
1 
 

Scaling Behavior for the Susceptibility of the Vacuum in a Polarization Model for 
the Cosmos 

 
By:   Dr. Christopher Pilot 

Professor of Physics, retired 
        Maine Maritime Academy 

        chris.pilot43@gmail.com 

 

 

ABSTRACT:   

Based on a model of Winterberg, where the vacuum is made up of a two component, positive 
and negative mass superfluid/ supersolid, we derive scaling laws for the polarization of space, 
i.e., the vacuum.  Upon expansion of the universe, this vast assembly (sea) of positive, and 
negative mass planckions form a rigid, ether-like, medium, which at sufficiently low 
temperatures, can be polarized through gravitational alignment/ ordering of planckion mass 
dipoles.  Two models for susceptibility of the vacuum as a function of the cosmic scale 
parameter, 𝑎 , are presented.  We also consider the possibility that Newton’s constant can scale, 
i.e., 𝐺−1 = 𝐺−1(𝑎), to form the most general scaling laws for polarization of the vacuum.  The 
positive and negative mass of the planckion, is inextricably related to the value of, 𝐺, and as 
such, both are intrinsic properties of the vacuum.  Scaling laws for the non-local, cosmic 
susceptibility, �̅� (𝑎), the cosmic polarization, �̅�(𝑎), the cosmic macroscopic gravitational field, 
�̅�(𝑎), and the cosmic gravitational field mass density, 𝜌𝑔𝑔 ̅̅ ̅̅ ̅ (𝑎), are worked out, with specific 

examples.  At the end of recombination, i.e., the era of last scattering, using the polarization to 
explain dark matter, and the gravitational field mass density to explain dark energy, we find 
that, (𝛺𝑟𝑎𝑑,1 , 𝛺𝑏,1 , 𝛺𝑐,1, 𝛺𝛬,1) = (. 37, .19, 0, .44).  While this is an unconventional 
assignment, differing from the 𝛬𝐶𝐷𝑀 model, we believe this is correct, and we give our reasons 
why.  Among them is the fact that localized dark matter (𝐿𝐷𝑀) contributions can be much 
higher in this epoch than smeared values for susceptibility.  The above assignments are cosmic 
averages, and will not apply locally.  We also evaluate the transition from ordinary matter 
dominance, to dark matter dominance, for the cosmos as a whole.  We obtain for the transition 
points, 𝑧 = 1.66, for susceptibility model I, and, 𝑧 = 2.53, for susceptibility model II. 
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I Introduction 

Recently [1], we formulated a model to explain the density parameters in the 𝛬𝐶𝐷𝑀 model, 
i.e., why, (𝛺𝑏,0 , 𝛺𝑐,0, 𝛺𝛬,0) = (. 0486, .2589, .6911), in the present epoch.  We were able to 
make identifications for dark matter, and dark energy, based on a polarization model for the 
vacuum, which is thought to be epoch specific.  We argued that, within this model, dark matter 
and dark energy are related.  In our scheme, dark matter is bound mass formed in the 
surrounding vacuum due to the ordering of inherent positive and negative mass dipoles, 
induced by ordinary matter.  Dark energy, on the other hand, is an energy density associated 
with a macroscopic cosmic gravitational field formed by taking into account both source mass, 
and bound mass.  We can calculate the total gravitational field that free and bound mass 
produces by appealing to Gauss’s law.  Even though the gravitational fields are formally 
calculated at the surface of the observable Hubble bubble, they hold point for point throughout 
space, as non-local, smeared, spherically symmetric quantities.  When distance scales in excess 
of 100 𝑀𝑝𝑐 are considered, the universe is of uniform density being homogeneous, and 
isotropic. 

In the Friedmann equation, bound, or polarized, mass has its own mass density, 𝜌𝐵̅̅ ̅ .  This is a 
smeared, non-local quantity.  Locally we can also have, 𝜌𝐵(�⃗�), and this we can also call dark 
matter, localized dark matter (𝐿𝐷𝑀), but cosmically this gets replaced by, 𝜌𝐵̅̅ ̅  .  Dark energy, as 
mentioned, is the mass density associated with gravitational fields due to both, ordinary, source 
matter, and polarized, bound matter.  This permeates the universe and leads to a smeared 
mass density in Friedmann’s equation, 𝜌𝑔𝑔̅̅ ̅̅ ̅.  There are actually two terms relating to 𝜌𝑔𝑔̅̅ ̅̅ ̅ 

because 𝜌𝑔𝑔̅̅ ̅̅ ̅ can be further decomposed as, 𝜌𝑔𝑔̅̅ ̅̅ ̅ = 𝜌𝐴𝐴̅̅ ̅̅ ̅ + 𝜌𝐴𝐵̅̅ ̅̅ ̅ , where, 𝜌𝐴𝐴̅̅ ̅̅ ̅ , refers to a pure 

source mass gravitational field contribution, and, 𝜌𝐴𝐵̅̅ ̅̅ ̅ , is a coupling of the source gravitational 
field, the applied field, with the polarized, or induced, gravitational field.  It turns out that,  
𝜌𝐴𝐵̅̅ ̅̅ ̅ = (𝜒/𝐾) 𝜌𝐴𝐴̅̅ ̅̅ ̅ , where, 𝜒 ,is the cosmic gravitational susceptibility, and, 𝐾 = 1 − 𝜒 , equals 
the relative gravitational permittivity.  This is a non-local equation.  Cosmically, both,  , and, 𝐾, 
are thought to be epoch dependent functions, which depend on, 𝑎, the cosmic scale parameter.  
When there is no susceptibility, both,  𝜌𝐵̅̅ ̅, and, 𝜌𝐴𝐵̅̅ ̅̅ ̅ , vanish.  All three mass density terms, 𝜌𝐵̅̅ ̅ , 
𝜌𝐴𝐴̅̅ ̅̅ ̅ , and,  𝜌𝐴𝐵̅̅ ̅̅ ̅ , are necessitated by analogy to electrostatics, and therefore, should not be 
ignored in Friedmann’s equation. 

Locally, due to the anti-screening feature of gravistatics, the total macroscopic gravitational 

field, �⃗�(�⃗�) , which is the vector sum of source gravitational field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (�⃗�) , and induced 

gravitational field, 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (�⃗�), adds up to a sum greater than the applied source field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (�⃗�).  The 
local susceptibility, 𝜒(�⃗�), in gravistatics, is related to the relative gravitational permittivity, 
𝐾(�⃗�), by the equation, 𝐾 = 1 − 𝜒 , versus the customary, 𝐾 = 1 + 𝜒 , which holds in 

electrostatics.  The, 𝐾 = 1 + 𝜒, in electrostatics, leads to screening where, �⃗⃗� = 𝐸(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ /𝐾 < 𝐸(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  

In gravistatics, however, we have anti-screening, since, �⃗� = 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ /𝐾 > 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  In the present 
epoch, we calculated the cosmic smeared susceptibility for the universe as a whole [1].  Its 
value was found to equal, �̅� = .842, which allowed us to explain the present values for the 
density parameters in Friedmann’s equation.  This susceptibility gave us a smeared, or cosmic 
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average value for the macroscopic gravitational field in the amount of, �̅� = 2.387 𝐸 − 9 𝑚/𝑠2.  
This value holds point for point within the cosmos, as any observer, no matter the location, 
would deduce this same value.  This value could also be justified using other calculations. 

Our model borrowed heavily from the works of Hajdukovic [2-5], and Winterberg [6-12].  
Hajdukovic first suggested that polarization of the vacuum, may, in some fashion, lead to an 
explanation of dark matter.  The anti-screening feature intrigued him and seemed a natural fit 
for the halo effect, rotation curves, virial movement of galaxies within superclusters, 
gravitational lensing, etc.  He later looked at dark energy in the hopes of finding a suitable 
polarizable medium.  He focused on the creation and annihilation of virtual particles within the 
vacuum, specifically ± pion pairs, where the mass equals, (𝜋±) = 2.488 𝐸 − 28 𝑘𝑔 =
139.57 𝑀𝑒𝑉/𝑐2 .  He applied this to the cosmological constant problem as an explanation for 
dark energy.  This sea of virtual charged particles was his answer to polarization of the vacuum, 
and dark energy. 

Winterberg was another author intrigued by the cosmological constant problem, and offered 
an explanation for the zero point energy associated with the vacuum.  Due to a seemingly 
infinite number of harmonic oscillators, he argued correctly, we believe, that the vacuum 
cannot be empty.  He introduced the bold idea that the vacuum is, in reality, comprised of 
fundamental positive, and negative mass particles, which he called planckions.  They have 
positive and negative the Planck mass, ±𝑀𝑃𝑙 = ±2.178 𝐸 − 8 𝑘𝑔, are real particles, versus the 
virtual particles of Hajdukovic, and together form a stiff, and very dense two component 
superfluid.  We prefer supersolid.  This vast assembly (sea) of very densely packed, positive, and 
negative mass particles, permeate all of space as they constitute the vacuum.  Due to a mass 
compensating effect, already at the submicroscopic level, (< 10−18 𝑚𝑒𝑡𝑒𝑟𝑠), they form an 
ether-like medium, the vacuum, which is seemingly empty.  The total mass density, the total 
gravitational pressure, and the net entropy of the vacuum all add up to zero in the undisturbed 
state. 

Moreover, through thermally induced 𝐶𝐵𝑅 photon bombardment, energy/ momentum can be 
exchanged/ transferred between planckions, and the blackbody photons, as they both occupy 
the same space.  These collisions with photons make for inherent fluctuations within the 
vacuum.  The position and momentum of other material particles, when placed within, or upon, 
such a space, cannot be determined precisely.  Thus, the Heisenberg uncertainty relation has an 
explanation.  Because the underlying space is oscillating and vibrating, a material particle is 
much like a ship when placed upon the ocean, which is rocking to and fro.  This Zitterbewegung, 
or erratic, chaotic, and random motion makes it impossible to fix both its momentum and 
position simultaneously.  In the Winterberg model, both quantum mechanics, and the general 
theory of relativity, are treated as two asymptotic limits.  His theory is also very interesting in 
that it is very deterministic/ mechanistic in its approach, using Boltzmann type arguments to 
derive quantum mechanical equations from first principles, such as the Schroedinger equation, 
an equation, which is supposedly based on probability and thus non-deterministic. 

In the Winterberg model, two like planckions, whether they have positive or negative mass, will 
simultaneously repel and attract each other.  When brought too close together they repel, and 
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when separated by too large a distance, they attract.  In short, they maintain a fixed distance 
between nearest neighbors.  Unlike mass planckions also simultaneously attract, and repel, but 
indirectly.  When unlike mass planckions undergo elastic collisions with each other, they pass 
through each other as if the other particle from the other species didn’t exist [12].  However, 
the two species occupy the same space, and thus, indirectly, they are forced close to particles 
of the opposite species.  These unlike mass planckions also strive to maintain a fixed distance of 
separation from one another. 

