us consider Colombeau generalized quantity �W�

��, called the effective action
for the quantum matter fields in curved distributional spcetime, which, when
functionally differentiated, yields [9]

2
�
g����

1
2

�W�


�g�����
�

� �	T��
 ���
��. �4. 1�

Proceeding in standard manner we get [9]

�W�
�� � i

2 � dnx��
g�x�,���
1
2

� x��x��
lim �

m2

�

G�
�x�, x�

� ; m2�dm2

�

. �4. 2�

Interchanging now the order of integration and taking the limit x � x � one obtains

�W�
�� � i

2 �
m2

�

dm2 � dnx��
g�x�,���
1
2 G�

�x�, x�; m2�

�

. �4. 3�

Colombeau generalized quantity �W�
�� is colled as the one-loop effective action.

In the case of fermion effective actions, there would be a remaining trace over
spinorial indices. From Eq.(4.3) we may define an effective Lagrangian density

L�;eff
 �x�� �

by

�W�
�� � � dnx��
g�x�,���

1
2 L�;eff

 �x��
�
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whence finally we get

�L�
�x���� � �
g�x�,���

1
2 ��;eff

 �x��
�
� i

2
x�x�
lim �

m2

�

dm2G�
�x�, x�

� ; m2�

�

. �4. 5�

Note that �L�
�x���� diverges at the lower end of the s integral because the �����/2s

(����� � ���x�, x�
� ��� ) damping factor in the exponent vanishes in the limit x� � x�

� .
(Convergence at the upper end is guaranteed by the 
i� that is implicitly added to m2

in the De Witt-Schwinger representation of �L�
�x����. In four dimensions, the

potentially divergent terms in the De Witt-Schwinger expansion of �L�
�x���� are



�L�;div
 �x���� �


�32
2�
1

x�x�
lim �

1/2�x�, x�
� ;��

�
�
0

�
ds
s3 exp 
im2s 


��x�, x�
� �

2is
�

� a0
�x�, x�

� ;�� 
 isa1
�x�, x�

� ;�� 
 �is�2a2
�x�, x�

� ;��
�
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where the coefficients �a0
�x�, x�

� ;����, �a1
�x�, x�

� ;���� and �a2
�x�, x�

� ;���� are given
by the equation

�a1
�x�, x�

� ;���� �

1
6


 	 �R����� 

i
2

1
6


 	 ��R;�
 ����� ��y�

��� 

1
3

�a��
 ����

�
y�
�y�

�

�

�a2
�x�, x�

� ;���� � 1
2

1
6


 	 �R2����
�

 1

3
a �
����

�
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with all geometric quantities on the right-hand side of Eq.(4.7) evaluated at �x�
� �� � ��.

The remaining terms in this asymptotic expansion, involving a3
 and higher,

are finite in the limit x� � x�
� .

Let us determine now the precise form of the geometrical �L�;div
 �x���� terms, to

compare them with the distributional generalization of the gravitational Lagrangian
that appears in Eq.(2.1). This is a delicate matter because (4.6) is, of course, infinite.
What we require is to display the divergent terms in the form � � �geometrical object�.
This can be done in a variety of ways. For example, in n dimensions, the asymptotic
(adiabatic) expansion of L�;eff

 �x�� �
is

L�;eff
 �x�� �

�

2
1�4
�
n/2

x�x�
lim �

1/2�x�, x�
� ;��

�
�
j�0

�

aj�x�, x�
� ;�� �

��
0

�

ids�is� j
1
n/2 exp 
im2s 

��x�, x�

� �
2is

�
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of which the first n/2 
 1 terms are divergent as �� � 0. If n is treated as a
variable which can be analytically continued throughout the complex plane,
then we may take the x� � x�

� limit

L�;eff
 �x�� �

� 2
1�4
�
n/2 �
j�0

�

aj�x�;�� �
0

�

ids�is� j
1
n/2 exp�
im2s�

�

�

2
1�4
�
n/2 �
j�0

�

�m2�n/2
j� j 
 n
2

�aj�x�;����,

�aj�x�;���� � �aj�x�, x�;����.
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From Eq.(4.9) follows we shall wish to retain the units of L�;eff
 �x�� �

as

(length)
4, even when n � 4. It is therefore necessary to introduce an arbitrary
mass scale � and to rewrite Eq.(4.9) as



