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Abstract. The height of buildings is limited by the weight and the strength of con-
structive materials. Inflated structures are considered as a prospective technology

for constructing super-tall buildings, including those reaching the boundary of the
cosmic space. The goal of the present paper is to derive and compute theoretical

estimates for the upper limit of the height of an inflated cylindrical structure subdi-
vided into segments designed in such a way that they practically do not load each

other transmitting all of their weight to the basement through the gas inside them.

1. Introduction.

The idea of a super-tall tower reaching heavens is known from the Bible as the
narrative of the tower of Babel. Later on this idea was expressed by Konstantin
Tsiolkovsky, one of the pioneers of astronautics. In [1] he wrote “The gravity of
the Earth will fade out at the top of a tower whose height is 5 1

2
of its radius (which

is 37000 km over its surface, the Moon being 10 times further)”. Jerome Pearson
in [2] suggested to use such a tower for launching spacecrafts. Due to the famous
science fiction writer Arthur C. Clarke (see [3]) the idea of space tower became
known to the broad audience of his readers.

A 37000 km tall tower is too big in order to begin with, 100 km is enough for
reaching the space. The altitude of 100 km is known as the Karman line. It is
taken as the boundary of the Earth’s atmosphere by convention.

Being 370 times as lower than a 37000 km tall tower, a 100 km tall tower is
still too big in order to be built using regular technologies. Indeed, the 100 km
long steel rod standing vertically produces the pressure of 7800 MPa1, while the
compressive yield strength of steel is about 150 MPa (see [4]). Inflatable structures
are considered as a prospective technology for super-tall towers by several authors
(see [5–7]). There are two patents [8] and [9] on inflated towers. The second one is
based upon the results of [7].

Like in [7], we consider a cylindrical structure standing vertically and divided
into segments by horizontal diaphragms (see Fig. 2.1 below). However, unlike [7],
the diaphragms in our case do not serve for keeping a constant gas pressure along
the height of the whole structure. Each diaphragm in our case is designed in
such a way that it holds the weight of the upper segment (along with its payload
and the gas inside it) and transmits this load to the gas within the lower segment.
Ultimately, the lowermost diaphragm transmits the weight of the whole structure to
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the basement of the tower. Thus the walls of the structure in our case do experience
only a minor stress in the axial direction basically due to their own weight within
one segment. Our goal is to derive and compute the upper limits for the height of
the whole structure under these constructive assumptions.

2. The construction of a single segment.

A single segment of the structure is shown in Fig. 2.1. It is a cylindrical pipe
enclosed between two diaphragms. Note that the diaphragms extend outside the

pipeline and form two rectangular plat-
forms. These platforms are used in or-
der to connect one pipeline with another
thus forming a multicolumn and multi-
story core structure. The height of the
segment is equal to the floor-to-floor dis-
tance between platforms. It is denoted
through L in Fig. 2.1. The internal ra-
dius of the cylinders in Fig. 2.1 is denoted
through R. Relying upon data for regular
gas pipelines (see [10]) and for the sake of
simplicity we choose

L = 3 m, R = 0.5 m (2.1)

in our computations below.
Cylindrical segments of the structure

are assumed to be made of rubber en-
forced with kevlar cord. Like car tires
they consist of a soft inner gas-holding

cylindrical tube and an outer shell, which could be called a tire. The thickness
of the walls of track tire tubes varies from 2.5 to 5.0 millimeters. We choose

d0 = 5 mm = 0.005 m (2.2)

for this value in our computations below.
The walls of the outer shell are formed by a cylindrical kevlar carcass surrounded

with a rubber envelope as shown in Fig. 2.2. The kevlar carcass is made of circu-
lar kevlar threads. In axial section they
are shown in yellow (see Fig. 2.2). The
envelope surrounding them is shown in
blue. It serves for holding kevlar threads
together and for gluing them to each other
with inlaid rubber. The thickness of the
kevlar winding is denoted through d1,
while the thickness of the outer shell as
a whole is denoted through d2. Then

R2 = R + d0 + d2 (2.3)

is the outer radius of the cylindrical struc-
ture shown in Fig. 2.1. Unlike d0, the
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thickness of the outer shell d2 as well as the thickness of its kevlar carcass d1 are
not constant. However the thickness of the internal rubber layer d3 of the shell and
the thickness of its external rubber layer d4 are assumed to be constant. We choose

d3 = 7 mm = 0.007 m, d4 = 12 mm = 0.012 m. (2.4)

Looking at Fig. 2.2 we easily derive the relationship

d2 = d3 + d1 + d4. (2.5)

The inner gas-holding tube is shown in purple in Fig. 2.2. It is also made of
rubber. Its walls thickness is denoted through d0 in (2.2) and in (2.3).

