The influence of the correction of the gravitational constant on the precession of Mercury's perihelion

Zhi Cheng

gzchengzhi@hotmail.com

Abstract: This article discusses the effect of the possible changes in the gravitational constant on the precession of Mercury's perihelion. The analysis results show that based on the current more accurate theoretical calculations of relativity, if the correction of the change of the gravitational constant is added, the theoretical calculation results can be improved to a certain extent to make them consistent with the observation results.

The problem of Mercury's perihelion precession is an important evidence of general relativity. Through general relativity calculations, the abnormal problem of Mercury's perihelion precession can be successfully solved. At present, there are more accurate theoretical calculation data of the influence of the planetary motions of the solar system on Mercury's perihelion, and the influence of relativity theory reaches \((42.9779\pm0.0009)'' [1]\).

In terms of observations, the current results of Pit2001 are now accurate after all \(^{2,3}\), and the observation range reaches 43.0005''-43.0200''.

It can be seen from the above that there is still a certain error between the very high-precision theoretical calculation and the observed value. So where do these errors come from? Perhaps introducing a changing gravitational constant can solve the problem to a certain extent.

According to the analysis of my paper \(^4\) published a few days ago, assuming that the space-time structure of the solar system has a radius of \(10^{14}m\), considering that the difference between the orbital radius of the earth and the orbital radius of Mercury is about \(\Delta b=9.2\times10^{10}m\), it can be estimated that the value of the gravitational constant at Mercury's position is

\[
G = G_e \left(1 + \frac{\Delta b}{b}\right) = G_e \left(1 + \frac{9.2 \times 10^{10}}{10^{14}}\right) \approx G_e (1 + 9.2 \times 10^{-4})
\]

Where \(G_e\) is the average value of the gravitational constant measured from the earth's orbital position, and \(b\) is the radius of the solar system's space-time structure.

The calculation formula of general relativity is\(^5\):

\[
\Delta \varphi = 6\pi k \left(\frac{GM}{L}\right)^2
\]
\[
\Delta \varphi = 6\pi k \left(\frac{G \mu}{L} \right)^2 (1 + 1.84 \times 10^{-3})
\]

\[
\Delta \varphi = 42.9779'' \times (1 + 1.84 \times 10^{-3}) = 42.9779'' + 0.079'' \approx 43.058''
\]

It can be seen that the change of the gravitational constant has an influence of about 0.079''/century on the precession of Mercury's perihelion.

Of course, this shows that the radius of the space-time structure of the solar system estimated in the paper [4] may be slightly smaller. If you expand it slightly, for example, use \(b=2 \times 10^{14} \text{m} \), the calculation result will become 43.0174'', which is in good agreement with the observation result. This also shows that \(10^{14} \text{m} \) can be used as the lower limit of the solar system's space-time structure radius.

References

水星近日点进动的引力常数修正

Zhi Cheng

gzchengzhi@hotmail.com

摘要：本文探讨引力常数可能存在变化的情况下，对水星近日点进动的影响。分析结果表明，在目前比较精确的相对论理论计算值得基础上，加上引力常数变化的修正，可以在一定程度上改善理论计算结果，使之与观察结果一致。

水星近日点进动问题是广义相对论的一个重要证据。通过广义相对论的计算，可以成功解决水星近日点进动的异常问题。目前已经有比较精确的太阳系各行星运动对水星近日点影响的理论计算数据，其中相对论的影响达到了 42.9779±0.0009 [1]。

而在观察值方面，目前 Pit2001 的结果是现在精度比较高的 [2-3]，观察值范围达到 43.0005-43.0200。

从上面可以看出，在非常高精度的理论计算和观察值之间还是存在一定的误差。那么这些误差从何而来，或许引入变化的引力常数可以在一定程度上解决该问题。

按照我前几天发表的论文 [4] 分析，假设太阳系的时空结构半径为 10^{14} m，考虑到地球的轨道半径与水星的轨道半径差值大约为 Δb = 9.2 × 10^{10} m，因此可以估算在水星位置的引力常数值为

\[G = G_e \left(1 + \frac{Δb}{b} \right) = G_e \left(1 + \frac{9.2 \times 10^{10}}{10^{14}} \right) \approx G_e \left(1 + 9.2 \times 10^{-4} \right) \]

其中 \(G_e \) 为地球轨道位置测量到的引力常数平均值，\(b \) 为太阳系时空结构的半径。

广义相对论的计算公式是 [5]:

\[Δφ = 6πk \left(\frac{GM}{L} \right)^2 \]

\[Δφ = 6πk \left(\frac{G_e M}{L} \right)^2 (1 + 1.84 × 10^{-3}) \]

\[Δφ = 42.9779'' \times (1 + 1.84 × 10^{-3}) = 42.9779'' + 0.079'' \approx 43.058'' \]

可以看出引力常数的变化对水星近日点进动有大约 0.079''/century 的影响，计算结果略大于观察结果的误差范围。
当然这也说明论文[4]中估算的太阳系时空结构半径数值可能略小。如果略微扩大一些，比如使用 $b = 2 \times 10^{14} \text{m}$，计算结果将变成 43.0174"，这同观察结果符合的很好。这也说明 10^{14}m 可以作为太阳系时空结构半径的下限。

参考文献

