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Abstract: In order to show some power of the division by zero calculus
we will give several simple applications to physics. Recall that Oliver Heav-
iside: Mathematics is an experimental science, and definitions do not come
first, but later on.
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1 Introduction
We will see the division by zero properties in various physical formulas. We
found many and many division by zero phenomena in physics and others,
however, we expect many publications about them by the related specialists.
As the first stage, here we refer only to elementary formulas, as examples.
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2 Simple introduction of the division by zero
calculus

We will recall the simple background on the division by zero calculus for
differentiable functions based on ([24, 25]).

For a function y = f(x) which is n(n > 0) order differentiable at x = a,
we will define the value of the function

f(x)

(x− a)n

at the point x = a by the value

f (n)(a)

n!
.

For the important case of n = 1,

f(x)

x− a
|x=a = f ′(a). (2.1)

In particular, the values of the functions y = 1/x and y = 0/x at the origin
x = 0 are zero. We write them as 1/0 = 0 and 0/0 = 0, respectively.
Of course, the definitions of 1/0 = 0 and 0/0 = 0 are not usual ones in the
sense: 0 · x = b and x = b/0. Our division by zero is given in this sense
and is not given by the usual sense. However, we gave several definitions for
1/0 = 0 and 0/0 = 0. See, for example, [22].

In addition, when the function f(x) is not differentiable, by many mean-
ings of zero, we should define as

f(x)

x− a
|x=a = 0,

for example, since 0 represents impossibility. In particular, the value of
the function y = |x|/x at x = 0 is zero.

We will note its naturality of the definition.
Indeed, we consider the function F (x) = f(x)−f(a) and by the definition,

we have
F (x)

x− a
|x=a = F ′(a) = f ′(a).
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Meanwhile, by the definition, we have

lim
x→a

F (x)

x− a
= lim

x→a

f(x)− f(a)

x− a
= f ′(a). (2.2)

For many applications, see the references cited in the reference.
The identity (2.1) may be regarded as an interpretation of the differential

coefficient f ′(a) by the concept of the division by zero. Here, we do not use
the concept of limitings. This means that NOT

lim
x→a

f(x)

x− a

BUT
f(x)

x− a
|x=a.

Note that f ′(a) represents the principal variation of order x − a of the
function f(x) at x = a which is defined independently of f(a) in (2.2). This
is a basic meaning of the division by zero calculus f(x)

x−a
|x=a.

Following this idea, we can accept the formula, naturally, for also n = 0
for the general formula; that is,

f(x)

(x− a)0
|x=a =

f (0)(a)

0!
= f(a).

In the expression (2.1), the value f ′(a) in the right hand side is represented
by the point a, meanwhile the expression

f(x)

x− a
|x=a (2.3)

in the left hand side, is represented by the dummy variable x− a that repre-
sents the property of the function around the point x = a with the sense of
the division

f(x)

x− a
.

For x ̸= a, it represents the usual division.
When we apply the relation (2.1) to the elementary formulas for differ-

entiable functions, we can imagine some deep results. For example, in the
simple formula

(u+ v)′ = u′ + v′,
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we have the result

u(x) + v(x)

x− a
|x=a =

u(x)

x− a
|x=a +

v(x)

x− a
|x=a,

that is not trivial in our definition. This is a result from the property of
derivatives.

In the following well-known formulas, we have some deep meanings on
the division by zero calculus.

(uv)′ = u′v + uv′,(u
v

)′
=

u′v − uv′

v2

and the famous laws
dy

dt
=

dy

dx

dx

dt

and
dy

dx
· dx
dy

= 1.

Note also the logarithm derivative, for u, v > 0

(log(uv))′ =
u′
u

+
v′
v

and for u > 0

(uv)′ = uv

(
v′ log u+ v

u′

u

)
.

We note the basic relation for analytic functions f(z) for the analytic
extension of f(x) to complex variable z

f(x)

(x− a)n
|x=a =

f (n)(a)

n!
= Res.ζ=a

{
f(ζ)

(ζ − a)n+1

}
.