Along with other elements we see a hook-shaped outgrouth in Fig. 2.2. It presents
the rim of the circular diaphragm, which is similar to wheel rims in cars and bicycles
and which serves the same purposes. The diaphragm itself is a part of the square
platform (see Fig. 2.1). For its thickness we choose the value

d5 = 10 mm = 0.01 m. (2.6)

The platforms are used for connecting several cylindrical columns together thus
forming a multicolumn tower or a multicolumn core structure of a building. In
order to keep each segment of each column serviceable one needs to access them
for surveying, for repairing, and for replacing if necessary. Therefore one needs to
preserve some space between them. We do it by setting the inequality a > 3 R2,
where a is the length of the edge of each square platform (see Fig. 2.1). Since d2 in
(2.3) is not constant, the radius R2 is not constant too (lower segments are thicker
than upper ones). Hence we can satisfy the inequality a > 3 R2 only if we choose

a = 3 max(R2). (2.7)

Thus we have defined all geometric parameters of our structure and therefore we
can proceed to further steps.

3. Loads on a single segment of the structure.

Let’s consider one column in our multicolumn structure and enumerate its seg-
ments from up to down, the topmost being the first and that which is at the bottom
of the structure being the last. Then let’s consider i-th segment as shown in Fig. 2.1.
The weight of the segment is given by the formula

w(i) = w0 + w1 + w2 + w3, (3.1)

where w0 is the weight of the inner gas-holding tube, w1 is the weight of the lower
platform (the upper platform is considered as a part of the previous (i − 1)-th
segment), w2 is the weight of the outer shell, and w3 is the weight of some payload
attached to i-th segment. The weight w0 in (3.1) is calculated as follows:

w0 = 2 π R2 d0 ρ0 g + π [(R + d0)
2 −R2] L ρ0 g, (3.2)

where ρ0 is the rubber density and g = 9.81 m/s2 is the standard gravitational
acceleration for the Earth.
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The weight w2 in (3.1) is calculated by mens of the following formula:

w2 = π [(R + d0 + d2)
2 − (R + d0)

2] L ρ0 g+

+ π [(R + d0 + d3 + d1)
2 − (R + d0 + d3)

2] L (ρ1 − ρ0) g.
(3.3)

Here ρ1 is the density of kevlar. The weight of the platform is given by the formula

w1 = a2 d5 ρ2 g, (3.4)

where ρ2 is the density of steel. And finally, we should take a decision on the
payload weight w3 in (3.1). For the sake of simplicity we assume that the payload
weight is the half of the total weight w(i). Then formula (3.1) reduces to

w(i) = 2 (w0 + w1 + w2). (3.5)

Static equilibrium of a body in mechanics is a state of balance of opposite
forces in all directions. The vertical forces acting upon i-th segment are shown

in Fig. 3.1. The (i − 1)-th segment acts
downward upon the i-th segment with the
force N (i). Similarly, the i-th segment
acts downward upon the (i + 1)-th seg-
ment with the force N (i + 1). However,
according to Newton’s third law, each ac-
tion produces the equal but opposite re-
action. The upward force N (i + 1) in
Fig. 3.1 is the force of reaction from the
lower (i + 1)-th segment acting upon the
i-th segment of the structure.

The force w(i) in Fig. 3.1 is a gravity
force. It is due to the weight of the solid
elements of i-th segment (see (3.1) and

(3.5)). Note that we treat the gas inside i-th segment as a separate body. Its
weight is not included into the sum (3.1). The gas acts upon solid elements of the
i-th segment by means of the pressure forces p(i) S and p̃(i) S. Their difference is
equal to the weight of the gas w4:

w4 = p̃(i) S − p(i) S. (3.6)

The area S in (3.6) is determined by the internal radius of the structure:

S = π R2. (3.7)

Looking at Fig. 3.1, we can write the vertical equilibrium condition for the i-th
segment of the structure. It is given by the equality

N (i + 1) + p(i) S = N (i) + p̃(i) S + w(i). (3.8)

The horizontal equilibrium of the i-th segment of our structure is set up by the
gas pressure forces and the tensile stress forces in the vertical walls of the structure.
We consider it below in section 5.
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4. Recurrence formula for the gas pressure.