This is in contrast to the model of Hajdukovic, where, as mentioned, the charged  𝜋± particles 
are virtual, and two like charges repel, and two unlike charges attract.  For the specifics of these 
two respective models, we refer the reader to the original references.  In paper [1], both 
theories were discussed briefly.  Our model is really an extension of these two separate models, 
with some major modifications built in. 

The positive and negative mass planckion particles which form the vacuum can be 
gravitationally polarized, if conditions are right.  Gravitational dipoles of positive and negative 
the Planck mass will form, which can be ordered or aligned creating a net susceptibility, and net 
polarization, which can be measured macroscopically.  The dipole moments can be of two 
kinds.  The first type of dipole moment is transitory and random due to collisions with 
blackbody photons.  When bombarded with these photons, they oscillate about their center of 
mass, which for a positive and negative mass planckion dipole pair, is at spatial infinity.  These 
thermally induced oscillations produce non-vanishing root mean square amplitudes, leading to 
dipole moments, which are non-vanishing.  Here, however, there can be no net polarization in 
space due to the random and chaotic nature of blackbody bombardment.  The vector sum, of 
these individual dipole moments, we argue, add up to zero because no single direction in three-
dimensional space can be singled out. 

The second type of dipole moment can set in at a much reduced temperature.  These are due 
to gravitational fields produced by source matter, and in the surrounding regions of space we 
will have a net polarization, if the gravitational fields are strong enough, the dipole moment 
large enough, and if the ambient temperatures are not too excessive given the gravitational 
field strength.  It is really a tug of war situation, where the gravitational field promotes order, 
and the temperature frustrates all such attempts.  Locally, a polarization cloud will form, about 
the free or source mass distribution, 𝜌𝐹(�⃗�), built up from quarks and leptons.  The source mass 

distribution, 𝜌𝐹(�⃗�), produces an applied field in the surrounding space, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (�⃗�), which takes on 
the same symmetry as 𝜌𝐹(�⃗�).  That could be spherical symmetry, cylindrical symmetry, 

rectangular symmetry, etc.  The, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (�⃗�) , in turn, induces a polarized gravitational field, 

𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (�⃗�), within the vacuum, the gravitic, which is our gravitational version of a dielectric.  The 

total macroscopic gravitational field, �⃗�(�⃗�) = 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (�⃗�) + 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (�⃗�), is greater than the original 

field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (�⃗�), and we have anti-screening.  All gravitational fields reflect the symmetry of the 
original source distribution, 𝜌𝐹(�⃗�). 

This second type of dipole moment will allow for a net polarization of the vacuum.  Cosmically, 
when averaged over the entire universe, we obtained [1], 𝑃0

̅̅ ̅ = 𝜀0 𝜒0̅̅ ̅ 𝑔0̅̅ ̅ = 2.396 𝑘𝑔/𝑚2, in the 
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present era.  In this equation, 𝜒0̅̅ ̅ , is the cosmic susceptibility, a smeared quantity.  The, 
𝑔0̅̅ ̅ = 2.387 𝐸 − 9 𝑚/𝑠2, is the cosmic net macroscopic gravitational field, another smeared 
quantity, obtained from Gauss’s law, which holds point for point in the universe, but only if 
huge distance scales are considered.  This value takes into account both source and bound 
matter within the universe.  The gravitational permittivity, 𝜀0 , is defined, by analogy to 
electrostatics, as, 𝜀0 ≡ 1/(4𝜋𝐺0) = 1.192 𝐸9  (𝑀𝐾𝑆) , where, 𝐺0, is Newton’s constant.  The 
values for, 𝜒0̅̅ ̅ , and, 𝑔0̅̅ ̅ , above, were imposed upon us in order to make sense of the present-
day density parameters, 𝛺𝑖, in Friedmann’s equation, within the 𝛬𝐶𝐷𝑀 model.  It is important 
to realize that for polarization to exist a-priori, either locally or cosmically, the positive and 
negative mass planckions must be spatially anchored or locked in position, somehow.  The 
specific mechanism of anchoring was discussed in some detail in section, 𝐼𝐼, of reference, [1]. 

The models presented by, Hajdukovic, Winterberg, and ultimately ours, which is a modified 
version of the Hajdukovic/ Winterberg models (see the previous paper for the differences) are 
unconventional.  In this work, we wish to build upon our model, as presented in reference, [1].  
We want to look into the specifics of gravitational dipole formation, and present two scaling 
laws for the cosmic susceptibility, �̅� = �̅�(𝑎), where, 𝑎, is the cosmic scale parameter 
dependent on 𝐶𝐵𝑅 temperature.   In fact, we wish to take this further and develop scaling laws 
for the macroscopic variables of interest, which were introduced in reference, [1]. This is our 
primary objective. 

A second goal, and just as important, is to consider a cosmologically varying gravitational 
constant. We wish to build in this additional feature, as it ties in directly with the mass value for 
the planckions, as well as other considerations presented elsewhere [13-15].  The Planck mass 
is only a constant, if Newton’s constant, 𝐺0, is a true constant of nature.  If 𝐺 varies 
cosmologically, very slowly in the current era so as not to upset, too much, the accepted and 
very successful 𝛬𝐶𝐷𝑀 model, we have planckion masses which change with cosmological time.  
For the broadest possible scaling laws, and to provide an intimate connection in later work 
between electrostatics and planckion theory, we will include this possibility.  The limit where, 
𝐺, is a constant is easily taken into account, in all our formulas, and we retrieve all the standard 
𝛬𝐶𝐷𝑀 results in this particular limit.  We have specific reasons for including this option, as we 
shall see in our third paper. 

The outline of this paper is as follows.  In section II, we include the possibility that, 𝐺 = 𝐺(𝑎).  
There are many reasons for assuming this, which were discussed elsewhere.  Some of those 
reasons include alleviating the cosmological constant problem, explaining the observed value of 
the quintessence parameter, which is, = −.98 , versus the, 𝑤 = −1, which the 𝛬𝐶𝐷𝑀 model 
assumes.  Another reason is the renormalization of gravity.  Gravity will not exist at extremely 
high energy/ momentum exchanges, and there is no theory to renormalize.   As mentioned, 
these reasons were discussed at length in previous work, cited above, and will not be repeated 
here.   

We will however, make use of two specific models for, 𝐺 = 𝐺(𝑎), which were called models, 𝐴, 
and, 𝐵, in references [13-15].  In our view, �̅�(𝑎), and, 𝐺(𝑎), are both intrinsic properties of the 
vacuum, although the latter does not require any source mass.  Elementary particles, i.e., 
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quarks and leptons, only came into existence, at temperatures below, 10 𝐸16 𝐾𝑒𝑙𝑣𝑖𝑛 
(𝑎𝑏𝑜𝑢𝑡 1 𝑇𝑒𝑉).  If Newton’s constant varies at all, it was calculated that, 𝐺−1(𝑎), surfaces, or 
forms, at an inception 𝐶𝐵𝑅 temperature of about, 6.20 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, in model 𝐴, and, 
7.01 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, in model 𝐵.  In fact, both models, 𝐴, and, 𝐵, lead to very similar inception 
temperatures even though they are modeled quite differently, by two very distinct and 
separate functions.  The polarization of space, on the other hand, requires much reduced 𝐶𝐵𝑅 
temperatures, as source mass is needed, and that source mass, made up of quarks and leptons, 
didn’t even begin to freeze out until well below, 1 𝑇𝑒𝑉, or, about 10 𝐸16 𝐾𝑒𝑙𝑣𝑖𝑛 [16-19].  So, 
the polarization of space seems to have little to do with the cosmic development of, 𝐺−1.  
There is, however, an intimate connection.  The mass of the constituent positive and negative 
mass planckions, is directly determined by the value of, 𝐺.  The positive and negative mass 
planckions are the building blocks of the vacuum, and the principle players in determining 
polarization, i.e., macroscopic ordering, or alignment, of gravitational dipole moments. 

If we wish to see how the vacuum evolves, it would be a mistake not to include the possibility 
that the masses of the planckions can vary, as they comprise and populate the vacuum.  Should 
𝐺 not vary cosmologically, all equations in this paper, and in other work, can easily be modified 
to include this contingency, as well. 

In section III, we give two models for cosmic susceptibility, �̅� = �̅�(𝑎).  We first differentiate 
between ionic and orientation polarization, and show that both lead to essentially the same 
results, both qualitatively, and quantitatively.  Model, 𝐼, is based on ionic polarization, whereas 
model, 𝐼𝐼, has orientation polarizability as its basis.  Ionization polarization is conceptually 
simpler, has non-permanent gravitational dipoles, except those which form when an external 
gravitational field is applied.  This will lead to what we call a charging capacitor model, where 
bound mass, 𝑀𝐵 , builds up via the relation, 𝑀𝐵 = (𝜒/𝐾) 𝑀𝐹 = [𝜒/(1 − 𝜒)] 𝑀𝐹.  The, 𝑀𝐹, is 
the source mass, enclosed within a specific Gaussian surface, and, 𝑀𝐵, is the bound mass within 
that same surface.  This can be treated as a cosmic equation, where the entire cosmos is 
considered, and then, �̅� = �̅�(𝑎) is a smeared quantity.  As the universe expands and cools, 
bound or polarized mass will slowly build up within the universe as a function of the 
cosmological scale parameter, 𝑎.  In the present epoch, we have found that, 𝑀𝐵,0 =
5.327 𝑀𝐹,0.  

Orientation polarization, model, 𝐼𝐼, is somewhat more complicated, and assumes pre-existing 
dipoles before any applied field is introduced.  When a source field is applied, these dipole 
moments will orient, or align, themselves in the sense of the applied field, if conditions are 
right, in order to minimize their gravitational potential energy.  Those pre-existing dipoles could 
be due to blackbody photon bombardment, as these photons would cause non-vanishing root 
mean square amplitudes for the oscillating positive and negative mass planckion pairs, which 
make up the vacuum.  Those gravitational dipoles would then be thermally induced by constant 
and random blackbody photon collisions.  What remains is for this dipole axis to align itself in 
the sense of the applied field against the disruptive effects of temperature, to cause a net 
macroscopic polarization.  This model is treated much like magnetization in a paramagnet, and 
a Langevin function will be introduced to model, �̅� = �̅�(𝑎).  In this model the universe can be 
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broken up into competing domains, much like in magnetization, where some regions polarize 
(magnetize) and others do not. 