We therefore see the basic identities among the division by zero calculus,
differential coefficients and residues in the case of analytic functions. Among
these basic concepts, the differential coefficients are studied deeply and so,
from the results of the differential coefficient properties, we can derive another
results for the division by zero calculus and residures. See [25].
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3 Examples
3.1 Bhāskara’s example – sun and shadow
We will consider the circle such that its center is the origin and its ra-
dius R. We consider the point S (sun) on the circle such that ∠SOI = θ;
O(0, 0), I(R, 0). For fixed d > 0, we consider the common point (−L,−d) of
two line OS and y = −d. Then we obtain the identity

L =
R cos θ

R sin θ
d,

([5], page 77.). That is the length of the shadow of the segment of (0, 0) −
(0,−d) onto the line y = −d of the sun S.

When we consider θ → +0 we see that, of course
L → ∞.

Therefore, Bhāskara considered that
1

0
= ∞. (3.1)

Even nowadays, our mathematics and many people consider so.
However, for θ = 0, we have S=I and we can not consider any shadow on

the line y = −d, so we should consider that L = 0; that is
1

0
= 0. (3.2)

Nothing may be represented by zero; it will be a sense of zero.
Furthermore, for R = 0; that is, for S=O, we see its shadow is the point

(0,−d) and so L = 0 and

L =
0 cos θ

0 sin θ
d = 0;

that is
0

0
= 0.

This example shows that the division by zero calculus is not
almighty.

Note that both identities (3.1) and (3.2) are right in their senses. De-
pending on the interpretations of 1/0, we obtain INFINITY and ZERO,
respectively.
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3.1.1 Another example

We consider a triangle ABC with AB = c, BC = a, CA = c. Let xi be the
orthogonal projections of AB and AC to the line BC. Then we have

xi =
1

2

{
a∓ (b+ c)|b− c|

a

}
,

([5], pages 70-71.). If b = c, then, of course, x1 = x2 = a/2. For a = 0, by
the division by zero, we have the reasonable value x1 = x2 = 0.

3.1.2 Remark

For the example ([5], pages 70-71.), we see that now there is no problem,
because we have the relation

R

jc
=

r

R
.

Then, we have the right formula

y = r sinφ.

3.2 In balance of a steelyard
We will consider the balance of a steelyard and then we have the equation

aFa = bFb (3.3)

as the moment equality. Here, a, b are the distances from a fixed point and
force Fa, Fb points, respectively. Then, we have

Fa =
b

a
Fb.

For a = 0, should be considered as Fa = 0 by the division by zero b/0 = 0?
The identity (3.3) appears in many situations, and the above result may

be valid similarly.
As a typical case, we recall
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Ctesibios (BC. 286-222): We consider a flow tube with some fluid. Then,
when we consider some cut with a plane with its area S and with its velocity
v of the fluid on the plane, by continuity, we see that for any cut plane,
Sv = C; C : constant. That is,

v =
C

S
.

When S tends to zero, the velocity v tends to infinity. However, for S = 0,
the flow stops and so, v = 0. Therefore, this example shows the division by
zero C/0 = 0 clearly. Of course, in the situation, we have 0/0 = 0, trivially.

We can find many and many similar examples, for example, in Archimedes’
principle and Pascal’s principle.

We will state one more example:
E. Torricelli (1608 -1646): We consider some water tank and the initial

high h = h0 for t = 0 and we assume that from the bottom of the tank with
a hole of area A, water is fall down. Then, by the law with a constant k

dh

dt
= − k

A

√
h,

we have the equation

h(t) =

(√
h0 −

k

2A

)2

.

Similarly, of course, for A = 0, we have

h(t) = h0.

Even the fundamental relation among velocity v, time t and distance s

t =
s

v
,

we will be able to understand the division by zero
s

0
= 0

and
0

0
= 0.
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3.3 By rotation
We will give a simple physical model showing the result 0

0
= 0. We shall

consider a disc with x2 + y2 ≤ a2 rowling uniformly with a positive constant
angular velocity ω with its center at the origin. Then we see, at the only
origin, ω = 0 and at other all points, ω is a constant. Then, we see that the
velocity and the radius r are zero at the origin. This will mean that, in the
general formula

v = rω,

or, in
ω =

v

r

at the origin,
0

0
= 0.

We will not be able to obtain the result from

lim
r→+0

ω = lim
r→+0

v

r
,

because it is the constant.
For a uniform rotation with velocity v with its center O′ and with its

radius r. For the angular velocity vector ω and for the moving position P on
the circle, we set r = OP . Then,

v = ω × r.

If ω × r = 0, then, of course, v = 0.