Looking at Fig. 3.1 we see that downward force N (i) is applied to the upper
boundary of the i-th segment of the structure. The backward reaction to this
force is produced partly by the vertical walls of the segment and partly by the gas
pressure p(i) within it. The compressive hardness of the rubber walls (even though
they arec reinforced with kevlar) is very small. Therefore their contribution to the
reaction force is negligible and we can write

p(i) S = N (i) (4.1)

as a good approximation. The same reasons applied to the (i + 1)-th segment yield

p(i + 1) S = N (i + 1) (4.2)

Substituting (4.1) and (4.2) into (3.8), we derive

p(i + 1) = p̃(i) +
w(i)

S
. (4.3)

The pressure in a vertical gas column at constant temperature varies exponentially
in the vertical direction (see section 5 in [7]). Therefore

p̃(i) = k p(i), where k = exp
(µ g L

RT

)

. (4.4)

Here g = 9.81 m/s2 is the standard gravitational acceleration for the Earth, µ is
the molecular mass of the gas, T is the absolute temperature of the gas, and R is
the universal gas constant. Its value in SI units is

R = 8.31 J K−1 mol−1. (4.5)

For the temperature T in our calculations below we choose the value

T = 293 K = 20◦C, (4.6)

which is a comfortable room temperature. In the case of helium, we have

µ = 4 g/mol = 0.004 kg/mol. (4.7)

Substituting (4.5), (4.6), and (4.7) into (4.4), we derive

k = kHe = 1.000048. (4.8)

In the case of nitrogen N2 we have

µ = 28 g/mol = 0.028 kg/mol. (4.9)

Substituting (4.5), (4.6), and (4.9) into (4.4), we derive

k = kN2
= 1.00034. (4.10)
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In both cases k is a definite known constant. Substituting (4.4) into (4.3), we derive

p(i + 1) = k p(i) +
w(i)

S
. (4.11)

The equality (4.11) is a recurrence equation for the gas pressure within segments of
our structure. This equation is somewhat similar to ordinary differential equations.
Once the initial value p(1) is known, the values of p(i) for all i are calculated or at
least computed numerically.

5. Stress in a thick walled inflated cylinder.

As we see in Fig. 2.2, the side walls of our structure are composed by several
rubber layers and one kevlar layer. Rubber is a soft material. Practically it cannot
resist a tensile stress, just transmitting the load of inner gas pressure to the kevlar
layer. The kevlar layer is a winding of kevlar threads. This winding is assumed to
be maximally dense so that in our calculations we can approximate it by a solid
thick walled kevlar cylinder. According to Fig. 2.2 the inner and outer radii of this
cylinder are given by the formulas

R3 = R + d0 + d3, R4 = R + d0 + d3 + d1. (5.1)

We use R3 and R4 for these radii in (5.1) since R2 is already used in (2.3).
Note that kHe in (4.8) and kN2

in (4.10) both are very close to the unity. Hence

p̃(i) ≈ p(i) (5.2)

in (4.4). The relationship (5.2) means that it would be a good approximation if we
consider the thick walled kevlar cylinder with the radii (5.1) loaded by the uniform
internal gas pressure p3 = p(i) and by some uniform external gas pressure p4 < p3.

The problem of calculating the stress distribution in a thick walled inflated cylin-
der is not new (see [11]). Nevertheless, we reproduce its solution here using the
covariant derivatives technique that comes from differential geometry (see [12]).

In solving problems with cylindrical symmetry cylindrical coordinates used. We
denote them y1 = ρ, y2 = ϕ, y3 = h. The upper indices in y1, y2, y3 are chosen
according to Einstein’s tensorial notation (see § 20 in Chapter I of [13]). The regular
Cartesian coordinates x1, x2, x3 are expressed through the cylindrical coordinates
y1, y2, y3 by means of the formulas

r =

∥

∥

∥

∥

∥

∥

∥

x1

x2

x3

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

x

y

z

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

ρ cos ϕ

ρ sin ϕ

h

∥

∥

∥

∥

∥

∥

∥

. (5.3)

Each curvilinear coordinate system has its associated moving frame (see § 2 in
Chapter III of [12]). It is a triple of vectors obtained by differentiation of the
radius-vector (5.3) with respect to the curvilinear coordinates y1, y2, y3:

E1 =
∂ r

∂y1
, E2 =

∂ r

∂y2
, E3 =

∂ r

∂y3
. (5.4)
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In the case of cylindrical coordinates from (5.4) we derive

E1 =

∥

∥

∥

∥

∥

∥

∥

cos ϕ

sin ϕ

0

∥

∥

∥

∥

∥

∥

∥

, E2 =

∥

∥

∥

∥

∥

∥

∥

−ρ sin ϕ

ρ cos ϕ

0

∥

∥

∥

∥

∥

∥

∥

, E3 =

∥

∥

∥

∥

∥

∥

∥

0

0

1

∥

∥

∥

∥

∥

∥

∥

. (5.5)

The frame (5.5) is not orthonormal, though it is orthogonal. In physical literature
the following orthonormal frame is used:

e1 =

∥

∥

∥

∥

∥

∥

∥

cos ϕ

sin ϕ

0

∥

∥

∥

∥

∥

∥

∥

, e2 =

∥

∥

∥

∥

∥

∥

∥

− sin ϕ

cos ϕ

0

∥

∥

∥

∥

∥

∥

∥

, e3 =

∥

∥

∥

∥

∥

∥

∥

0

0

1

∥

∥

∥

∥

∥

∥

∥

. (5.6)

Due to the difference of frames (5.5) and (5.6) some formulas below are different
from those in [11] and in [14].

