Generalization of Mathematical induction

Jaejin Lim

Abstract: This paper is written to prove that although supposes are many, it can be proven in mathematical induction.

There are nature number, ‘a’, ‘k’, ‘B’ and ‘C’.

P(x) is a proposition.

[About P(x)]

When n is a
P(a) is true.

When n is k
suppose P(k) is true.

When n is k + 1
suppose P(k + 1) is true.

\[\cdots \]

When n is k + B - 1
suppose P(k + B - 1) is true.
(totally supposed as B times)

When n is k + B
prove P(k + B) is true.]
This [] is \(M(B) \).
And I’ll prove \(P(x) \ (x \geq a) \) is true in \(M(B) \) \((B \geq 1)\).

About \(M(B) \)

When \(B \) is 1
\(M(1) \) is mathematical induction.

When \(B \) is \(C \)
(1) suppose \(M(C) \) is true.
That is if \(P(k + C) \) is true,
\(P(x) \) is true. \((x \geq a)\)

When \(B \) is \(C + 1 \)
\(P(n) \) is true ever since \(n \) is \(k + C \).
As \(P(k + C) \) is true, by (1) suppose,
\(P(x) \) is true. \((x \geq a)\)

So, \(M(B) \) \((B \geq 1)\) is true.