3.4 By the Newton’s law
We will recall the fundamental law by Newton:

F = G
m1m2

r2
(3.4)

for two masses m1,m2 with a distance r and for a constant G. Of course,

lim
r→+0

F = ∞,
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however, as in our fraction

F = 0 = G
m1m2

0
. (3.5)

Of course, here, we can consider the above interpretation for the mathe-
matical formula (3.4) as the new interpretation (3.5). In the ideal case, when
two masses are on one point, the force F will not be positive and it will be
reduced to zero.

In the Kepler (1571 - 1630) - Newton (1642 - 1727) law for central force
movement of the planet,

m
d2r

dt2
= −GmM

r3
r,

of course, we have r = 0 for r = 0.
For the Coulomb’s law, see similar formulas. Indeed, in the formula

F = k
(+q)(−q)

r2

for r = 0, we have F = 0.
In general, in the formula

F = k
(Q1)(Q2)

r2

for r = 0, we have F = 0 (S. Senuma: 2016.8.20.).
Furthermore, as well-known, the bright at a point at the distance r from

the origin is given by the formula

B = k
P

r2
,

where k is a constant and P is the amount of the light. Of course, we have,
at the infinity

B = 0.

Then, meanwhile, may we consider as

B = 0

at the origin r = 0? Then we can obtain our formula

k
P

0
= 0,

as in our new formula.

9



3.5 An interpretation of 0× 0 = 100 from 100/0 = 0

The expression 100/0 = 0 will represent some divisor by the zero in a
sense that is not the usual one, and so, we will be able to consider some
product sense 0× 0 = 100.

We will show such an interpretation.
We shall consider same two masses m, however, their constant velocities

v for the origin are the same on the real line, in the symmetry way. We
consider the moving energy product E2,

1

2
mv2 × 1

2
m(−v)2 = E2.

We shall consider at the origin and we assume that the two masses stop at
the origin (possible in some case). Then, we can consider, formally

0× 0 = E2.

The moving energies change to other energies, however, we can obtain some
interpretation as in the above.

This example was discovered by M. Yamane presented in the paper [7].

3.6 Capillary pressure in a narrow capillary tube
In a narrow capillary tube saturated with fluid such as water, the capillary
pressure is simply expressed as follows,

Pc =
2σ

r

where Pc is capillary pressure (suction pressure), σ is surface tension, and r
is radius. If r is zero, there is no pressure. However Pc shows infinity, in the
common meaning.

This simple equation is based on the Laplace-Young equation

P = σ

(
1

R1

+
1

R2

)
where R1 and R2 are two principal radii of curvature at any point on the
surface of a droplet or a bubble and in the case of spherical form R1 = R2 =
R. For a spherical bubble the pressure difference across the bubble film is zero

10



since the pressure is the same on both sides of the film. The Laplace-Young
equation reduces to

1

R1

+
1

R2

= 0.

On other hand when diameter of a bubble is decreased and becomes 0(R = 0),
the bubbles collapse and enormous energy is generated. Accumulated free
energy in the bubble is released instantaneously.

This example was discovered by M. Kuroda presented in [7].

3.7 Circles and curvature - an interpretation of the
division by zero r/0 = 0

We consider a solid body called right circular cone whose bottom is a disc
with its radius r2. We cut the body with a disc of radius r1(0 < r1 < r2) that
is parallel to the bottom disc. We denote the distance by d between both
discs and R the distance between the top point of the cone and the bottom
circle on the surface of the cone. Then, R is calculated by Eko Michiwaki (8
year old daughter of H. Michiwaki) as follows:

R =
r2

r2 − r1

√
d2 + (r2 − r1)2,

that is called EM radius, because by the rotation of the cone on the plane, the
bottom circle writes the circle of radius R. We denote by K = K(R) = 1/R
the curvature of the circle with its radius R. We fix the distance d. Now
note that

r1 → r2 =⇒ R → ∞.

This will be natural in the sense that when r1 = r2, the circle with its radius
R becomes a line.

However, the division by zero will mean that when r1 = r2, the above
EM radius formula makes sense and R = 0. What does it mean? Here, note
that, however, then the curvature K = K(0) = 0 by the division by zero
calculus; that is, the circle with its radius R becomes a line, similarly. The
curvature of a point (circle of radius zero) is zero. See [10].
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3.8 Vibration
In the typical ordinary differential equation

m
d2x

dt2
= −kx,

we have a general solution

x = C1 cos(ωt+ C2), ω =

√
k

m
.