Both models, 𝐼 and, 𝐼𝐼, are non-linear, one parameter functions, which mimic order parameter 
behavior.  They start from a zero value, at a specific inception temperature, rise dramatically 
initially, and as the temperature cools, start to level off and flatten.  Eventually they reach a 
saturation value, which for cosmic gravitational susceptibility, is equal to one.  At very high 
temperatures, both functions are inversely proportional to 𝐶𝐵𝑅 temperature. 

In section IV, macroscopic quantities, important in a discussion of polarization for the cosmos 
will be considered.  We will derive the scaling laws for these quantities as the universe expands.  
We will also focus on one or two epochs of special interest, such as the era of last photon 
scattering, 380,000 years after the big bang.  With our two models we will see that when the 
𝐶𝐵𝑅 temperature was about, 3000 𝐾𝑒𝑙𝑣𝑖𝑛, the cosmic �̅�(𝑎) values are rather small.  However 
the localized values for, 𝜒(�⃗�), can still be very large.  The coolest regions in the universe will 
have the greatest amount of local susceptibility, and thus those coolest pockets will have the 
greatest amount of dark matter.  This can be important in interpreting the acoustic peaks in the 
power spectrum correctly.  We also consider the cosmological point where dark matter starts 
to dominate over ordinary matter.  Cosmically, this happened rather recently, when the 
universe as a whole is considered.  Local deviations seem to follow their own rules, when it 
comes down to scaling.  Finally, in section V, we present our summary and conclusions. 

 

II 𝑮 = 𝑮(𝒂) Models 

We are interested in the scaling behavior of macroscopic quantities relevant to our polarization 
model.  One of these quantities is Newton’s constant, 𝐺.  There are many reasons why 𝐺 could 
vary with cosmological time [13-15], and we include this possibility here.  We keep in mind, 
however, that our formulas are easily modified, should 𝐺 turn out to be a true constant of 
nature.  All results in reference, [13], revert to the standard 𝛬𝐶𝐷𝑀 model, in the limit where 
the quintessence parameter, 𝑤, equals negative one.  We assumed, namely, in reference [13], 
that, 𝑤 = −.98, a slight deviation from the ΛCDM assumed value of negative unity.   The value, 
𝑤 = −.98, is what is actually observed, although, in fairness, 𝑤 = −1, is easily accommodated 
within observational error.  Choosing, 𝑤 = −.98, allowed us to derive two specific functions for 
𝐺(𝑎), which we called models, 𝐴, and, 𝐵.  Except in the very early universe, the deviation from 
the predictions of the 𝛬𝐶𝐷𝑀 model, were slight. 

A cosmologically varying 𝐺 has a long and interesting history, starting with the work of Dirac 
and his large number hypothesis [20-22], already formulated in 1936.  He was among the first 
to recognize that 𝐺 is unusual because of its very weak value when compared to the other 
coupling constants, and its inherent canonical dimension.  Soon afterwards, Jordan [23-26] 
related a cosmologically time varying 𝐺 to Hubble’s constant.  Since then, there have been 
many attempts to observe such a variation, with limited success.  Some of that history is 
presented in reference, [13], and will not be repeated here.  It is extensive.  We mention it here 
only to give some context.  
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Model,  , in reference [13], assumes a 𝐺−1scaling behavior as follows, 

    𝐺−1(𝑇) = 𝐺∞
−1(1 − 𝑒𝑏/𝑇)  (𝑚𝑜𝑑𝑒𝑙 𝐴)            (2 − 1) 

In equation, (2 − 1), 𝑇 stands for the 𝐶𝐵𝑅 temperature, and 𝐺∞
−1 is a saturation value, achieved 

in the limit where, 𝑇 → 0.  The constant, “𝑏” , was determined to equal, 𝑏 = 11.663 𝐾𝑒𝑙𝑣𝑖𝑛, by 

fixing the quintessence parameter to equal, 𝑤 = −.98.  In model, 𝐴, the, 𝐺∞
−1 = 1.014 𝐺0

−1 , 
where 𝐺0 is Newton’s constant.   

Another way to write equation, (2 − 1), is to make use of the cosmic scale parameter, 𝑎, 
defined by, 𝑎 ≡ 𝑇0/𝑇 = 𝑅/𝑅0 = (1 + 𝑧)−1.  All subscripts, “0”, denote the current era, and we 
are using the convention where, 𝑎0 = 1.  The,  𝑅 , stands for the Hubble radius, the, 𝑇, denotes 
𝐶𝐵𝑅 temperature, and the, 𝑧, equals the redshift.  In the present epoch, 𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛.   
When re-expressed in terms of the cosmic scale parameter, equation, (2 − 1), reads, 

    𝐺−1(𝑇) = 𝐺∞
−1(1 − 𝑒−4.28𝑎)   

                   = 1.014 𝐺0
−1(1 − 𝑒−4.28𝑎)           (𝑚𝑜𝑑𝑒𝑙 𝐴)          (2 − 2) 

This equation came into being at a temperature estimated to be, 6.20 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛.  We are 
close to full saturation in the present epoch since, 𝐺0 =  .986 𝐺∞.  Saturation will occur at 
roughly, 𝑎 ≅ 10, i.e., when the universe is roughly ten times its current radius in this model.  
Equation, (2 − 2), was modeled as a charging capacitor.  What is charging up as a function of 
cosmological time, is the mass squared of the planckions, as will be seen shortly. 

Model 𝐵 assumes an entirely different scaling law.  Here, 

    𝐺−1(𝑇) = 𝐺∞
−1 [coth(𝑏/𝑇)  −  𝑇/𝑏]      (𝑚𝑜𝑑𝑒𝑙 𝐵)              (2 − 3) 

Again, 𝐺∞
−1 is the saturated value, applicable in the limit where the CBR temperature, 𝑇 → 0.  

The constant, “𝑏” , was determined to equal, 𝑏 = 48.15 𝐾𝑒𝑙𝑣𝑖𝑛 , in order to guarantee that the 
quintessence parameter, 𝑤 = − .98 .  Here, in model, 𝐵, 𝐺∞

−1 = 1.054 𝐺0
−1 .   

A second way to rewrite equation, (2 − 3), is to make use of the identity, 𝑎 = 𝑇0/𝑇 = 2.725/
𝑇.  Substituting this into equation, (2 − 3), and making use of the numerical value for “𝑏”, we 
find, 

  𝐺−1(𝑎) = 𝐺∞
−1 [coth(17.67𝑎)  −  1/(17.67𝑎] 

      = 1.054 𝐺0
−1 [coth(17.67𝑎)  −  1/(17.67𝑎]     (𝑚𝑜𝑑𝑒𝑙 𝐵)            (2 − 4) 

This order parameter surfaced at a Curie temperature of roughly, 7.01 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, which is 
very close to the value above, in model A.  This is remarkable because both functions, indicated 
by equations, (2 − 1), and, (2 − 3), are entirely different and quite distinct from one another.  
In model, 𝐵, Newton’s constant, 𝐺0, is also close to the final saturation value as, 𝐺0 = .949 𝐺∞.  
Effective saturation in model, 𝐵, is achieved when the cosmic CBR temperature drops to one-
half current value, or when the Hubble radius is twice the current radius.  Model, 𝐵, is modeled 
much like magnetization, and we call this model the magnetization model for 𝐺.  Both, 𝐺−1, 
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and magnetization, 𝑀 , have the same inherent canonical dimension.  It should be noted that 
both equations, (2 − 3), and, (2 − 4), involve the Langevin function, 𝐿(𝑥) = coth 𝑥 − 1/𝑥, 
where in this instance, the variable, 𝑥 = 𝑏/𝑇 = 17.67𝑎.  The Langevin function is often used to 
model paramagnetism.  We can think of space as somehow consisting of polarized (magnetic) 
domains, which can be ordered. 

The inverse Newtonian “constant”, 𝐺−1, in both models, 𝐴 , and, 𝐵, are one-parameter, non-
linear functions, which have specific inception temperatures, and rise dramatically at very high 
temperatures.  In fact, both models give a 𝐺−1(𝑎) value, which is inversely proportional to 
temperature at very high temperatures.  More correctly, if 𝑇𝐶  equals the inception 
temperature, then, 𝐺−1, is proportional to, 1/(𝑇 − 𝑇𝐶), which is typical order parameter 
behavior.  As the universe expands, and the 𝐶𝐵𝑅 temperature cools, the 𝐺−1(𝑎) functions will 
start to level off and flatten.  Close to saturation, the 𝐺−1 approaches a constant value, 𝐺∞

−1.  In 
the current era, we are close to full saturation as, 𝐺0 ≅ 𝐺∞ .  When plotted as a function of 
cosmic scale parameter, 𝑎 , both equations, (2 − 2), and, (2 − 4), look very similar. 

The inverse Newtonian gravitational constant, 𝐺−1(𝑎), is directly related to planckion mass.  To 
see this, we start with the formal definition of the Planck mass, 

     𝑀𝑃𝑙 ≡ (ħ𝑐/𝐺)1/2                (2 − 5) 

We square this result, and rewrite the mass as a field, 

    𝑀𝑃𝑙
2 = ħ𝑐 𝐺−1 = < 0|𝜑2|0 >                (2 − 6) 

Here, the 𝑀𝑃𝑙
2  is no longer a constant, but the vacuum expectation value (𝑉𝐸𝑉) of a scalar field,  

𝜑, squared.  As the scalar field squared, 𝜑2, freezes out of the vacuum, the 𝐺−1 will change its 
value, a process lasting eons.  In our scenario, 𝐺−1 is no longer a constant, and neither is the 
Planck mass.  We identify the scalar field in equation, (2 − 6), with the scalar field of Jordan, 
first introduced in 1937 [23].   

It should be noted that 𝑀𝑃𝑙
2  has the same canonical dimensions as magnetization in condensed 

matter physics, or 𝑀𝑊±

2  in particle physics.  Thus, it could very well be an order parameter 

based on inherent dimension alone.  In the theory of weak interactions, it is well known that 
𝑀𝑊±

2  is essentially the inverse Fermi constant, 𝐺𝐹
−1, which effectively fades at high energies, 

and is only constant below 100 𝐺𝑒𝑉.  The, 𝑀𝑊± , is the mass of the 𝑊± boson.  Newton’s 
constant, and the Fermi constant, are the only two known coupling constants in physics, which 
have an inherent dimension, and that canonical dimension is the same for both.  It can be 
expressed as inverse mass or inverse momentum, squared.  We are modeling the gravitational 
constant much like the Fermi constant in the electro-weak interaction.  

The current value for, 𝐺, is, of course, 𝐺0 = 6.674 𝐸 − 11 (𝑀𝐾𝑆).  If we insert this into 
equation, (2 − 5), then we obtain the familiar Planck mass, 𝑀𝑃𝑙 = 2.178 𝐸 − 8 𝑘𝑔.  Using this 
value, we can write in place of equation, (2 − 6), the following expression. 