Using (5.5), one easily derives the formulas for the components of the direct and
inverse metric tensors (see formula (4.8) in § 4 of Chapter III in [12]):

gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0

0 ρ2 0

0 0 1

∥

∥

∥

∥

∥

∥

∥

, gij =

∥

∥

∥

∥

∥

∥

∥

1 0 0

0 ρ−2 0

0 0 1

∥

∥

∥

∥

∥

∥

∥

. (5.7)

Statics of solid media is described through the following three concepts:

Displacement −−−−→←−−−− Strain −−−−→
←−−−− Stress . (5.8)

In linear theory the displacement is treated as a vector field. Its components are
defined using its expansion in the moving frame (5.5):

u =

3
∑

i=1

ui
Ei. (5.9)

The relation of displacement and strain is given by the following formula:

uij =
∇iuj +∇jui

2
=

1

2

(

∂uj

∂yi
+

∂ui

∂yj

)

−

3
∑

k=1

Γk
ij uk. (5.10)

The Christoffel symbols Γk
ij in (5.10) are calculated using the components of the

direct and inverse metric tensors given in (5.7):

Γk
ij =

1

2

3
∑

r=1

gkr

(

∂grj

∂ui
+

∂gir

∂uj
−

∂gij

∂ur

)

. (5.11)

The values of Γk
ij for cylindrical coordinates are given in § 9 of Chapter III in [12]):

Γ1

11 = 0, Γ1

12 = 0, Γ1

21 = 0,



8 RUSLAN SHARIPOV

Γ1

13
= 0, Γ1

31
= 0, Γ1

22
= −ρ, (5.12)

Γ1

23
= 0, Γ1

32
= 0, Γ1

33
= 0,

Γ2

11 = 0, Γ2

12 = ρ−1, Γ2

21 = ρ−1,

Γ2

13 = 0, Γ2

31 = 0, Γ2

22 = 0, (5.13)

Γ2

23 = 0, Γ2

32 = 0, Γ2

33 = 0,

Γ3

11 = 0, Γ3

12 = 0, Γ3

21 = 0,

Γ3

13 = 0, Γ3

31 = 0, Γ3

22 = 0, (5.14)

Γ3

23 = 0, Γ3

32 = 0, Γ3

33 = 0.

The formula (5.11) is known as the formula for the components of the metric Levi-
Civita connection (see [15]). The reader can verify the formulas (5.12), (5.13), and
(5.14) by applying (5.11) to (5.7).

Note that the covariant and contravariant components of the displacement vector
u in the formulas (5.9) and (5.10) are different. They are related to each other
through the components of the metric tensors (5.7):

ui =
3

∑

j=1

gij uj, ui =
3

∑

j=1

gij uj. (5.15)

In linear theory the stain to stress relation in (5.8) is written as

σij =
3

∑

k=1

3
∑

q=1

Ckq
ij ukq, (5.16)

where Ckq
ij are the components of the stiffness tensor (see [16]). In the case of an

isotropic solid medium the relationship (5.16) reduces to the following one:

σij =
3 K − 2 G

3

( 3
∑

k=1

3
∑

q=1

gkq ukq

)

gij + 2 G uij. (5.17)

Two constants K and G in (5.17) are known as the bulk modulus and the shear
modulus. The inverse relationship for (5.17) looks like:

uij =
( 1

9 K
−

1

6 G

)

( 3
∑

k=1

3
∑

q=1

gkq σkq

)

gij +
1

2 G
σij.

In the absence of body forces, the static equilibrium of any solid medium is
described by the following differential equation:

3
∑

k=1

3
∑

j=1

gkj∇kσij = 0. (5.18)
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Body forces in our case do exist. They are due to the Earth gravity. However, they
act in vertical direction. Therefore they do not affect the hoop stress produced in
the side walls by the gas pressure inside them. Replacing covariant derivatives in
(5.18) by partial derivatives we transform the equation (5.18) to

3
∑

k=1

3
∑

j=1

gkj

(

σij

∂yk
−

3
∑

s=1

Γs
ki σsj −

3
∑

s=1

Γs
kj σsi

)

= 0. (5.19)

The equation (5.19) is the main differential equation for our further calculations.