If k = 0, that is, if ω = 0, then the period T that is given by

T =
2π

ω

should be understood as T = 0?
In the typical ordinary differential equation

m
d2x

dt2
+ kx = f cosωt,

we have a special solution

x =
f

m

1

|ω2 − ω2
0|
cosωt, ω0 =

√
k

m
.

Then, how will be the case
ω = ω0

?
For example, for the differential equation

y′′ + a2y = b cosλx,

we have a special solution, with the condition λ ̸= a

y =
b

a2 − λ2
cosλx.

Then, when λ = a, by the division by zero calculus, we obtain the special
solution

y =
bx sin(ax)

2a
+

b cos ax

4a2
.
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3.9 Spring or circut
We will consider a spring with two spring constants {kj} in a line. Then, the
spring constant k of the spring is given by the formula

1

k
=

1

k1
+

1

k2
,

by Hooke’s law. We know, in particular, if k1 = 0, then

1

k
=

1

0
+

1

k2
,

and by the division by zero,
k = k2,

that is very reasonable. In particular, by Hooke’s law, we see that

0

0
= 0.

As we saw for the case of harmonic mean, in this case k1 = 0, the zero
means that the spring does not exist.

The corresponding result for the case of Ohmu’s law is similar and valid.

3.10 Motion
A and B start at the origin on the real positive axis with, for t = 0

d2x

dt2
= a,

dx

dt
= u

and
d2x

dt2
= b,

dx

dt
= v,

respectively. After the time T and at the distance X from the origin, if they
meet, then we obtain the relations

T =
2(u− v)

b− a

and
X =

2(u− v)(ub− va)

(b− a)2
.
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For the case a = b, we obtain the reasonable results T = 0 and X = 0.
We will consider the motion (x, y) represented by x = cos θ, y = sin θ

from (1, 0) to (−1, 0) (0 ≤ θ ≤ π) with the condition

vx =
dx

dt
= − sin θ

dθ

dt
= V (constant).

Then, we have that
vy =

dy

dt
= −V

1

tan θ
,

and
ay =

d2y

dt2
= −V 2 1

sin3 θ
.

Then we see that
vy(1, 0) = 0, that is, 1

tan 0
= 0,

vy(−1, 0) = 0, that is, 1

tanπ
= 0,

ay(1, 0) = 0, that is, 1

sin3 0
= 0,

and
ay(−1, 0) = 0, that is, 1

sin3 π
= 0.

3.11 Darcy’s law for fluid through porpous media
Diffusion phenomenon and penetration phenomenon may be represented by
the partial differential equations

∂u

∂t
= ν

∂2um

∂x2

for some constants ν and m.
Indeed, density u and pressure p may be related by equation of state

u = γpα,

with some constants γ and α.
By the conservative law, we have, for porocity ν and velocity v
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∂(uv)

∂x
= −ν

∂u

∂t
.

At the last, by Darcy’s law, we have for some constant k

v = −k
∂p

∂x
.

By chancelling v, p from three equations we obtain

∂u

∂t
=

k

νγ(α + 1)

∂

∂x

(
∂

∂x
u1+1/α

)
([6], 21-22). As basic references, see ([3, 1, 2]).

Be setting m = 1 + 1/α, we have the desired equation.
Note that for α = 0, with the division by zero 1/0 = 0, we have the right

differential equation.
Meanwhile, for α = −1, by the division by zero calculus, we have

∂u

∂t
=

k

νγ

∂2

∂x2
(− log u) .

How will be this partial differential equation?

3.12 RCL and RL circuts
We will consider an RCL circut stated by the ordinary differential equation

L
di

dt
+Ri+

1

C

∫
idi = E0 sinωt, (3.6)

i =
E0√

R2 + ((ωL− (1/(ωC))2
sin (ωt− φ) ; (3.7)

φ = arctan
1

R

(
ωL− 1

ωC

)
. (3.8)

Here, E0 sinωt is a given AC voltage.
In this circut, for the case C = 0 that is the condense is missing, we

obtain the corresponding result precisely by the division by zero

1

C
= 0
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and
1

ωC
= 0.

We can find many and many the division by zero and division by zero
calculus in physics.
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