   𝑀𝑃𝑙
2 = ħ𝑐 𝐺−1 = (𝐺0/𝐺)  (2.178 𝐸 − 8 𝑘𝑔)2               (2 − 7) 
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Since,  𝐺−1 , will increase, with an increase in cosmological time, so too will, 𝑀𝑃𝑙
2 .  The Planck 

mass will start out from a zero value in our models, and increase in accordance with equation, 
(2 − 7). 

As a specific example for our formulas, equations, (2 − 2), and, (2 − 4), let us consider the era 
of last scattering, where the 𝐶𝐵𝑅 temperature was, 𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛.  This specifies a 
particular epoch, where, 𝑎1 = 𝑇0/𝑇1 = 2.725/3000 = 1100−1.  We substitute this value into 
both equations, (2 − 2), and, (2 − 4), and find, 

     𝐺1/𝐺0 = 254  (𝑚𝑜𝑑𝑒𝑙 𝐴)            (2 − 8𝑎) 

𝐺1/𝐺0 = 177  (𝑚𝑜𝑑𝑒𝑙 𝐵)            (2 − 8𝑏) 

Both functions give a larger 𝐺 value for this cosmological time, when the universe was 1/1100 
its present radius.  By equation, (2 − 7), both the positive and negative planckion mass, are 

reduced in magnitude, by a factor of, 1/√254  = .063, and 1/√177  = .075 , respectively, in 
this epoch versus today. 

 

III Two Models for Cosmic Susceptibility, 𝝌(𝒂) 

Two types of polarization will be considered, ionization polarization, and orientation 
polarization.  For each, we will present a specific function, 𝜒(𝑎).  Ionic polarization, model, 𝐼, 

involves induced gravitational dipole moments.  Consider a source gravitational field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 
pointing from right to left.  The positive mass planckion will get displaced from its equilibrium 
position, and move slightly to the left, being attracted to the source mass.  Call that 

displacement, 𝑑+
⃗⃗ ⃗⃗ ⃗.  The negative mass planckion will also get shifted, but to the right, being 

repelled by the source field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  Seeing that the source field is uniform, we can expect the 
displacement of the negative mass to equal in magnitude the positive mass displacement.  

However, the sense of direction is opposite, i.e., 𝑑−
⃗⃗ ⃗⃗ ⃗ = −𝑑+

⃗⃗ ⃗⃗ ⃗ .  The induced dipole moment is 

thus, 𝑝𝑑⃗⃗⃗⃗⃗ = 𝑀𝑃𝑙𝑑 = 𝑀𝑃𝑙 (2𝑑+) (−𝑖)̂, where, (𝑖̂) , is a unit vector pointing from left to right.  This 
is the simplest kind of polarization possible, where, 𝑑+, will depend on the amount of the 

applied field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  The full macroscopic field,  �⃗� , is the vector sum of the source field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 

and the induced field, 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , both pointing in the same direction, (−𝑖̂).  By definition, 𝑝𝑑⃗⃗⃗⃗⃗ , will 
always point from the negative mass to the positive mass, just like for charges in electrostatics. 

The gravitational potential energy here for dipole ordering is, 𝑈 = −𝑝𝑑⃗⃗⃗⃗⃗ ∙ 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = −𝑀𝑃𝑙 (2𝑑+
⃗⃗ ⃗⃗ ⃗) ∙

𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , where,  �⃗�, gets replaced by the localized field,  𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ .  The localized field is sometimes 
called the local Lorentz field, or the “molecular field” in electrostatics, and it takes into account 
the other neighboring dipoles in the vicinity.  This is the field that a particular dipole directly 
experiences within the lattice.  If there is no displacement of positive and negative mass, no 
dipole is formed.   In this situation, the symmetry between the positive and negative masses 
within the undisturbed vacuum prevents a particular direction in space being singled out.  The 
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gravitational potential energy also averages out to zero.  The factor of two is necessary because 
both positive and negative masses undergo displacement in an applied field. 

A second type of polarization is orientation polarization, model, 𝐼𝐼.  Here we have permanent 
or inherent dipoles within the medium (vacuum).  These will try to self-organize and align in a 

particular direction in an applied  𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  field against the disruptive effects of temperature.  The 

gravitational potential energy here is, 𝑈 = −𝑝𝑑⃗⃗⃗⃗⃗ ∙ 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ = − ⃒𝑝𝑑⃒⃗⃗⃗⃗⃗ ⃒𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃒ cos(𝜃) , where, 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  , 
is, again, the local Lorentz field, or molecular field, described above, which also takes into 
account the gravitational field produced by the neighboring dipoles.  The permanent dipoles 

will orient themselves three-dimensionally in a 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  field, in order to achieve the lowest 
possible potential energy, against a backdrop of 𝐶𝐵𝑅 temperature, which will attempt to 
disrupt/ frustrate any such attempts.  The permanent dipoles can be due to inherent and 
constant collisions with 𝐶𝐵𝑅 blackbody photons.  This will cause oscillations about the center of 
mass for dipole planckion pairs, and a root mean square amplitude for simple harmonic motion 

results.  In a 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  field, the axis of vibration/ oscillation would want to align itself with the 
gravitational field, with the positive mass facing the source. 

If the vector sum of the individual gravitational dipoles can overcome temperature, we can 
have partial, or even full, alignment.   In either case, we then have polarization in the amount 

     �⃗⃗� = 𝑛𝑀𝐴𝑋 < 𝑝𝑑⃗⃗⃗⃗⃗ >                (3 − 1) 

, where, 𝑛𝑀𝐴𝑋, is the maximum gravitational dipole density, 𝑛𝑀𝐴𝑋 = 𝑛𝑀𝐴𝑋(�⃗�), and,   < 𝑝𝑑⃗⃗⃗⃗⃗ > , is 
some average taking into account thermal disturbances.  It turns out that, in the case of 
orientation polarization, 

   < 𝑝𝑑⃗⃗⃗⃗⃗ > = 𝑝𝑑⃗⃗⃗⃗⃗  < cos(𝜃) > =  𝑝𝑑⃗⃗⃗⃗⃗  𝐿(𝑥) 

               =   𝑝𝑑⃗⃗⃗⃗⃗  [coth(𝑥) − 1/𝑥]              (3 − 2) 

In equation, (3 − 2), 𝐿(𝑥), is the Langevin function, defined as 𝐿(𝑥) ≡ [coth(𝑥) − 1/𝑥].  This 
Langevin function can be viewed as a probability or percentage of total dipole alignment.  The 

Langevin function depends on ambient temperature, 𝑇, dipole moment, 𝑝𝑑⃗⃗⃗⃗⃗, and, 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  field.  The 
argument of the Langevin function, 𝑥, in equation, (3 − 2), is namely defined as, 

   𝑥 ≡ −𝑈/(𝑘𝐵𝑇) = ( ⃒𝑝𝑑⃒⃗⃗⃗⃗⃗ ⃒𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃒) /(𝑘𝐵𝑇)               (3 − 3) 

The, 𝑘𝐵, is Boltzmann’s constant. 

If dealing with an expanding universe, and space on a grand scale, all quantities in the definition 
of,  , above, are smeared quantities.  Then, we would write in place of equation, (3 − 3), 

    �̅� = 𝑎 𝑥0̅̅ ̅ ≡ 𝑎 ( 𝑝𝑑̅̅ ̅ 𝑔(2)̅̅ ̅̅ ̅)/(𝑘𝐵 𝑇0)               (3 − 4) 
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In this equation, 𝑇0, represents the present 𝐶𝐵𝑅 temperature, 𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛, and, 𝑎, is 
the cosmic scale parameter,  𝑎 = 𝑇0/𝑇 = (1 + 𝑧)−1.  The redshift is specified by the variable, 𝑧.  
Equations, (3 − 3), and, (3 − 4), look similar, but one is local, equation (3 − 3), and the other, 
equation, (3 − 4), is cosmic, where all variables are smeared cosmic averages, which hold only 
when huge distance scales are considered.  A local equation is one where all variables depend 
on position, �⃗�.  For, 𝜒(𝑎) , we choose, 𝜒(�̅�) = 𝐿(�̅�), where, �̅�, is specified by equation, (3 − 4).  
This is model, 𝐼𝐼, for cosmic susceptibility.  One will note that the maximum value for cosmic 
susceptibility, 𝜒(�̅�) = 𝐿(�̅�), is unity. 

In the case of ionic polarization, model, 𝐼, we will use a different function for, 𝜒 = 𝜒(𝑎), not the 
Langevin function.  Instead of choosing, 𝜒(�̅�) = 𝐿(�̅�), as specified in equation, (3 − 2), we will 
use, instead, 

     𝜒(𝑥) = [1 − 𝑒−𝑥]  (𝑚𝑜𝑑𝑒𝑙 𝐼)             (3 − 5) 

The variable, 𝑥, is defined as in equation, (3 − 4).  We are looking at cosmic susceptibility, 
𝜒(𝑥) = 𝜒(𝑎), which holds only when the universe is taken as a whole.  The maximum value for 
equation, (3 − 5), is also one.  It is achieved in the limit where, 𝑥 → ∞, or equivalently, when, 
𝑇 → 0.  The Langevin function has those same limits. 

The physical motivation for equation, (3 − 5), is somewhat different than that of 
equation, (3 − 2).  Equation, (3 − 2), treats the cosmic susceptibility as a kind of 
magnetization.  Localized domains in space, create an average or smeared cosmic value, and, 
𝐿(𝑥) = 𝐿(𝑎) = 𝜒(𝑎), is the result.  Equation, (3 − 5), on the other hand, looks more like a 
charging capacitor model where bound mass for the universe is being “charged” up within the 
gravitic, which is what we call the vacuum.  From previous work [1], remember that bound 
mass, or polarized mass, identified as dark matter, 𝑀𝐵,  is related to source mass, 𝑀𝐹, by means 
of the equation, 

    𝑀𝐵 = (𝜒/𝐾) 𝑀𝐹 = [𝜒/(1 − 𝜒)] 𝑀𝐹               (3 − 6) 

This is a non-local equation.  As the universe expands, and the 𝐶𝐵𝑅 temperature decreases, 
cosmic susceptibility, 𝜒(𝑎), will increase.  And so, the bound mass will build up as a function of 
cosmological time, but not linearly.  As 𝜒 gets larger, non-linearly according to equation, 
(3 − 5), the bound mass will increase even more dramatically because of the denominator 
decreasing at the same time.  The 𝑀𝐹 value stays the same.  In the current epoch, it was 
determined that the cosmic value for 𝜒 equals, 𝜒0 = 𝜒(𝑎0 = 1) = .842. 