Due to the cylindrical symmetry of our structure and since we approximate the
inner and outer gas pressures by two constant values p3 and p4. The displacement
vector u is directed radially, i. e. it has only one component in (5.9):

u = u1
E1. (5.20)

For the same reasons the unique nonzero component of the vector u in (5.20) is a
function of the radial variable y1 = ρ only, i. e. we have

u1 = u(ρ), u2 = 0, u3 = 0. (5.21)

Further steps are the following:

1) applying the first of the two formulas (5.15), we derive the covariant components
u1, u2, u3 of the vector u;

2) applying (5.10) to these covariant components u1, u2, u3, we derive the formulas
for the components of the strain tensor uij;

3) using (5.17), we calculate the components of the stress tensor σij;
4) and finally, substituting σij into (5.19), we derive an ordinary differential equa-

tion for the function u(ρ) in (5.21):

3 K + 4 G

3

(

u′′

ρρ +
1

ρ
u′

ρ −
1

ρ 2
u
)

= 0. (5.22)

The common factor

M =
3 K + 4 G

3
(5.23)

in (5.22) is known as the P-wave modulus, as the longitudinal modulus, and as the
constrained modulus of a solid medium (see table with elastic moduli conversion
formulas in [17]). This modulus M in (5.23) is nonzero. Therefore it can be omitted
in (5.22) and the equation (5.22) reduces to

u′′

ρρ +
1

ρ
u′

ρ −
1

ρ 2
u = 0. (5.24)

The equation (5.24) is explicitly solvable. Its solution is written as

u(ρ) = C1 ρ +
C2

ρ
. (5.25)
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Here C1 and C2 are two arbitrary constants which are called integration constants.
Substituting (5.25) back into the formulas for the strain tensor, we find that the
strain tensor is given by a diagonal matrix with two nonzero diagonal elements:

u11 = C1 −
C2

ρ 2
, u22 = C1 ρ 2 + C2.

The stress tensor is also given by a diagonal matrix. However in this case we have
not two, but three nonzero diagonal elements:

σ11 =
6 K + 2 G

3
C1 −

2 G C2

ρ 2
,

σ22 =
6 K + 2 G

3
C1 ρ 2 + 2 G C2, (5.26)

σ33 =
6 K − 4 G

3
C1.

Looking at (5.26), we can introduce the other two arbitrary constants

C̃1 =
6 K + 2 G

3
C1, C̃2 = 2 G C2. (5.27)

In terms of these two constants (5.27) the formulas (5.26) are written as

σ11 = C̃1 −
C̃2

ρ 2
,

σ22 = C̃1 ρ 2 + C̃2, (5.28)

σ33 =
3 K − 2 G

3 K + G
C̃1 = 2 ν C̃1.

The constant ν in (5.28) is known as the Poisson’s ratio (see table with elastic
moduli conversion formulas in [17]). This means that the stress in the axial direction
σ33 6= 0 arises in our calculations purely due to the Poisson effect (see [18]). As
we already noted above we do not consider the vertical stress from any sources.
Therefore the third formula (5.28) is inessential for us.

Boundary conditions for the components of the stress tensor σij on any solid-to-
gas interface are derived from the following formula:

3
∑

i=1

3
∑

j=1

σij ni nj = p. (5.29)

Here p is the gas pressure and n1, n2, n3 are the components of the unit vector
perpendicular to the interface. Applying (5.29) to our problem of thick walled
kevlar cylinder with the radii (5.1), we derive

σ11

ρ=R3

= p3, σ11

ρ=R4

= p4. (5.30)
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Substituting the first formula (5.28) into (5.30), we derive two linear equations for

the integration constants C̃1 and C̃2. Their solution is

C̃1 =
p4 R2

4 − p3 R2
3

R2

4
− R2

3

, C̃2 = −
R2

3 R2
4 (p3 − p4)

R2

4
− R2

3

. (5.31)

Applying these formulas (5.31) to (5.28), we get

σ11 =

(

p4 R2

4
− p3 R2

3

)

ρ 2 + R2

3
R2

4
(p3 − p4)

(

R2

4
− R2

3

)

ρ 2
, (5.32)

σ22 =

(

p4 R2
4 − p3 R2

3

)

ρ 2 − R2
3 R2

4 (p3 − p4)

R2
4
−R2

3

. (5.33)

As we shall see below, these two formulas (5.32) and (5.33) are in agreement with
the results of [11].

6. Strength limits for the gas

pressure and the side walls thickness.

