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Mass Hierarchy and Mixing Matrices from Universal Bifurcations   

Ervin Goldfain 

The goal of this report is to tentatively show that the hierarchy of fermion masses and mixing angles follows 

from the universal behavior of nonlinear dynamics. Our work breaks away from attempts of explaining the 

Standard Model (SM) based upon heavy fields, postulated objects in complex spaces, non-commutative or 

motivic geometry, Quantum Gravity models, unconventional algebras, or extended symmetry groups. 
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1. Introduction 

The generation structure of quarks and leptons stands out as one of the most intriguing 

puzzles of theoretical high-energy physics [1]. The conventional formulation of the SM 

requires 19 free input parameters, among which 12 can be expressed in terms of empirical 

mass eigenvalues. In addition, there is a set of four inputs determined by the so-called 

Cabibbo–Kobayashi–Maskawa (CKM) matrix whose structure includes three quark-

mixing angles and one CP phase. The remaining three parameters are two gauge 

couplings ( ,EM QCDa a ) and the strong CP phase. Experiments have convincingly confirmed 

the existence of neutrino oscillations and masses, yet our understanding of the neutrino 

sector is currently incomplete. There is a large body of proposed extensions of SM, each 

of them aiming to resolve some unsatisfactory aspects of the theory while introducing new 

unknowns. It is our view that, at least at the time of writing, these attempts fail to offer 

arguments with clear relevance for the physics of SM. In contrast, our work suggests that 

the pattern of fermion masses and mixing angles is rooted in the bifurcation regime of 
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nonlinear dynamics, a scenario backed up by numerous experiments carried out across 

various disciplines. 

The paper is structured in the following way: next section details the main working 

assumptions on which the paper is founded, section three introduces self-organized 

criticality (SOC) and its connection to the minimal fractal manifold (MFM) geometry of 

spacetime near the Fermi scale. Section four delves into the scaling hierarchies of 

fermions in relation to universal bifurcations and the Cabibbo angle.  

2. Assumptions 

Our work develops from three underlying premises, namely, 

A1) As complex dynamics is likely to come into play near or above the Fermi scale, 

SOC becomes a suitable framework for modeling the behavior of field theory beyond 

SM [2-3] 

A2) MFM and its theoretical implications, in particular, the running of spacetime 

dimensions with the energy scale, assumes a leading role [3]. 

A3) in line with A1), our derivation relies on the center manifold theory and the 

reduction of a generic large system of ODE’s to a generic quadratic equation [4-5]. A 

direct consequence of this conjecture is that the transition to chaos in the dynamics 

of field theory follows the Feigenbaum’s route of period-doubling bifurcations. [6-10] 

3. From SOC to the minimal fractal manifold (MFM) 

The study of equilibrium critical phenomena reveals that, near a second-order phase 

transition, the scaling behavior of physical observables follows the so-called finite-size 
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scaling (FSS) ansatz. By analogy, the probability distribution defining the FSS ansatz in 

SOC takes the form [2]   

 ( , )P s L  ~ ( )s

c

ss
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t- F  for 1, 1s L>> >>   (1a) 

 ( )cs L  ~ SDL  for 1L >>    (1b) 

in which cs  is the cutoff in the avalanche-size and where st  and SD  are called the 

avalanche-size exponent and the avalanche dimension, respectively. The cutoff function 

( )xF  assumes the following expansion around zero,    
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The transition from the framework of equilibrium critical phenomena to SOC can be made 

under the plausible assumption that the correlation length x  displays the same behavior 

as the avalanche-size, i.e.,  

 s x=  ;    cs L=   (3) 

MFM denotes a spacetime continuum characterized by arbitrarily small and scale-

dependent deviations from four dimensions ( 2 24 ( ) 1UVD O me = - = L << ) [3]. It reflects an 

evolving setting that starts far-from-equilibrium and gradually reaches the equilibrium 

conditions mandated by relativistic field theory in the limit of four-dimensional spacetime 

( 0e = ).  
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Elaborating from this baseline and appealing to A1) and A2), we advance the hypothesis 

that the dimensional deviation e  and the avalanche-size s x=  are interchangeable 

concepts via   

 14 1D se -= - = <<   (4) 

This ansatz is consistent with the spirit of conformal field theory, as the four-dimensional 

limit 0, ( 4)De = =  naturally matches the asymptotic approach to the far-infrared regime 

of massless fields 1 1( 0 )m sx - -= = ® . Further setting the dimensional cutoff in close 

proximity to zero,  

 1ce e e¥= << <<   (5) 

turns the probability distribution (1) into   

 ( , )cP e e ~ ( )st ee e
¥F  , 1e <<   (6a) 

 ( )e m¥  ~ SDm , 1m >> ,  0sD <     (6b) 

where m  is the dimensionless Renormalization Group scale and 2st =  for quantum 

mechanical paths and random-walk models in three dimensional space. 