The counterpart to equation, (3 − 5), will hold for orientation polarization.  This we call model, 
𝐼𝐼, our magnetization model for cosmic susceptibility.  Once more, this can be written in terms 
of a Langevin function as, 

    𝐿(𝑥) = 𝜒(𝑥) = [coth(𝑥) − 1/𝑥] (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)              (3 − 7) 

Equations, (3 − 5), and (3 − 7), are two quite distinct functions, and yet, when plotted, look 
remarkably similar.  They are both one parameter, nonlinear functions, and both mimic order 
parameter behavior.  The one parameter that has to be fixed in both models is, 𝑥0 ≡
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( 𝑝𝑑̅̅ ̅ 𝑔(2)̅̅ ̅̅ ̅)/(𝑘𝐵 𝑇0).  See equation, (3 − 4).  What we are really determining is dipole 
gravitational potential energy, 𝑈, for both models, 𝐼, and 𝐼𝐼, since 𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛.  See 

equation, (3 − 3).  This dipole energy, 𝑈, determines dipole ordering, or alignment, in a 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  
field.  Once 𝑥0 is determined, we are in a position to find the cosmic susceptibility for both our 
models, 𝐼, and, 𝐼𝐼, using equations, (3 − 5), and (3 − 7) , respectively.  We keep in mind that, 
= 𝑎 𝑥0 , where, 𝑎, is cosmic scale parameter.  

To find the parameter, 𝑥0, in either model, we use the present epoch value for cosmic 
susceptibility.  This has been found [1] to equal, 𝜒0 = �̅�(𝑎0 = 1) = .842.  Inserting this value in 
equation, (3 − 5), and solving gives, 

   𝑥0 = 1.845  𝑥 = 𝑎 𝑥0 (𝑚𝑜𝑑𝑒𝑙 𝐼)              (3 − 8) 

For equation, (3 − 7), we proceed likewise.  Set the right hand side equal to . 842 , keeping in 
mind that this holds for, 𝑎 = 1, and solve for, 𝑥0.  The result is, 

   𝑥0 = 6.338  𝑥 = 𝑎 𝑥0 (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)              (3 − 9) 

With these values for, 𝑥0 , we can easily find, 𝑥 = 𝑎 𝑥0 , for any given cosmological epoch.  We 
just have to specify the cosmic scale parameter, 𝑎 , or the redshift.  Substituting the 𝑥 value in 
the appropriate equation, (3 − 5), or (3 − 7), will give us our cosmic susceptibility. 

One may have noticed that equations, (3 − 5), and (3 − 7), bear a striking resemblance to 
equations, (2 − 2), and (2 − 4), in section 𝐼𝐼.  This is no accident.  A charging capacitor model, 
or a magnetization model, seem to us very good models, for both, �̅� = �̅�(𝑎), and, 𝐺−1 =
𝐺−1(𝑎).  We emphasize however that they both model entirely physical processes.  The inverse 
Newton “constant”, 𝐺−1(𝑎), has an inception temperature of about, 10 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, and 
effectively models the development of planckion mass squared.   See equations, (2 − 6), or 
(2 − 7).  The, �̅�(𝑎), on the other hand, models cosmic susceptibility, or polarization of space, 
when the cosmos is treated as a whole, and as a smeared value.  The inception temperature for 
�̅�(𝑎) is much less, probably after 𝐵𝐵𝑀 (Big Bang Nucleosynthesis), or, 𝑇 ≤ 10 𝐸9 𝐾𝑒𝑙𝑣𝑖𝑛.  At 
𝐶𝐵𝑅 temperature of, 3000 𝐾𝑒𝑙𝑣𝑖𝑛, the �̅�(𝑎) is already about a thousand times smaller than 
what it is today, as we shall see next. 

As a numerical example of equation, (3 − 5), and (3 − 7), let us evaluate both �̅�(𝑎) values at a 
𝐶𝐵𝑅 temperature of, 3000 𝐾𝑒𝑙𝑣𝑖𝑛, the era of last photon scattering.  The appropriate scale 
parameter value here is, 𝑎1 = 𝑇0/𝑇1 = 2.725/3000 = 1100−1.  In model, 𝐼, we substitute this 
𝑎1 value, together with the 𝑥0 value specified in equation, (3 − 8), into equation, (3 − 5).  We 
find that  

   𝜒1 = 𝜒(𝑎1 = 1100−1) = 1.675 𝐸 − 3 (𝑚𝑜𝑑𝑒𝑙 𝐼)                 (3 − 10) 

This is much less than the current cosmic value of, 𝜒0 = .842 .  In fact, it is about . 002 as large.  
For model, 𝐼𝐼, we proceed likewise.  We substitute the 𝑎1 value above, and the 𝑥0 value as 
indicated by equation, (3 − 9), into equation, (3 − 7).  Doing this, and evaluating the result 
renders, 
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   𝜒1 = 𝜒(𝑎1 = 1100−1) = 1.920 𝐸 − 3 (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)                (3 − 11) 

This result is also much less than the current value for cosmic susceptibility.  It is about .0023 
times as large.  We notice that at this 𝐶𝐵𝑅 temperature, both models give much reduced values 
for cosmic susceptibility. 

For what is needed later, let us also evaluate, the corresponding cosmic, 𝐾1 = 1 − 𝜒1 , values in 
the above two models.  We find that, 

   𝐾1 = 𝐾(𝑎1 = 1100−1) = .9983  (𝑚𝑜𝑑𝑒𝑙 𝐼)               (3 − 12𝑎) 

   𝐾1 = 𝐾(𝑎1 = 1100−1) = .9981  (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)             (3 − 12𝑏) 

There is virtually no cosmic polarization, and hence, the relative permittivity is close to unity.  
Finally we evaluate the ratio, 𝜒1/𝐾1 , at the end of recombination.  Using the results of 
equations, (3 − 10), (3 − 11), and, (3 − 12𝑎, 𝑏), we obtain, 

    𝜒1/𝐾1 = 1.678 𝐸 − 3   (𝑚𝑜𝑑𝑒𝑙 𝐼)               (3 − 13𝑎)  

      𝜒1/𝐾1 = 1.924 𝐸 − 3   (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)             (3 − 13𝑏) 

These ratios are very small.  In the present epoch, by contrast, we have, 𝜒0/𝐾0 =  .842/.158 =
5.327.  The values indicated above for,  𝜒1 , 𝐾1, and, 𝜒1/𝐾1, are cosmic averages, or smeared 
quantities.  They do not hold locally. 

Locally, 𝜒 = 𝜒(�⃗�), and we cannot use the, 𝑥0, values listed above, in equations, (3 − 8), and 
(3 − 9).  The gravitational field is totally different locally, and not a smeared value.  Also, we 
have different values for the gravitational dipole moments, and ambient temperature.  To make 
a long story short, the potential energy is different, and we can no longer use the cosmic values 
in equations, (3 − 3), and (3 − 4), which have been determined.   The local values for, 
𝜒 = 𝜒(�⃗�), can be quite large in the era of last photon scattering, even at much, much higher 
temperatures than 3000 𝐾𝑒𝑙𝑣𝑖𝑛.   Remember that the 𝐶𝐵𝑅 temperature, 𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛, is 
a thermal average holding for the universe as a whole, in that era.  What counts for local 
susceptibility, is the local dipole moment, the local gravitational field, and the local ambient 
temperature, all of which have to be specified before we can use a variation of our models, 𝐼, 
and, 𝐼𝐼 .  In principle, however, it is possible to model these local situations, as well. 

We have seen that equation, (3 − 1), is one way to specify polarization,  Another way is to use 

a macroscopic formulation [1], �⃗⃗� = 𝜀 𝜒 �⃗� , a result familiar from electrostatics, but now applied 
to gravistatics.  Equating both equations gives, 

    �⃗⃗� = 𝜀 𝜒 �⃗� = 𝑛𝑀𝐴𝑋 < 𝑝𝑑⃗⃗⃗⃗⃗ > 

           = 𝑛𝑀𝐴𝑋 𝜒  𝑝𝑑⃗⃗⃗⃗⃗   

           = 𝑛 𝑝𝑑⃗⃗⃗⃗⃗                  (3 − 14) 
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In this equation, �⃗�, is the macroscopic gravitational field, the, 𝑛𝑀𝐴𝑋, stands for the maximum 
gravitational dipole density, and, 𝑛 , equals the effective dipole density, taking susceptibility 
into account.  Only a proportion of dipole moments will self-organize, be ordered, or align 
macroscopically.  For gravitational polarization, the gravitational permittivity, 𝜀, is defined 
by,𝜀 ≡ 1/(4𝜋𝐺), where, 𝐺, is Newton’s constant.  In the present epoch, 
𝜀 = 𝜀0 = 1.192 𝐸9 (𝑀𝐾𝑆).  As always, we leave open the possibility that, 𝐺, can vary.  See 
section, 𝐼𝐼. 

Equation, (3 − 14), can be thought of as a cause and effect relation.  A gravitational field will 

produce a net polarization, but only if there is a net susceptibility.  In other words, 𝑔(1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ≡ 𝜒 �⃗�, 
must exist.  If the susceptibility is unequal to zero, then we have a net effective macroscopic 
dipole alignment, or ordering, in the amount, 𝑛 = 𝜒 𝑛𝑀𝐴𝑋.  The equation can be interpreted 
both, locally, or cosmically, like so many of our equations.  If a cosmic equation, then the, 𝑔 ̅(𝑎), 
the, �̅� (𝑎), and the, 𝑝𝑑̅̅ ̅ (𝑎), are all smeared values, holding for the universe as a unit whole.  We 
would also have smeared effective dipole number densities, �̅�(𝑎), and smeared maximum 
dipole number densities, 𝑛𝑀𝐴𝑋̅̅ ̅̅ ̅̅ ̅ (𝑎). 

 

IV The Scaling Behavior of Cosmic Gravitational Fields, Dark Matter, and Dark 
Energy 

We next consider the scaling laws for the macroscopic quantities introduced in reference [1]. 
Upon expansion of the universe, we wish to determine how the cosmic gravitational fields, the 
cosmic polarization, and the net bound mass density, change as a function of cosmic scale 
parameter.   We also have gravitational field mass densities, which scale, and we wish to see 
how.  First a quick review.  