Since the moving frame of a curvilinear coordinate system is not always orthonor-
mal (see (5.5) as an example), the values of physical stress are not always given by
the components of the stress tensor. The physical stress in the direction given by
a unit vector n is expressed by the formula similar to (5.29):

σ =

3
∑

i=1

3
∑

j=1

σij ni nj. (6.1)

Choosing n = E1 and n = E2/ρ and substituting these two unit vectors into (6.1),
we derive the formulas for physical values of the radial and circumferential stress:

σr = σ11 =

(

p4 R2
4 − p3 R2

3

)

ρ 2 + R2
3 R2

4 (p3 − p4)
(

R2
4
− R2

3

)

ρ 2
, (6.2)

σϕ =
σ22

ρ 2
=

(

p4 R2
4 − p3 R2

3

)

ρ 2 −R2
3 R2

4 (p3 − p4)
(

R2
4
−R2

3

)

ρ 2
. (6.3)

The formulas (6.2) and (6.3) do coincide with the corresponding formulas in [11].
Looking at (5.28), we see that σr = σ11 is a monotonic function of ρ. Since

p3 > p4 and due to (5.30) it decreases from its maximal value

σr max = p3 = p(i) (6.4)

at the inner radius ρ = R3 to its minimal value p4 at the outer radius ρ = R4. The
formula (6.3) for the circumferential stress is equivalent to

σϕ = C̃1 +
C̃2

ρ 2
. (6.5)
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Looking at (6.5), we see that σϕ is also a monotonic function. Since R4 > R3 and

p3 > p4 in (5.31), the second constant C̃2 in (6.5) is negative. Though our cylinder
is thick walled, its outer radius R4 does not substantially exceed its inner radius R3.
The pressures p3 and p4 are different. The outer pressure p4 is less or equal to the
normal atmospheric pressure, while the inner pressure p3 can exceed many times
the normal atmospheric pressure. Therefore a typical value of the first constant C̃1

in our case is also negative. As a result we get that σϕ < 0 and σϕ is an increasing
function. The negative value of σϕ means that the circumferential stress is a tensile
stress, while the radial stress is compressive. Typically the absolute value of the
tensile stress |σϕ| decreases from its maximal value

|σϕ|max =
p3

(

R2

4
+ R2

3

)

− 2 p4 R2

4

R2

4
− R2

3

(6.6)

at the inner radius ρ = R3 to its minimal value

|σϕ|min =
2 p3 R2

3
− p4

(

R2

4
+ R2

3

)

R2

4
− R2

3

(6.7)

at the outer radius ρ = R4.
The external air pressure p4 contributes to our efforts in restraining the internal

gas pressure p3. However, as we noted above, its contribution is small since p4 � p3.
Therefore it would be a good approximation to set

p4 = 0 (6.8)

in (6.6) and (6.7). As a result of (6.8) we reduce (6.6) and (6.7) to

|σϕ|max =
p3

(

R2
4 + R2

3

)

R2
4
−R2

3

, |σϕ|min =
2 p3 R2

3

R2
4
− R2

3

. (6.9)

There are two strength limitations for the internal gas pressure p3:

σr max 6 σ1 = compressive yield strength of rubber, (6.10)

|σϕ|max 6 σ2 = tensile yield strength of kevlar. (6.11)

The expressions for σr max and |σϕ|max in (6.10) and (6.11) are taken from (6.4)
and (6.9). In [7] we find the following value of σ2:

σ2 = 3.6 GPa. (6.12)

The value (6.12) corresponds to Kevlar 49 which is commercially available. Wikipe-
dia gives approximately the same value for kevlar tensile yield strength (see [19]).

The value (6.12) cannot be used in practical design. In order to convert it to the
practical design value we should choose some safety factor (SF). For pressure vessels
the recommended value of the safety factor is 4 (see [20]). Taking into account this
safety factor, we derive the maximum working tensile stress value for kevlar:

σ4 =
σ2

4
= 0.9 GPa. (6.13)
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We choose the value (6.13) for |σϕ|max, i. e. we set σ4 = |σϕ|max thus obeying the
inequality (6.11) and the recommended safety requirements. Then we summarize
kevlar data in the following table:

Manufacturer/Supplier Material σ4 σ2 SF

DuPont, International Kevlar 49 0.9 GPa 3.6 GPa 4

The case of rubber is more complicated. Most data for rubber available in the
Internet are tensile data. Therefore we shall gather the required data from the
product properties. Most suitable product for us is high pressure hoses.

In describing practical pressure vessels two parameters are crucial: maximal
working pressure (Max WP) and minimal burst pressure (Min BP). Their ratio is
known as the safety factor (SF). We gather these product data in a table:

Manufacturer/Supplier Material Max WP Min BP SF
/product

Hebei Qianli Rubber rubber 45.2 MPa 180.6 MPa 4
Products Co., Ltd., China SHP200-04

Polyfluor Plastics BV, PTFE, PFA 47.5 MPa 190 MPa 4
Netherlands SHP Hose

Boltorq, India Nylon 112 MPa 280 MPa 2.5

BH94 Ser.

