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CMB Anomalies from Self-Organized Criticality 

Ervin Goldfain 

Abstract 

The power spectrum of the cosmic microwave background (CMB) quantifies the distribution of relic 

radiation left over from the early Universe. As of today, CMB data acquired by Planck and WMAP satellites 

exhibit certain anomalies that challenge the standard model of cosmology (ΛCDM). The goal of this brief 

report is t0 sketch up an intriguing connection between CMB anomalies and self-organized criticality 

(SOC). Our proposal bypasses the interpretation of CMB anomalies based on Loop Quantum Cosmology 

(LQC). 
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1. Introduction  

ΛCDM predicts that the primordial power spectrum is nearly scale-invariant and 

described by the power law [1] 
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in which k  is the wavenumber measured in 1Mpc− , sA  denotes the amplitude of the scalar 

mode of spectral index sn  and k  represents the so-called pivot mode. According to the  

LQC model, (1) acquires a suppression factor ( )f k  whose effect is negligible for large 

wavenumbers ( 0k k ), that is, 
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 0( ) (1),f k O k k=    (2) 

with 0k  being a reference value. By contrast, suppression of the nearly scale-invariant 

spectrum (1) occurs if the wavenumber drops down near 010k k . The modified 

primordial spectrum predicted by LQC is given by [1]  
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There is more than one way to display and simulate the power spectrum (1). For example, 

[2] brings up the following set of scaling relations inspired by LQC and inflation 
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where k  and Ik  are the characteristic scales at primordial cosmological times and q  is 

an exponent dissimilar in magnitude to the spectral index sn .  

The goal of this short report is to explore a scenario where (2) and (3) derive from a 

radically different approach to the CMB formation. Demanding self-similarity in the 

complex dynamics of large structures implies that CMB is the outcome of a global SOC 

process. Our preliminary analysis is consistent with earlier proposals where SOC is 

conjectured to assume a critical role in astrophysics and cosmology [3-7]. We caution the 

reader that this work is solely an early-stage effort, in need for further evaluation and 

development.    
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2. Mathematics of SOC: a short overview  

Consider a large-scale ensemble of observables undergoing a second-order phase 

transition. The transition is driven by the control parameter   as it approaches the critical 

value c . Near the critical point and for systems of infinite extent ( L→ ), the correlation 

length   diverges as  

   ~ ( )c

  −−  ;  , cL  → →   (4) 

In the transition region, a relevant variable of the system is also a diverging quantity 

which scales as  

 ( )A   ~ c


 

−
− ; , cL  → →    (5) 

where   is a critical exponent. In what follows, we introduce the notation  

 ( )s




= −   (6) 

There are two distinct cases associated with the power-law (4). If the size of the system 

greatly exceeds the correlation length, L  , by (4) and (5) we write   

 ( )LA   ~ s −  ;  ( , cL    → )  (6) 

In the opposite case, L  , the system size takes over the scaling behavior and (6) turns 

into    

 ( )LA   ~ sL
−  ;   ( , cL    → )  (7) 
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Taken together, (6) and (7) define the finite-size scaling (FSS) ansatz  
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where the scaling function controls the finite-size effects of critical behavior and is defined 

as  
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To transition from the framework of critical phenomena to SOC, one simply identifies the 

correlation length with the concept of avalanche-size, i.e.,  

 s =  ;    cs L=   (10) 

The probability distribution defining the FSS ansatz in SOC is a natural extrapolation of 

(8) and takes the form of a probability distribution [8]  

 ( , )P s L  ~ ( )s

c

ss
s

−
  for 1, 1s L    (11a) 

 ( )cs L  ~ 0D
L  for 1L     (11b) 

in which s  and 0D  are called the avalanche-size exponent and the avalanche dimension, 

respectively. Quite generally, (11) shows that, for a system of finite extent and large size 

avalanches, the avalanche-size probability behaves as a fractal function times a generic 

scaling function. To enable all moments of (11) to exist, the scaling function must decay 
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sufficiently fast. One obtains the following representation of the scaling function upon 

power expanding it around zero,      
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The avalanche-size probability must be normalized to unity and its average be diverging 

along with L→ , which leads to the following constraints     
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Under the assumption that (0) 0  , the behavior of (11) for an infinite system size may 

be approximated as  

 lim ( ; )
L

P s L
→

 ~ (0)ss
−
   (15) 

Furthermore, to comply with (13) and (14), the avalanche-size exponent must fall in the 

range 

 1 2s    (16) 

It is important to note that, while SOC has a clear statistical underpinning as described 

by (11), the power spectra (1)-(3) are based on deterministic measurements unrelated to 

probabilistic assumptions. A helpful analogy between (1)-(3) and (11) is nevertheless 
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possible, with the caveat that (16) is not necessarily relevant insofar as the CMB spectrum 

is concerned.  

With these considerations in mind, we set up next a parallel between (1)-(3) and the slowly 

driven evolution of SOC towards a non-equilibrium steady state.   

3. CMB as non-equilibrium steady state  

Since it is always convenient to work with dimensionless entities, we normalize the 

wavenumbers entering (1)-(3) according to 

 0 0,
kk
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in which K  stands for a suitably chosen reference value. Comparative inspection of (1)-

(3) and (11) suggests the term-by-term identification 
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Following [8], the critical avalanche size (19) scales with the maximal extension of the 

wavenumber space (or ultraviolet cutoff) UV as in   

 0

cs  ~ 0( )
D

UV      (20) 

Labeling the scaling function and avalanche-size exponent by, respectively,  
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enables one to cast (2)-(3) in the same form as (11), namely, 
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Note that the scaling function (...)  is nearly constant for 0 0

cs s  in the limit of 

unbounded wavenumbers UV →  [8]. By default, this condition corresponds to the 

regime of infinitesimal spatial separations in the CMB map, where the spectra (1) and (2) 

are nearly scale-invariant. 

We close with few remarks that (in our view) are important for future extensions of this 

work: 

1) among the most straightforward scaling functions (...)  that may be considered in 

simulations are the Heaviside step-function and the exponential function, where the 

latter characterizes so-called “branching SOC processes” [8].  

2)  the CMB angular power spectrum displayed in [9] falls off at large multipole 

moments in a strikingly similar manner with the data collapse of [8, page 284]. Does 

this analogy further supports our approach or does it arise from a different rationale 

altogether?  
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3) To gain credibility, follow-up extensions of these ideas must successfully recover the 

large-scale power anomaly described by the parameter 1 2S , as well as the lensing 

amplitude LA  derived in [1].   
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