Dark matter was identified [1] as the mass produced within the vacuum, due to dipole 
alignment, or ordering within the gravitic, the vacuum.  This is what we referred to as bound 
mass.  We had four mass density terms in Friedmann’s equation, 

   𝐻2 = (8𝜋𝐺/3)  (𝜌𝑅𝑎𝑑 + 𝜌𝐹 + 𝜌𝐵 + 𝜌𝑔𝑔)   (4 − 1) 

The first, 𝜌𝑅𝑎𝑑, is the mass/energy density associated with radiation.  Although this is a 
negligible contribution in the current epoch, it becomes the dominant term in the early 
universe.  It is well known that blackbody radiation due to photons and neutrinos scale as, 

     𝜌𝑅𝑎𝑑/𝜌𝑅𝑎𝑑,0 =  𝑎−4    (4 − 2) 

All subscripts, “0” , on variables refer to the present epoch.  Variables without a subscript refer 
to other cosmological epochs.  The, 𝑎, is the cosmic scale parameter.  In the present epoch, the 
radiative component has the value, 𝜌𝑅𝑎𝑑,0 = 𝛺𝑅𝑎𝑑,0 𝜌0 = (8.3 𝐸 − 5)(8.624 𝐸 − 27 𝑘𝑔/𝑚3) , 
relatively small when compared to the other contributions on the right hand side of equation, 
(4 − 1).  All values for mass densities are taken from the latest WMAP/Planck cosmological 
data collaboration [27-29]. 
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The second contribution to total mass density on the right hand side of equation, (4 − 1), is,   
𝜌𝐹.  This is due to ordinary mass found in the universe, made up of quarks and leptons.  We 
sum up the individual masses of all the gases, molecules, atoms, stars, planets, galaxies, etc. to 
come up with a total mass, and then divide by the Hubble volume, to arrive at a,  𝜌𝐹, value.  Its 
current value is close to, 𝜌𝐹,0 = 𝛺𝐹,0 𝜌0 ≅ (.0486)(8.624 𝐸 − 27 𝑘𝑔/𝑚3).  This is also well 
known to scale as,  

𝜌𝐹/𝜌𝐹,0 =  𝑎−3    (4 − 3) 

All mass densities, in Friedmann’s equation, and in this section, are smeared values holding for 
distance scales in excess of, 100 𝑀𝑝𝑐.  Only then is the universe fairly homogeneous and 
isotropic.  Technically we should have bars over all such quantities indicating a cosmic average.  
We often dispense with placing the bars over smeared quantities for ease of writing. 

The third term on the right hand side of equation, (4 − 1), is, 𝜌𝐵, which we identify as dark 
matter.  As mentioned, this is bound mass, which is produced within the vacuum, and 
surrounds ordinary matter.  This contribution is due to the positive and negative mass 
planckions forming dipoles within the vacuum gravitic, and net macroscopic ordering, or 
alignment, of such dipoles, within that space.  In the present epoch, the current estimate for 
dark matter amounts to, 𝜌𝐵,0 = 𝛺𝐵,0 𝜌0 = (.2589)(8.624 𝐸 − 27 𝑘𝑔/𝑚3).  This will not scale 

like ordinary matter in our model.   Counter to the 𝛬𝐶𝐷𝑀 standard model, we propose a 
different scaling law.  Our scaling law for, 𝜌𝐵, is, 

𝜌𝐵/𝜌𝐵,0 = [(𝜒/𝐾)/(𝜒0/𝐾0)] (𝜌𝐹/𝜌𝐹,0) = [(𝜒/𝐾)/(𝜒0/𝐾0)] 𝑎−3             (4 − 4) 

This follows since, 𝜌𝐵̅̅ ̅, is related to,  𝜌𝐹̅̅ ̅ , via the relation [1],  

𝜌𝐵̅̅ ̅ = (𝜒/𝐾)𝜌𝐹̅̅ ̅                         (4 − 5) 

Equation, (4 − 5), also follows from equation, (3 − 6).  We know the ratio, 𝜒0/𝐾0 , in the 
present epoch.  This equals, 𝜒0/𝐾0 = (.842/.158) = 5.329.  For the, 𝜒/𝐾 , value in another 
epoch, we need to specify the scale parameter, 𝑎 , and then use either equations, (3 −
5), 𝑤𝑖𝑡ℎ (3 − 8), for model, 𝐼 , or, equations, (3 − 7), 𝑤𝑖𝑡ℎ (3 − 9), for model, 𝐼𝐼.  In both 
models, = 𝑎 𝑥0 . 

As a particular example, we can consider the era of last photon scattering.  There, the 𝐶𝐵𝑅 
temperature was, 𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛.  The, 𝜒1/𝐾1 , values have already been worked out for 
models, 𝐼, and 𝐼𝐼, and are indicated in equations, (3 − 13𝑎, 𝑏) .  Substituting these values into 
equation, (4 − 4), we find that 

𝜌𝐵,1/𝜌𝐵,0 = 4.191 𝐸5   (𝑚𝑜𝑑𝑒𝑙 𝐼)           (4 − 6𝑎) 

𝜌𝐵,1/𝜌𝐵,0 = 4.805 𝐸5   (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)           (4 − 6𝑎) 

Both of these ratios are far less than the 𝛬𝐶𝐷𝑀 standard model value.  In the standard model, 
we would expect the dark matter mass density to scale as source matter density, and in place 
of the right hand sides of equations, (4 − 6𝑎, 𝑏), we would have instead, 𝑎−3 = 11003 =
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1.331 𝐸9.  Clearly equations,(4 − 6𝑎, 𝑏), indicate far lessor values.  Dark matter, in our models, 
is virtually non-existent, as a cosmic average, at the end of recombination.  There is little net 
cosmic polarization of space in this epoch.  We keep in mind, however, that localized values for 
dark matter can still be quite large.  We postpone further discussion on this point until later. 

The fourth term on the right hand side of equation, (4 − 1), is, 𝜌𝑔𝑔.  This we interpret as dark 

energy [1].  It is really made up of two separate components, a part which does not depend on 
polarization, and another part, which does.  Dark energy is interpreted as the energy density 
associated with gravitational fields, due to both source matter, and bound matter.  Following 
electrostatics, we claimed that, 

    𝜌𝑔𝑔 = 1/(2 𝑐2) 𝐾 𝜀 𝑔2 

             = 𝛺𝑔𝑔 𝜌 

             = 1/(2 𝑐2)  𝜀 𝑔 𝑔(0) 

             = 1/(2 𝑐2)  𝜀  𝑔(0)( 𝑔(0) +  𝑔(1)) 

             = 1/(2 𝑐2) 𝜀 𝑔(0)𝑔(0) + 1/(2 𝑐2) 𝜀 𝑔(0)𝑔(1) 

             = 𝜌𝐴𝐴+ 𝜌𝐵𝐵                             (4 − 7) 

, where, 

     𝜌𝐴𝐴 ≡ 1/(2 𝑐2) 𝜀 𝑔(0)𝑔(0)             (4 − 8𝑎) 

     𝜌𝐴𝐵 ≡ 1/(2 𝑐2) 𝜀 𝑔(0)𝑔(1) 

             = (𝜒/𝐾) 𝜌𝐴𝐴                          (4 − 8𝑏) 

Equations, (4 − 8𝑎, 𝑏),  are formal definitions.  The gravitational field mass density associated 

with just ordinary, or source matter, is, 𝜌𝐴𝐴.  This is proportional to, 𝑔(0)squared, as indicated 

by equation, (4 − 8𝑎).  The gravitational field mass density associated with, 𝑔(0), coupled to 

the gravitational field associated with bound matter, 𝑔(1), is, 𝜌𝐴𝐵.  By equation, (4 − 8𝑏), this 

involves both the source gravitational field, 𝑔(0), and the polarized gravitational field, 𝑔(1).  In 
the limit where the cosmic susceptibility vanishes, the contribution, 𝜌𝐴𝐵 → 0. 

From equation, (4 − 5), which is a non-local equation, we saw how bound mass density, or 
dark matter, is related to free, or source, mass density. Dark matter is formed in the space 
surrounding ordinary matter, and for dark matter a non-vanishing susceptibility is needed. It 
should come as no surprise then, that in the second line of equation, (4 − 8𝑏), we have a 
similar relation, but now relating the gravitational field mass densities.  For, 𝜌𝐴𝐵, susceptibility 
is also needed.  If susceptibility vanishes, then we only have the following contributions to mass 
density, 𝜌𝑅𝑎𝑑, 𝜌𝐹, and 𝜌𝐴𝐴 , in Friedmann’s equation. 

We next consider the scaling behavior for dark energy, 𝜌𝑔𝑔,   This is made up of two 

components, 𝜌𝐴𝐴, and, 𝜌𝐴𝐵.  We first focus on the 𝜌𝐴𝐴 component, defined by equation, 
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(4 − 8𝑎).  This equation is really a smeared equation, and should properly have bars over the 

quantities, 𝜌𝐴𝐴, and, 𝑔(0), as these are averages for the universe as a whole, and epoch 
dependent.  Because they are cosmic averages, it would be a mistake to used smeared relations 
to determine scaling.  Instead we will argue as follows.   

Let us imagine the universe as a three dimensional sphere, within which we place dots 
representing significant mass sources such as galaxies.  Around each dot, draw dashed 
concentric bubbles, some smaller in radius, some larger depending on how much source mass is 
present.  These dashed bubbles represent the localized susceptibility field, i.e., the extent to 

which, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  (�⃗�), reaches, and polarizes the surrounding vacuum.  In some instances, there will 
be no dashed bubble, because there is no localized susceptibility.  In those instances where 
susceptibility prevails, the dashed bubbles are gravitationally bound to the source mass, or 
source mass distribution.  As such, the 𝜌𝐴𝐴 must scale like ordinary matter.  We obtain, 

𝜌𝐴𝐴/𝜌𝐴𝐴,0  = 𝜌𝐹/𝜌𝐹,0 =  𝑎−3               (4 − 9) 

What does the expanding is the space between concentric bubbles, and not the bubbles 
themselves. 

Equation, (4 − 9), also makes sense from a conservation of energy point of view.  The ratio of, 
𝜌𝐴𝐴, to, 𝜌𝐹, must stay more or less constant as the universe expands.  Therefore, 𝜌𝐴𝐴/𝜌𝐹 =
𝜌𝐴𝐴,0/𝜌𝐹,0 , and equation, (4 − 9), follows using equation, (4 − 3).  The, 𝜌𝐴𝐵, on the other 
hand, involves an interaction (coupling) with the surrounding space, i.e., vacuum.  This can and 
will involve a different scaling law than that for pure source matter. 

Let us use the second line in equation, (4 − 8𝑏), to determine this scaling law.  From this 
equation, it should be apparent that, 

𝜌𝐴𝐵/𝜌𝐴𝐵,0 = [(𝜒/𝐾)/(𝜒0/𝐾0)] (𝜌𝐴𝐴/𝜌𝐴𝐴,0) = [(𝜒/𝐾)/(𝜒0/𝐾0)] 𝑎−3     (4 − 10) 

The, 𝜒0/𝐾0 = (.842/.158) = 5.329, as before.  See the discussion following equation, (4 − 5).  
We also can make use of the models from the previous section to determine the ratio, 𝜒/𝐾.  
Use either equations, (3 − 5), 𝑤𝑖𝑡ℎ (3 − 8), for model, 𝐼 , or, equations, (3 − 7), 𝑤𝑖𝑡ℎ (3 − 9), 
for model, 𝐼𝐼.  In both models, 𝑥 = 𝑎 𝑥0.  All we need to do is specify the cosmic parameter, 𝑎, 
or redshift, 𝑧 , and we can evaluate the cosmic ratio, 𝜒/𝐾. 