SITEC Sieber Engineering POM 175 MPa 700 MPa 4
AG, Switzerland HP Hose

Relying on this table, we choose the following value for σ1 in (6.10):

σ1 = 180.6 MPa.

Then, choosing the safety factor 4, we define

σ3 =
σ1

4
≈ 45.2 MPa (6.14)

and set σr max = σ3. As a result we satisfy the inequality (6.10) and the recom-
mended safety requirements from [20].

The value σ4 = |σϕ|max in (6.13) determines the kevlar winding thickness for
each particular segment of the structure through the formulas (6.4) and (6.9) thus
determining the overall side walls thickness. The value σ3 = σr max in (6.14) delimits
the number of segments and the overall height of the structure through (6.4) and
the recurrence formula (4.11).

7. Computation of the height and

other parameters of the structure.

Let N be the number of segments in the structure. The height of the structure
is limited by the maximal gas pressure in its lowermost segment p3 = p(N ) (see
(6.4)). For this segment from σ3 = σr max and (6.14) we derive

p(N ) = p3 ≈ σ3. (7.1)
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Applying (7.1) to the first formula (6.9) and taking into account |σϕ|max = σ4 we
derive the equation for R4 in the case of the lowermost segment:

σ3

(

R2

4 + R2

3

)

R2

4
− R2

3

≈ σ4. (7.2)

The value of R3 in (7.2) does not depend on a particular segment of the structure.
It is a constant given by the first formula (5.1). Substituting the values of R, d0

and d3 from (2.1), (2.2), and (2.4) into (5.1) we compute

R3 = 0.512 m. (7.3)

Then, solving the equation (7.2) with respect to R4, we get

R4(N ) ≈

√

σ4 + σ3

σ4 − σ3

R3 ≈ 0.539 m. (7.4)

Comparing (7.4) and (7.3), we see that the kevlar carcass is not thick. Its maximum
thickness is 2.7 centimeters.

The outer radius of the structure is given by the formula (2.3). Using (2.5) and
(5.1) and looking at Fig. 2.2, we can transform it as follows:

R2 = R + d0 + d2 = R + d0 + d3 + d1 + d4 = R4 + d4. (7.5)

Applying (2.4) and (7.4) to (7.5), we find the maximal value of the outer radius:

max(R2) = R2(N ) = R4(N ) + d4 ≈ 0.551 m. (7.6)

Now let’s recall the formula (2.7). It determines the size of square platforms
separating segments of the structure from each other (see Fig. 2.1). These plat-
forms are also used for connecting vertical cylindrical structures with each other.
Substituting (7.6) into the formula (2.7), we compute

a ≈ 1.653 m. (7.7)

The weight of each platform is given by the formula (3.4). As we already noted
above, for the density of steel ρ2 in this formula we choose the value

ρ2 = 8.05 g/cm3 = 8050 kg/m3, (7.8)

which is in agreement with the data from Wikipedia [21]. Substituting (2.6), (7.7),
and (7.8) into the formula (3.4), we compute the value of w1:

w1 ≈ 2157.8 N. (7.9)

Note that we use the force units (newtons) for expressing weight in (7.9).
The weight of the inner gas-holding tube is given by the formula (3.2), where ρ0

is the rubber density. In the case of butyl rubber, which is commonly used in tires
and hoses, its density varies from 1.15 g/cm3 to 1.35 g/cm3 (see [22]). We choose

ρ0 = 1.35 g/cm3 = 1350 kg/m3 (7.10)
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for our computations. Substituting (2.1) and (7.10) into (3.2), we get

w1 ≈ 731.22 N. (7.11)

The formula (3.3) is more complicated than (3.2) and (3.4). We can simplify it
using the radii introduced in (5.1) and taking into account (2.5):

w2 = π [(R4 + d4)
2 − (R + d0)

2] L ρ0 g+

+ π [R2

4 − R2

3] L (ρ1 − ρ0) g.
(7.12)

Here ρ1 is the density of kevlar. Its value can be found in [7] and in [19]:

ρ1 = 1.44 g/cm3 = 1440 kg/m3. (7.13)

Note that R3, d0, d4, ρ0, and ρ1 in (7.12) are constants. Their values are given
in (7.3), (2.2), (2.4), (7.10), and (7.13) respectively. However R4 in (7.12) is not
constant. The outer radius of the kevlar carcass depends on the pressure it should
withstand. In (7.4) we have its maximal value corresponding to the lowermost
segment of the structure.

