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Abstract; 

This short paper is intended to demonstrate a series of theoretical techniques that can be deployed 

whilst satisfying the objective of representing the rotational kinetic energies exhibited by planets in 

approximately circular orbits. Its premise is pursuant to Kepler’s third law, and functionality 

determined by several ubiquitous notions of rotational KE, angular momentum, and most notably, 

angular velocity. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Phase 1: Begin with a simplistic derivation of Kepler’s third law; 

The velocity of a body in a circular orbit is represented in two modalities, the first of which is; 

 

𝑣 =
2𝜋𝑟

𝑇
 (𝐸1) 

Secondly, we may equate the centripetal force experienced by a body undergoing uniformly 

circular motion as a consequence of its position in an external gravitational field; 

𝑚𝑣2

𝑟
=  

𝐺𝑀𝑚

𝑟2
 

Simplifying, we yield: 

𝑣2

𝑟
=  

𝐺𝑀

𝑟2
 

 

𝑣2 =  
𝐺𝑀

𝑟
 

𝑣 =  √
𝐺𝑀

𝑟
 (𝐸2) 

If one were to express the equivalency between E1 and E2: 

 

𝑣 =  √
𝐺𝑀

𝑟
=  

2𝜋𝑟

𝑇
 

𝐺𝑀

𝑟
=

4𝜋2𝑟2

𝑇2
 

Rearranging yields: 

  

𝑇2 =
4𝜋2𝑟3

𝐺𝑀
(𝐾𝑒𝑝𝑙𝑒𝑟′𝑠 𝑇ℎ𝑖𝑟𝑑 𝐿𝑎𝑤) 

 

 

 

 



Phase 2: Consider the angular velocity of a planetary body subject to the orbital equivalency above; 

𝜔 =
2𝜋

𝑇
 

In finding the rotational kinetic energy of a body; one may use the general form: 

𝐾𝐸𝑟 =
1

2
𝐼𝜔2 

Wherein 𝐼 represents the body’s moment of inertia, and 𝜔 its angular velocity; 

Substituting the first equation: 

𝐾𝐸𝑟 =
1

2
𝐼𝜔2 

𝜔2 =
4𝜋2

𝑇2
 

𝐾𝐸𝑟 =
1

2
𝐼

4𝜋2

𝑇2
 

𝐾𝐸𝑟 =
4𝜋2𝐼

2𝑇2
 

Since 𝑇2 =
4𝜋2𝑟3

𝐺𝑀
 

𝐾𝐸𝑟 =
4𝜋2𝐼

2
4𝜋2𝑟3

𝐺𝑀

 

 

𝐾𝐸𝑟 =
𝐺𝑀4𝜋2𝐼

8𝜋2𝑟3
 

 

𝜋2 𝑐𝑎𝑛𝑐𝑒𝑙𝑠, 𝑙𝑒𝑎𝑣𝑖𝑛𝑔; 

𝑲𝑬𝒓 =
𝑮𝑴𝑰

𝟐𝒓𝟑
 

 

The formulation above is a representation of an archetypal planet’s rotational kinetic energy 𝐾𝐸𝑟 as 

a function of its mass (𝑀), moment of inertia (𝐼) and radius (𝑟). 

Alternatively, one may attempt to repurpose the formulation such that it tailors a given planet’s 

angular momentum. 

 



Phase 3: Alternative Formulations; 

To commence, one must reverse back to the fundamental formulation; 

𝐾𝐸𝑟 =
1

2
𝐼𝜔2 

𝐼 𝑖𝑠 𝑎 𝑡𝑒𝑛𝑠𝑜𝑟 𝑞𝑢𝑎𝑛𝑡𝑖𝑡𝑦 𝑖𝑛𝑡𝑒𝑟𝑐ℎ𝑎𝑛𝑔𝑒𝑎𝑏𝑙𝑒 𝑤𝑖𝑡ℎ 𝑡ℎ𝑒 𝑟𝑎𝑡𝑖𝑜 
𝐿

𝜔
 

wherein 𝐿 notes a body’s conserved angular momentum. 

Thus, re-adjusting the expression allows one to obtain: 

𝐾𝐸𝑟 =
1

2

𝐿

𝜔
𝜔2 

𝐾𝐸𝑟 =
1

2
𝐿𝜔 

In deriving a dependent argument for 𝜔; 

𝜔 =
2𝜋

𝑇
 

𝑇2 =
4𝜋2𝑟3

𝐺𝑀
 

𝑇 =
2𝜋𝑟3/2

√𝐺𝑀
 

Reverting; 

𝜔 =
2𝜋

𝑇
 

𝜔 =
2𝜋

2𝜋𝑟3/2

√𝐺𝑀

 

𝜔 =
2𝜋√𝐺𝑀

2𝜋𝑟3/2
 

2𝜋 𝑐𝑎𝑛𝑐𝑒𝑙𝑠, 𝑙𝑒𝑎𝑣𝑖𝑛𝑔: 

𝜔 =
√𝐺𝑀

𝑟3/2
 

Expanding the radical procures; 

𝜔 =  √
𝐺𝑀

𝑟3
 



Consequently; operating the alternative formulation allows one to carry out the following 

calculation: 

𝐾𝐸𝑟 =
1

2
𝐿𝜔 

𝐾𝐸𝑟 =
1

2
𝐿√

𝐺𝑀

𝑟3
 

Once more, replacing ½ outside the radical by a factor of ¼ inside it allows the mathematical 

continuation outlined below: 

𝐾𝐸𝑟 = 𝐿√
𝐺𝑀

𝑟3

1

4
 

𝑲𝑬𝒓 = 𝑳√
𝑮𝑴

𝟒𝒓𝟑
 

Subsequently, this mechanism returns a planet’s rotational kinetic energy in terms of its angular 

momentum (𝐿), and the aforementioned variables listed in the first expression. 

One can resolve a planet’s angular momentum into its vectorial components, so as to yield a more 

complex dependency. 

 