We’ll work out one numerical example.  Let us consider the end of recombination, where the 
𝐶𝐵𝑅 temperature is,  𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛.  The, 𝜒1/𝐾1 , values have been evaluated.  See 
equations, (3 − 13𝑎, 𝑏).  We substitute these values into equation, (4 − 10), and find, 

𝜌𝐴𝐵,1/𝜌𝐴𝐵,0 = (3.149 𝐸 − 4) (1100)3      (𝑚𝑜𝑑𝑒𝑙 𝐼)               (4 − 11𝑎) 

   𝜌𝐴𝐵,1/𝜌𝐴𝐵,0 = (5.734 𝐸 − 4) (1100)3      (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)             (4 − 11𝑏) 

These are small values when compared to the, 𝜌𝐴𝐴,1/𝜌𝐴𝐴,0  = 𝜌𝐹,1/𝜌𝐹,0 =  (1100)3, specified 
by equation, (4 − 9). 
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The total dark energy mass density, 𝜌𝑔𝑔, is the sum of 𝜌𝐴𝐴, and, 𝜌𝐴𝐵.  This can be written as, 

    𝜌𝑔𝑔 = (1 + 𝜒/𝐾) 𝜌𝐴𝐴  = 𝜌𝐴𝐴/𝐾             (4 − 12) 

We have utilized the second line in equation, (4 − 8𝑏), and also recalled that, in gravistatics, 
the identity, (𝐾 + 𝜒) = 1, holds.  From equation, (4 − 12), we obtain, 

𝜌𝑔𝑔/𝜌𝑔𝑔,0 = (𝐾0/𝐾) (𝜌𝐴𝐴/𝜌𝐴𝐴,0) = (𝐾0/𝐾) 𝑎−3                 (4 − 13) 

The relative gravitational permittivity in the present epoch is, 𝐾0 = .158.  At the end of 
recombination where,  𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛, we find using equations, (3 − 12𝑎, 𝑏), 

𝜌𝑔𝑔,1/𝜌𝑔𝑔,0 = (.1583) (1100)3      (𝑚𝑜𝑑𝑒𝑙 𝐼)               (4 − 14𝑎) 

    𝜌𝑔𝑔,1/𝜌𝑔𝑔,0 = (.1583) (1100)3      (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)             (4 − 14𝑏) 

There is no difference between the two models.  Dark energy scales according to equations, 
(4 − 14𝑎, 𝑏).  It will be noticed that none of the mass density scaling laws involve, 𝐺, Newton’s 
constant.  This will be different when we look at the smeared, or cosmic, gravitational field 
strengths.  

Before we consider the individual cosmic gravitational field scaling laws, let us evaluate the 
various contributions to mass density in the era of last scattering.  We have all the relations 
needed.  We start with radiation mass density, 𝜌𝑅𝑎𝑑.  From equation, (4 − 2), we find that, 

    𝜌𝑅𝑎𝑑 = 𝑎1
−4 𝜌𝑅𝑎𝑑,0 = (1100)4 (8.3 𝐸 − 5) 𝜌0 

               = 1.2152 𝐸8 𝜌0                          (4 − 15) 

The total mass density in the present epoch, 𝜌0, equals, 𝜌0 = 8.624 𝐸 − 27 𝑘𝑔/𝑚3.  This 𝜌0 
value corresponds to a present rate of expansion of, 𝐻0 = 67.74 𝑘𝑚/(𝑠 ∙ 𝑀𝑝𝑐).  For ordinary 
matter, we use equation, (4 − 3).  At 𝐶𝐵𝑅 temperature,  𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛, we obtain, 

𝜌𝐹 = 𝑎1
−3 𝜌𝐹,0 = (1100)3 (. 0486) 𝜌0 

               = 0.6469 𝐸8 𝜌0                          (4 − 16) 

Dark matter comes next.  For this we use either equation, (4 − 6𝑎), or equation, (4 − 6𝑏), as 
our scaling law.  We find, 

𝜌𝐵,1 = (4.191 𝐸5)(. 2589) 𝜌0 = 1.085 𝐸5 𝜌0  (𝑚𝑜𝑑𝑒𝑙 𝐼)        (4 − 17𝑎) 

𝜌𝐵,1 = (4.805 𝐸5)(. 2589) 𝜌0 = 1.244 𝐸5 𝜌0  (𝑚𝑜𝑑𝑒𝑙 𝐼)        (4 − 17𝑏) 

And, finally we have dark energy.  This scaling law is determined by either one of equations, 
(4 − 14𝑎, 𝑏).  Using these equations, we can claim that, in the era of last photon scattering, 

 𝜌𝑔𝑔,1 = (. 1583)(1100)3(. 6911) 𝜌 0 = 1.456 𝐸8      (𝑚𝑜𝑑𝑒𝑙 𝐼)            (4 − 18𝑎) 
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 𝜌𝑔𝑔,1 = (. 1583)(1100)3(. 6911) 𝜌 0 = 1.456 𝐸8      (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)          (4 − 18𝑏) 

The sum of all the various contributions in Friedmann’s equation, equation, (4 − 1), at the end 
of recombination, is, 𝜌1 = 𝜌𝑅𝑎𝑑,1 + 𝜌𝐹,1 + 𝜌𝐵,1 + 𝜌𝑔𝑔,1 = 3.3192 𝐸8 𝜌0.  This holds for 

susceptibility model, 𝐼 .  For model, 𝐼𝐼, the sum is, 𝜌1 = 3.3193 𝐸8 𝜌0, virtually no difference 
from model, 𝐼.  We define the density parameters at the end of recombination by the equation, 
𝛺𝑖,1 ≡ 𝜌𝑖,1/𝜌1.  Thus, at,  𝑇1 = 3000 𝐾𝑒𝑙𝑣𝑖𝑛, we find that, 

(𝛺𝑅𝑎𝑑,1 ,  𝛺𝐹,1 ,  𝛺𝐵,1 , 𝛺𝑔𝑔,1) = (.366, .195, 0, .439) (𝑚𝑜𝑑𝑒𝑙𝑠 𝐼 & 𝐼𝐼)       (4 − 19) 

This result holds for both susceptibility models, 𝐼, and, 𝐼𝐼.  There is no difference in values 
between the two susceptibility models, when taken to three significant figures. 

From equation, (4 − 19), we notice that at the end of recombination, our models predict 
negligible dark matter.  Radiation amounts to roughly, 37% , of the total amount.  Ordinary 
matter accounts for a further, 20%.  The rest is dark energy, which is, 44%, of the total.  These 
values go totally counter to what is commonly assumed.  In the 𝛬𝐶𝐷𝑀 model, dark matter 
scales like ordinary matter, and there is no dark energy in this epoch.  In the standard 
cosmological model, the expected result is, (𝛺𝑅𝑎𝑑,1 ,  𝛺𝐹,1 ,  𝛺𝐵,1 , 𝛺𝑔𝑔,1) = (.229, .122,

.649, 0).  In the 𝛬𝐶𝐷𝑀 model, dark energy does not scale, and even in the extended 
quintessence models, dark energy barely scales.  In both situations dark energy is quite 
negligible at the end of recombination.   Here it is not. 

This brings us to a dilemma. Dark matter is thought to be needed at recombination in order to 
aggregate ordinary matter in gravitational potential wells, without which, the present structure 
of the universe would be difficult to explain.  Also, when looking at the 𝐶𝐵𝑅 power spectrum 
obtained from 𝑊𝑀𝐴𝑃/𝑃𝑙𝑎𝑛𝑐𝑘 satellite data, the height of the third acoustic peak stands in a 
certain proportion/ relation to the height of the first peak.  The third peak is identified with 
dark matter, whereas the first peak denotes ordinary matter.   At the end of recombination, 
one could expect that, 𝛺𝐵,1/ 𝛺𝐹,1 = (.2589/.0486), just as is the case in the present epoch. 

We will still maintain, however, that equation, (4 − 19), is correct.  There are several caveats 
which must be considered.  The first is that the localized dark matter contributions are much 
different than the smeared or cosmic average, contributions.  Even though dark matter 
effectively disappears at this 𝐶𝐵𝑅 temperature cosmically, localized dark matter does not.  In 
fact, localized dark matter (𝐿𝐷𝑀) must be much higher in value near the somewhat cooler 
source matter, since in the cosmic voids, where there is little to no source matter, there can 
also be little to no dark matter.  If the average cosmic value for dark matter is weak, and if, in 
the voids, there is negligible dark matter, then near the source masses we must have localized 
values for dark matter which are particularly strong to compensate for the close to zero values 
in the voids. Second, as indicated in equations, (2 − 8𝑎, 𝑏), Newton’s gravitational constant has 
a much higher value.  This would help aggregate ordinary matter into gravitational potential 
energy wells, perhaps even without the need for localized dark matter.  Third, as we shall see 
shortly, the gravitational fields have enhanced values due to an increase in 𝐺 value.  Those 
stronger gravitational fields would also enhance clumping of ordinary matter.  Finally, dark 
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energy, itself, may even play a role in the aggregation of ordinary matter.  Dark energy is a mass 
density which involves gravitational fields in the surrounding vacuum.  This mass density can 
exert a pressure on ordinary matter. This will be made clearer in a follow-up paper.  In 
summary there are many reasons, and permutations, to explain ordinary matter aggregation.  
As to the height of the third acoustic peak in relation to the first, we leave that to the power 
spectrum experts.  This is clearly an area for further research and study. 

As another example of the cosmic susceptibility scaling law behavior as it relates to mass 
density, we consider the cosmic era where dark matter dominates over ordinary matter for the 
universe as a whole.  This must have happened fairly recently, because at the end of 
recombination, we saw that cosmic dark matter was insignificant.  To find this point in 
cosmological time, we set, 

     𝜌𝐵̅̅ ̅ = 𝜌𝐹̅̅ ̅ 

          (𝜒2̅̅ ̅/𝐾2
̅̅ ̅) 𝜌𝐹̅̅ ̅ = 𝜌𝐹̅̅ ̅ 

               𝜒2̅̅ ̅ = 1 − 𝜒2̅̅ ̅ 

     𝜒2̅̅ ̅ = 1/2                           (4 − 20) 

For cosmic susceptibility model,  , we use equations, (3 − 5) , with (3 − 8) , in order to fix the 
value for the cosmic scale parameter, 𝑎2 = (1 + 𝑧2)−1.  Setting equation, (3 − 5), equal to, ½ , 
as indicated by equation, (4 − 20), we find that, 

    [1 − 𝑒−(1.845 𝑎2)] =  .5              (4 − 21) 

If we consider cosmic susceptibility model,  , we would have to use, instead, equations, (3 − 7) 
, with (3 − 9) , in order to fix this parameter, 𝑎2.  Demanding that equation, (3 − 8) equal the 
right hand side of equation, (4 − 20), we have the condition that, 

       [coth (6.338 𝑎2) − 1/ (6.338 𝑎2)] =  .5             (4 − 22) 

Both equations, (4 − 21), and (4 − 22), are easily solved.  The solutions are, 

   𝑎2 = .376  𝑧2 = 1.66  (𝑚𝑜𝑑𝑒𝑙 𝐼)        (4 − 23𝑎) 

𝑎2 = .2835  𝑧2 = 2.53  (𝑚𝑜𝑑𝑒𝑙 𝐼𝐼)        (4 − 23𝑏) 

The two models give different predictions, with model, 𝐼𝐼, indicating an earlier epoch for dark 
matter dominance. 