L�;eff
 �x�� �

� 2
1�4
�
n/2 m
�

n
4 �
j�0

�

aj�x�;���m2�4
2j� j 
 n
2

�

. �4. 10�

If n � 4, the first three terms of Eq.(4.10) diverge because of poles in the
�- functions:

� 
 n
4

� 4
n�n 
 2�

2
4 
 n


 � 
 O�n 
 4�,

� 1 
 n
2

� 4
�2 
 n�

2
4 
 n


 � 
 O�n 
 4�,

� 2 
 n
2

� 2
4 
 n


 � 
 O�n 
 4�.
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Denoting these first three terms by �L�;div
 �x����, we have

�L�;div
 �x���� � �4
�
n/2 1

n 
 4

 1

2
� 
 ln m2

�2 �

4m4a0�x�;��
n�n 
 2�


 2m2a1�x�;��
n 
 2


 a2�x�;��
�

.
�4. 12�

The functions �a0�x�;����, �a1�x�;���� and �a2�x�;���� are given by taking the
coincidence limits of (4.7)

�a0
�x�;���� � 1, �a1

�x�;���� � 1
6


 	 �R�����,

�a2
�x�;���� � 1

180
�R����

 �x�,��R�����x�,���� 

1

180
�R���x�,��R��

 �x�,���� 



 1
6

1
5


 	 ���,xR�x�,���� 

1
2

1
6


 	 �R2�x�,����.
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Finally one obtains [9]

�L�;ren
 �x���� � 
 1

64
2 �
0

�

ids ln�is� 	3

	�is�3 ��
�x�, x�; is�e
ism2

�

. �4. 14�

All the higher order �j 	 2� terms in the DeWitt-Schwinger expansion of the
effective Lagrangian (4.14) are infrared divergent at n � 4 as m � 0, we can still
use this expansion to yield the ultraviolet divergent terms arising from j � 0, 1,
and 2 in the four-dimensional case. We may put m � 0 immediately in the j � 0
and 1 terms in the expansion, because they are of positive power for n � 4.
These terms therefore vanish. The only nonvanishing potentially ultraviolet
divergent term is therefore j � 2 :

2
1�4
�
n/2 m
�

n
4
a2�x�,��� 2 
 n

2
, �4. 15�

which must be handled carefully. Substituting for �a2�x�;���� with 	 � 	�n�
from (4.13), and rearranging terms, we may write the divergent term in the
effective action arising from (4.14) as follows



�W�,div
 �� � 2
1�4
�
n/2 m

�
n
4

� 2 
 n
2 � dnx��
g�x�,���

1
2 a2�x�,��

�
�

2
1�4
�
n/2 m
�

n
4
� 2 
 n

2
�

� dnx��
g�x�,���
1
2

����
�x�� 


�
�G�

�x��
�

 O�n 
 4�,
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where

���
�x���� � �R�����x�,��R����

 �x�,���� 
 2�R���x�,��R��
 �x�,���� 


1
3
�R2�x�,����,

�G�
�x��� � �R�����x�,��R����

 �x�,����,
�� � 1

120
,
�
� � 
 1

360
.
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Finally we obtain [9]

�	T�
��x�,��
ren�� � 
�1/2880
2� �� ���x�� 
 2

3 ��,xR�x�,�� �


�
��G�

�x���� �


�1/2880
2� �

�R����
 �x�,��R�����x�,���� 
 �R��

 �x�,��R���x�,���� 
 ���,xR�x�,���� .
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In order to obtain finite result from Eq.(4.18) we have applied loop quantum
gravity approuch [9]-[10]. Thus final result in general case reads

	T�
��x�
ren � 	T�

��x,��
ren �


�1/2880
2��R����
 �x,��R�����x,�� 
 R��

 �x,��R���x,�� 
 �xR�x,���
�4. 19�

where � � �Planck.

5.Quantum distributional background.