Since w2 is not constants, we continue our computations programmatically using
the Maple package. The formula (7.12) is transformed to a Maple procedure:

w2:=proc(R 4) local w:

global R,R 3,d 0,d 4,rho 0,rho 1,L:

w:=Pi*((R 4+d 4)^2-(R+d 0)^2)*L*rho 0*g:

w:=w+Pi*(R 4^2-R 3^2)*L*(rho 1-rho 0)*g:

return evalf(w):

end proc:

The radius R4 is given by a formula similar to (7.4). Due to (6.4) and (7.1) this
formula is produced from (7.4) by replacing σ3 with p3:

R4 =

√

σ4 + p3

σ4 − p3

R3. (7.14)

The formula (7.14) is also transformed to a Maple procedure:

R4:=proc(p 3) local r:

global R 3,sigma 4:

r:=sqrt((sigma 4+p 3)/(sigma 4-p 3))*R 3:

return evalf(r):

end proc:

Now we can proceed to the recurrence equation (4.11). This equation is inte-
grated numerically by means of the following Maple code:

for i from 1 by 1 while p[i]<=sigma 3 do

w[i]:=2*(w 0+w 1+w2(R4(p[i]))):

N:=N+1: t m:=t m+w[i]/g: t p:=t p+w[i]/2/g:

p[i+1]:=k*p[i]+w[i]/S:

end do:
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The area of each diaphragm S in (4.11) in the above code (see Fig. 2.1) is given by
the formula (3.7). Its value is computed using (2.1):

S ≈ 0.79 m2.

The total weight of i-th segment is given by the formula (3.5). This formula is built
into the above code. Two auxiliary variables t m and t p in the code stand for total
total mass per column and total payload mass per column in the structure. For the
coefficient k in the code we have two options. If the gas used is helium, the value
of k is given in (4.8). If the nitrogen gas is used, its value is given in (4.10).

Like the equation (4.11), the above code is recurrent. In order to run it we need
to set the initial value of the internal pressure, i. e. the value of the variable p[1].
Assume that the structure is designed to hold on its top a payload of the mass M
per each column. Then the initial pressure is given by the formula

p(1) =
M g + w1

S
. (7.15)

Here w1 is the weight of the topmost platform of the structure. Its value is taken
from (7.11). For M in (7.15) we choose

M = 20 tonnes = 20 000 kg. (7.16)

Programmatically the variables are initialized as follows:

M:=20000:

p[1]:=(M*g+w 1)/S;

N:=0: t m:=M+w 1/g: t p:=M:

Then the recurrence equation (4.11) with the initial data in (7.15) and (7.16) is
solved by means of the code given in the previous page. The results of running this
code are presented in the following table.

Gas He N2

Payload mass on the top per one column (tonnes) 20 20

Number of segments (storeys) in the structure 2391 1878

Maximal height of the structure (km) 7.173 5.634

Total payload mass per one column (tonnes) 1726 1336

Total mass1 per one column (tonnes) 3433 2653

Pressure (stress) upon the basement (MPa) 45.2 45.2

8. Summary and conclusions.

The data of the above table in the previous section is the main result of the
present paper. Comparing maximal heights in the last two columns of the table,

1 The mass of the gas is not included into the total mass of the structure. However it is taken

into account when computing the pressure upon the basement
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we see that they do not differ many times, though their difference is substantial.
As far as prices are concerned, nitrogen is many times as cheaper, than helium.

Tower structures considered in [5–7]) are light single column mast-like towers.
Unlike them, multicolumn tower structures suggested in the present paper can hold
substantial amount of payload (more than one thousand tonnes per one column).
Though they are lower than those in [5–7]) and cannot reach the cosmic space, they
can form core structures for buildings which are several times taller than presently
available skyscribers.

The kevlar strength limit set by the inequality (6.11) and by the safety coefficient
SF = 4 in (6.13) is reached in each segment of our structure. Therefore the major
limiting factor for the height of our structure is the rubber compressive strength
in (6.10). Looking at the second table on page 13 above, we see that there are
some polymers stronger than rubber. These are polytetrafluoroethylene (PTFE),
perfluoroalkoxy alkanes (PFA), nylon, and polyoxymethylene (POM). However, all
of them are not elastomers. Using them in place of rubber would produce diffi-
culties in transporting, mounting and replacing parts of the structure when they
become damaged or ramshackle. Moreover, being inelastic, the inner gas-holding
tube would badly fit the outer shell thus producing risks of cracking and tearing.
Further prospects for increasing the height of ultra-tall buildings in our approach
are expected from some future elastomers that would have the flexibility of rubber
and the compressive strength of harder polymers.
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