Assumption A3) implies that the dimensional flow of e  towards e¥  obeys the power-law  

 ( )n nOe e e¥- =  ~ 
n

d
-

  (7) 

where d  stands for a Feigenbaum-like constant and n  for the flow iteration number. By 

(2), (5)-(7), we arrive at the expansion 
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n n

d e d
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¥F + F +   (8) 

The second term of (8) is non-vanishing if '(0)F  assumes singular values according to 

 1'(0) ( ) 1O e -
¥F = >>   (9) 

 Also note that (8) stays finite only if terms containing second and higher-order 

derivatives of the cutoff function are properly suppressed by a regularization procedure 

or by fluctuations that cancel out. If these conditions are fulfilled, the probability 

distribution (8) boils down to only a couple of terms depending on the iteration number, 

the constant d  and its square. We are now ready to explore the link the between (8) and 

the scaling distribution of fermion masses and mixing angles.        

4. Scaling hierarchies of the fermion sector 

A remarkable yet unexplained property of SM parameters is that they are organized in a 

hierarchical pattern. The scaling ratio of two parameters in the hierarchy depends on 

integer powers of the Cabibbo angle whose experimental best-fit value is 12.9 13Cq = - . 

It is customary to work with the Cabibbo angle in the equivalent trigonometric form, that 

is, sin 0.223 0.225Cl q= = - . Let us denote the set of charged lepton and current-quark 

masses, evaluated at an arbitrary energy scale, by the vector lM  and matrix qM , 

respectively, 

 l eM m m mm té ù= ë û        
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The explicit set of mass scaling ratios built from (10) is given by [1] 
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The CKM matrix expressed using the Wolfenstein parameterization is approximated to 

the leading order by entries dependent on powers of l , namely, 

 

3

2

3 2

1

1

1

CKMV

l l
l l
l l

= -

-

  (14) 

A similar matrix composition may be assigned to mixing in the lepton sector. If the 

neutrino mass matrix mn  and the charged lepton matrix lm  are diagonalized through the 

following transformations [1] 

 diag Tm U m Un n n n=   (15) 

 diag

l L l Rm U m U +=   (16) 

then it can be shown that the neutrino mixing matrix (PMNS matrix) may be formulated 

as 

 PMNS LU U Un
+=   (17) 
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which leads to the following representation 

 l lm m+ ~ 

6 5 3

2 5 4 2

3 2 1

mt

l l l
l l l
l l

   (18) 

 diag T

L l LU m U  ~ 

4 3 3

3 2 2

3 2 1

mt

l l l
l l l
l l

  (19) 

The standard parameterization of the neutrino matrix is carried out using three mixing 

angles given by 

 12sinq l=   (20) 

 2

23sin Bq l=   (21) 

 3

13sin Aq l=   (22) 

in which ,A B  are positive numbers of order unity. 

Comparative inspection of the above relationships reveals that the first term in (8) may 

be associated with the fermion mass hierarchy (11-13), whereas the second term of (8) 

with the hierarchies present in the mixing matrices (14) and (18)-(19). The key point here 

is that the numerical value of the Cabibbo angle l  falls reasonably close to the  reciprocal 

of the Feigenbaum-like constant for quadratic maps ( 4.669...d =  ) [1], i.e.  

 
1

( )Ol d
-

=   (23) 
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We close by noting that these findings are consistent with the following observations: 

a)  fermion mass and flavor eigenstates are mismatched in the SM, as reflected by the 

separation of terms in (8), 

b) masses and mixing matrices are naturally linked to each other in the description of 

fermion coupling to the Higgs condensate [11] 

APPENDIX 

It is worthwhile adding an endnote comment on section 2. The number of working 

assumptions A1)-A3) can conceivably be reduced to two, namely A1)-A2), on account of 

the fact that SOC emerges from the complex interaction of a large number of components. 

As shown in [4], an explicit form of evolution in systems exhibiting complex behavior is 

provided by the master equation. This equation describes the rate of transition 

probabilities among various states, which is relevant to non-equilibrium processes such 

as absorbing phase transitions, directed percolation, and reaction-diffusion [12]. The 

master equation provides a bridge between SOC and the universal quadratic equation 

derived from the center manifold theory. Digging deeper into these matters is beyond the 

scope of this work.      
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