In section 4 above we have considered the calculation on a classical distributional
background goes.However, the quantum distributional background introduces a
principal difference. The main difference between considering a quantum field on a
distributional quantum space-time as opposed to a classical space-time is that the
field equations become "discretized" and the divergences naturally regulated as was
considered in [1],[10].
As an appropriate simple exmple we consider now the Schwarzschild spacetime in
d � 2.The Schwarzschild metric in d � 1 
 1 its original singular form reads:

ds2 � 
 1 
 2m
r dt2 
 1 
 2m

r

1

dr2. �5. 1�

The metric (5.1) is degenerates and singular on Schwarzschild horizon r � 2m.
Following [12]-[14] using the canonical nonsmooth regularization we embed the
metric coefficients into Colombeau algebra G� ���� 2,�r � 2m��.Thus we have to
replace the nonclassical singular metric (5.1) by the Colombeau generalized metric
above horizon r � 2m

�ds�
2�� � 
��g�

�� ��dt�2�� 
 ��g�


�� �

1�dr�2��. �5. 2�

and below horizon �r��� � 2m



�ds�
2�� � 
��g�

�� ��dt�2�� 
 ��g�


�� �

1�dr�2��. �5. 3�

correspondingly,where

�g�
�� � r
1 �r� 
 2m�2 
 �2

�
. �5. 4�

By straightforward calculation from Eq.(5.2)-Eq.(5.4) one obtains that main singular
part sing��R�r�,���� � of the Colombeau generalized curvature scalar �R�r�,����
corresponding to the metric tensor (5.4) reads [1]:

sing��R�r�,���� � �
�2

2m �r� 
 2m�2 
 �2 3/2

�

. �5. 5�

By straightforward calculation from Eq.(5.2)-Eq.(5.4) one obtains that main singular
part sing �R���r�,��R��

 �r�,���� of the Colombeau generalized quadratic scalar

�R���r�,��R��
 �r�,���� corresponding to the metric tensor (5.4) reads [1]:

sing �R���r�,��R��
 �r�,���� � �4

4m2 �r� 
 2m�2 
 �2 3

�

. �5. 6�

By straightforward calculation from Eq.(5.2)-Eq.(5.4) one obtains that main singular
part sing �R����r�,��R���

 �r�,���� of the Colombeau generalized quadratic scalar

�R����r�,��R���
 �r�,���� corresponding to the metric tensor (5.4) reads [1]:

sing �R����r�,��R���
 �r�,���� � �4

4m2 �r� 
 2m�2 
 �2 3

�

. �5. 7�

We will consider now the stress �	T��
 ���
�� tensor corresponding to the metric

(5.2)-(5.4). �	T��
 ���
�� reads

�	T��
 ���
�� � 2


�g�
��

�W�
�g�

 �
�g�

��
�

, �5. 8�

where

��W�
�g�

 ��� � 
 i
2

Tr�ln��
GF
�g�

,���� �� �5. 9�

and where �GF
�x� 
 x�

� ,�, m2; g�
��� the Feynman propagator for the massive

generalized
scalar field,

������ 
 m2 
 	R����GF
�x�, x�

� ,�, m2; g�
��� � �g�

�x���

1/2��x� 
 x�

� �
�
. �5. 10�

Since we are interested in the infinite small distance behavior of the Green’s
function we have expand the metric in Riemann normal coordinates around a
point �x�

� ��, we can expand the metric tensor (5.4) as [9]

�g��
 �y�,���� � ��� 
 1

3 R����
 ���y�

�y�
�

�

 1

3 R����,�
 ���y�

�y�
�y�

�

�

. . . �5. 11�

with �y��� � �x��� 
 �x�
� ��,and therefore we can expand the propagator in

momentum space as,

�GF
�k�, m2,���� � ��k�

2�� 
 m2�

1 
 1

6 
 	 ��k�
2�� 
 m2�


2
�R����

 ����
�

. . . �5. 12�

We now rescale the propagator GF
�k�, m2,��

�
� ��
g�

�1/4GF
�k�, m2,����,



and recall that we are in spherical symmetry so only the radial and time
coordinates are involved, we get,

