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Introduction: The Collatz Conjecture has attained notoriety in the Math-
ematics community for being a problem easy to state and understand, but is
apparently difficult to solve. Arguably, the largest barrier to a solution was
given by Conway’s proof on certain generalizations of the collatz mapping being
uncomputable. This paper will present a novel Collatz function and prove some
properties of it, it is also written with the explicit purpose to make the proof
short and easy to understand with basic knowledge.

Definitions & Proofs: We present the following function:

f(x) =
x

2

(

3 +
1

x

)(
1−(−1)x

2 )

Theorem 1: f(x) satisfies the Collatz mapping ∀ x ∈ Z

Proof: This is trivial.

�

Firstly, do not question how this function was found. Secondly, the anaylsis
of the iterated behavior is actually very easy, in particular, there is one quirk of
the function which is particularly exploitable.

Define the separate function a(δ) ∃δ:

aN (δ) =
1

N

N
∑

i=1

δ(i)

Which is the arithmetic mean of δ’s output on the interval [1, N ].

Theorem 2:

lim
n→∞

fn(x) = 1 ∀x ∈ N
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Abstract: A proof using a novel real analytic generalization of the Collatz

mapping.



Proof:

Firstly, consider the function g ∈ f :

g(x) =

(

1− (−1)x

2

)

x ∈ N

Then, the full expression for f under iteration is as follows:

fn(x) =
1

2
fn−1(x)

(

3 +
1

fn−1(x)

)g(fn−1(x))

Definition: The natural density for some subset of N is defined as the conver-
gence of the probabilities for encountering that subset on the interval [1,N] with
a uniform distribution as N approaches infinity. g(x) represents an indicator
function for even integers.

lim
N→∞

aN (g) = 1/2

Thus, the natural density for the evens are derived. Then suppose x ∈ N is cho-
sen randomly from an arbitrary interval [1,N], these bayesian postulates then
follow:

P (fn(x) is even ∨ fn(x) is odd | fn−1(x) is even) = 1/2

P (fn(x) is even ∨ fn(x) is odd | fn−1(x) is odd) = 1/2

Which are just formalisms to state that the function preserves randomness upon
iteration.

The expansion of g(fn−1(x)) then reduces into a function α, which in an un-
biased fashion, randomly outputs a 1 or a 0, further reducible to a series of
coinflips. i.e.

(

f i(x)

2

(

3 +
1

f i(x)

)α

,
f i+1(x)

2

(

3 +
1

f i+1(x)

)α

,
f i+2(x)

2

(

3 +
1

f i+2(x)

)α

, ...

)
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Let S denote the set of all finite random sequences of 1s and 0s produced by α
of length n, let s ∈ S. Define the function c = card(1 ∈ s) which counts and
outputs the number of 1s in s, then c is binomially distributed across on the
interval [0, n] like so:

c(s) ∼ B(
n

2
,

√

(n)

2
) ∀ s ∈ S

This follows from the properties of coinflips, and we don’t care about any 0s
which arise in the sequence whatsoever, for obvious reasons. Then, by definition,
the mean is the sole value for which the root mean squared error between α,
and any deterministic parameterizations of it, is minimized. We proceed to
parameterize α with it’s mean and set n = 1, arriving at:

F (x) =
x

2

(

3 +
1

x

)( 1
2 )

Which is the best possible deterministic predictor for our original function, it
tells us *on average* f under iteration acts according to F .

Observe the following sets:

{x ∈ (P ∪ 0)|F (x) = x} = {1 ∪ 0}

{x ∈ (P ∪ 0)|F (x) < x} = {(1,∞)}

Which is to say the average behavior of f with n iterations on N is deflationary. In
a certain sense, 1 is a ”quasi-fixed point” for the function, though not adhering
to any actual fixed point theorems. In conclusion, as n approaches infinity
the expected value of α’s sequence is exactly 1/2 with standard deviation 0 by
approach of the natural density, when you invoke the law of large numbers that
is, then we recover:

lim
n→∞

Fn(x) = lim
n→∞

fn(x) = 1 ∀ x ∈ N

Furthermore, the originally set criteria of ”randomly chosen” for x begins to
break down on any infinite interval, and should instead be taken to mean arbi-
trarily chosen.

�

*Of course, one may wonder why the 3x+1 version of the conjecture converges,
while the 5x+1 version diverges. To find out, replace all 3s in the previous
functions given with 5s, then see F (x) > x for all positive integers.

Concluding remarks: This is generalizable to most any conditional opera-
tions dependent on the indicator function of certain numbers, for instance, one
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could use the sequence 0 0 1 0 0 1 0 0 1... as an indicator for numbers divisible
by 3, as long as the iterated version of the function is easily expressible. Hon-
estly, this problem probably better belongs in an undergraduate analysis course
if anything, but I’m not here to judge. Either way, it’s a fun problem to think
about.
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