GF
�x�, x�

� ,�, m2; g�
�

�
�

�2
�
2 �
�� ���� �

d2k� exp�i�
k0,�y�
0 
 k1,�y�

1�� �

1 
 a1
�x�, x�

� ,�� 
 	
	m2 
 a2

�x�, x�
� ,�� 
 	

	m2

2
1

k0,�
2 
 k1,�

2 
 m2
�

,
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where

�a1
�x�, x�

� ,���� � 1
6 
 	 �R����� 


1
2

1
6 
 	 �R ,�

 ���y�
��� 


1
3 a��

 ���y�
�y�

�

�
. �5. 14�

The Colombeau quantity aαβ
 ���

�
is a geometric expression involving linear

and quadratic terms in the distributional scalar curvature, distributional Ricci
and distributional Riemann tensor.In d � 3 
 1 case the term involving aαβ

 ���
�

also leads to divergent corrections that need to be compensated introducing
counterterms quadratic in the curvature. In spherical symmetry we does not
need to consider such term. In order to compute the Green’s function we use
the identity

��k�
2�� 
 m2�


1
� 
i �

0

�
dsexp�is��k�

2�� 
 m2��. �5. 15�

From Eq.(5.13) and Eq.(5.15) by integrate on �k��� we obtain

GF
�x�, x�

� ,�, m2; g�
�

�
� 
 i

4
 �0

� ds
s exp 
im2s 


�����
2is

�

1 
 is�a1
�x�, x�

� ,���� 
 �is�2�a2
�x�, x�

� ,���� .
�5. 16�

Here �σ��� is related to the geodesic distance squared between �x���
and �x�

� ��, �σ��� � �y�
2��/2. The condition of the quantization of the areas of

symmetry leads to an effective quantization of the radial coordinate with
�ri,�

2 �� � �Planck
2 �k i,��� where i the label of the vertex of the spin network

associated with the radial position �ri,���. We will consider the simplest case
of a spin network that is equispaced in normal coordinates with lattice spacing �.
This imposes a cutoff in the radial integral in k1,� of 2π/� as is common on a lattice.
Then the Green’s function reads,

G�
�x�, x�

� ,�, m2; g�
�

�
�


 i
8
 �0

� ds
s exp 
im2s 


�����
2is

erf
i

2
4
s 
 ��y�

1��
� s


erf

 i

2
4
s 
 ��y�

1��
� s

.
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Thus the effective action is finite and takes the form

�W�
�x���� � i

2 � dx�
0 � dr� 
g�

�2�

�
limx��x� �

m2

�
G�

�x�, x�
� ,�, m2; g�

�dm2 �5. 18�

From Eq.(5.18) we can identify the effective Lagrangian where we study
the divergence,



Leffective
div �x�,�� �

� 
 i
8
 �0

� ds
s2 exp�
im2s�erf

2
 is
� �

1 
 is�a1
�x�,���� 
 �is�2�a2

�x�,���� �
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From Eq.(5.19) we obtain

Leffective
div �x�,�� �

�


 i
8
 �0

� ds
s2 exp�
im2s� 1 
 is�a1

�x�,���� 
 �is�2�a2
�x�,���� .
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For the particular background quantum state we chose with an equispaced lattice
with invariant distance among vertices of the spin network given by Δ, the first two
terms in the expansion in powers of (is) would lead to divergent contributions in
the limit Δ � 0. For a finite, sub-Planckian Δ they are very large. They can were
considered as fundamental physical effect arises from quantum distributional
background
Conclusion
In this article, we argue that the canonical interpretation of the Kerr spacetime in
contemporary general relativity is wrong and that revision is needed. We studied
the Kerr solution using Colombeau distributional geometry, thus without leaving
singular Boyer- Lindquist coordinates We argue that the Kerr solution is impossible
to treat classically but it can only be treated by using an embedding of the classical
Kerr metric tensor into appropriate Colombeau algebra supergeneralized functions

G���� 4,��. This meant that the classical Kerr spacetime could be extended up to the
distributional semi-Riemannian spacetime, since the classical Levi-Civita connection
is not available for the whole Kerr spacetime in singular Boyer- Lindquist coordinates.
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