It is now time to look at the gravitational field scaling laws.  These gravitational fields are all 
cosmic average quantities.  As smeared values, they do not apply locally.  We start with 
equation, (4 − 9), and use our definition, (4 − 8𝑎).  This allows us to re-express equation, 
(4 − 9) , as, 

    𝜀 𝑔(0)̅̅ ̅̅ ̅2
/(𝜀0 𝑔0

(0)̅̅ ̅̅ ̅2

) = 𝑎−3              (4 − 24) 
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We next bring the gravitational permittivity terms over to the right hand side, and keep in mind 
that, 𝜀 ≡ 1/(4𝜋𝐺).  This renders, 

     𝑔(0)̅̅ ̅̅ ̅2
/( 𝑔0

(0)̅̅ ̅̅ ̅2

) = (𝐺/𝐺0) 𝑎−3            (4 − 25) 

Taking the square root of both sides of this equation gives us the cosmic gravitational field 
scaling law, due to source mass in the universe. 

𝑔(0)̅̅ ̅̅ ̅/(𝑔0
(0)̅̅ ̅̅ ̅

) = (𝐺/𝐺0)1/2  𝑎−3/2            (4 − 26) 

This scaling law does involve the Newtonian constant.  If 𝐺 does not scale, then, obviously, = 𝐺0 

, and the right hand side above simplifies to,  𝑎−3/2.  

As an example, we consider the era of last scattering, when, 𝑎1 = 1100−1.  For this epoch, the 
𝐺 values have been calculated, and they are given by equations, (2 − 8𝑎, 𝑏).  Substituting these 
values into equation, (4 − 46), results in, 

𝑔1
(0)̅̅ ̅̅ ̅

/(𝑔0
(0)̅̅ ̅̅ ̅

) =  5.77 𝐸5 (𝑚𝑜𝑑𝑒𝑙 𝐴)        (4 − 27𝑎) 

 𝑔1
(0)̅̅ ̅̅ ̅

/(𝑔0
(0)̅̅ ̅̅ ̅

) =  4.85 𝐸5 (𝑚𝑜𝑑𝑒𝑙 𝐵)        (4 − 27𝑏) 

The cosmic gravitational field due to source mass is enhanced by the factor, √𝐺/𝐺0 . 

Another cosmic gravitational field is that due to both source mass, and bound or polarized 

mass.  This gravitational field was designated as, �̅�.  We know, however, that, 𝑔(0)̅̅ ̅̅ ̅ = 𝐾�̅�.  Using 
this relation, we can claim for, �̅�/𝑔0̅̅ ̅ , the following scaling behavior. 

     �̅�/𝑔0̅̅ ̅  = (𝐾0/𝐾) (𝐺/𝐺0)1/2  𝑎−3/2            (4 − 28) 

For this result, we have made use of equation, (4 − 26) .  This scaling law also involves 
Newton’s constant, but in addition, the susceptibility scaling laws, because of the factor, (𝐾0/
𝐾), on the right hand side. 

As a numerical example, we focus on, 𝑎1 = 1100−1, the end of recombination.  The 𝐺 values 
are again given by equations, (2 − 8𝑎, 𝑏).   We also have the appropriate 𝐾 values, for our two 
susceptibility models, 𝐼 ,and, 𝐼𝐼.  These are found in equations, (3 − 12𝑎, 𝑏).  Substituting all 
these values into equation, (4 − 28), renders, 

       𝑔1̅̅ ̅/𝑔0̅̅ ̅  = 9.13 𝐸4 (𝑚𝑜𝑑𝑒𝑙 𝐴, 𝐼)                (4 − 29𝑎) 

       𝑔1̅̅ ̅/𝑔0̅̅ ̅  = 9.13 𝐸4 (𝑚𝑜𝑑𝑒𝑙 𝐴, 𝐼𝐼)                (4 − 29𝑏) 

       𝑔1̅̅ ̅/𝑔0̅̅ ̅  = 7.68 𝐸4 (𝑚𝑜𝑑𝑒𝑙 𝐵, 𝐼)                (4 − 29𝑐) 

       𝑔1̅̅ ̅/𝑔0̅̅ ̅  = 7.68 𝐸4 (𝑚𝑜𝑑𝑒𝑙 𝐵, 𝐼𝐼)                (4 − 29𝑑) 
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There is virtually no difference between cosmic susceptibility models.  The variation is due to 
the 𝐺 model chosen, 𝐴 or, 𝐵.  

Finally, as far as cosmic gravitational fields go, we still have, 𝑔(1)̅̅ ̅̅ ̅, which is the contribution due 
to just bound, or polarized, mass in the universe.  Here we will make use of the fundamental 

relation, 𝑔(1)̅̅ ̅̅ ̅ = 𝜒 �̅� .  We start with equation, (4 − 28), and multiply this equation through by 
the factor, 𝜒/𝜒0.  This allows us to write, 

𝑔(1)̅̅ ̅̅ ̅/(𝑔0
(1)̅̅ ̅̅ ̅

) = (𝜒/𝜒0) (𝐾0/𝐾) (𝐺/𝐺0)1/2 𝑎−3/2             (4 − 30) 

Again, both the gravitational constant, and the susceptibility model come into play.  The scaling 
behavior is complicated, even in the limit where Newton’s constant stays the same when 
switching epochs. 

We will work out one numerical example here.  Let, 𝑎1 = 1100−1, a familiar example.  The 
scaling laws for 𝐺 are indicated by equations, (2 − 8𝑎, 𝑏).  For the ratio, (𝜒1/𝐾1), use equations 
(3 − 13𝑎, 𝑏).  We also keep in mind that, 𝜒0/𝐾0 =  .842/.158.  Inserting all of this into 
equation, (4 − 30), gives us the following scaling behavior, 

𝑔1
(1)̅̅ ̅̅ ̅

/(𝑔0
(1)̅̅ ̅̅ ̅

) = 1.82 𝐸2   (𝑚𝑜𝑑𝑒𝑙 𝐴, 𝐼)        (4 − 31𝑎) 

𝑔1
(1)̅̅ ̅̅ ̅

/(𝑔0
(1)̅̅ ̅̅ ̅

) = 2.09 𝐸2   (𝑚𝑜𝑑𝑒𝑙 𝐴, 𝐼𝐼)        (4 − 31𝑏) 

𝑔1
(1)̅̅ ̅̅ ̅

/(𝑔0
(1)̅̅ ̅̅ ̅

) = 1.53 𝐸2   (𝑚𝑜𝑑𝑒𝑙 𝐵, 𝐼)        (4 − 31𝑐) 

𝑔1
(1)̅̅ ̅̅ ̅

/(𝑔0
(1)̅̅ ̅̅ ̅

) = 1.76 𝐸2   (𝑚𝑜𝑑𝑒𝑙 𝐵, 𝐼𝐼)        (4 − 31𝑑) 

These cosmic (smeared) gravitational fields do not increase by nearly as much as the other 
cosmic (smeared) gravitational fields.  But then, this is field associated with dark matter, which, 
in and of itself, fades very rapidly cosmically. 

In summary, the cosmic gravitational fields scale similarly irrespective of the model 
combination chosen.  All these scaling laws involve a variation in 𝐺 value, if Newton’s constant 
does, in fact, scale.  Otherwise we set, 𝐺 = 𝐺0, in all of the above equations.  The factor, 

(𝐺/𝐺0)1/2, is the same in all scaling laws for cosmic gravitational fields.  This factor, at the end 

of recombination, equals, √254 = 15.9, for model, 𝐴 , and, √177 = 13.3, for model, 𝐵.  The 
increased gravitational fields can contribute to the aggregation of ordinary matter in this epoch. 

To close this section, we give one final scaling law, and that is for cosmic polarization, �̅�.  It is 

known that the cosmic polarization is given by the equation, �̅� = 𝜀 𝜒 �̅� = 𝜀 𝜒 ̅�̅� = 𝜀 𝑔(1)̅̅ ̅̅ ̅ .  See 
equation, (3 − 14).  From this equation, it should be apparent that,  

�̅�/𝑃0
̅̅ ̅ = (𝜀/𝜀0) ( 𝑔(1)̅̅ ̅̅ ̅/(𝑔0

(1)̅̅ ̅̅ ̅
) 

          = (𝐺0/𝐺) (𝜒/𝜒0) (𝐾0/𝐾) (𝐺/𝐺0)1/2 𝑎−3/2 
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          = (𝜒/𝜒0) (𝐾0/𝐾) (𝐺0/𝐺)1/2 𝑎−3/2                     (4 − 32) 

Use of equation, (4 − 30), has been made.  This scaling law depends on both the 𝐺 scaling and 
𝜒 scaling.  We have two models for each quantity which can scale, and thus four combinations. 

To understand the numbers, let us look at our familiar example,  𝑎1 = 1100−1.  For the 𝐺 
variation, equations, (2 − 8𝑎, 𝑏), can be used.  For the ratio, 𝜒1/𝐾1 , use equations,  (3 −
13𝑎, 𝑏).  If we insert all these values into our cosmic polarization scaling law, equation, 
(4 − 32), we find, 

𝑃1̅/𝑃0
̅̅ ̅  =  .72  (𝑚𝑜𝑑𝑒𝑙 𝐴, 𝐼)                (4 − 33𝑎) 

       𝑃1̅/𝑃0
̅̅ ̅  =  .83  (𝑚𝑜𝑑𝑒𝑙 𝐴, 𝐼𝐼)                (4 − 33𝑏) 

       𝑃1̅/𝑃0
̅̅ ̅  =   .87  (𝑚𝑜𝑑𝑒𝑙 𝐵, 𝐼)                (4 − 33𝑐) 

       𝑃1̅/𝑃0
̅̅ ̅  =   .99  (𝑚𝑜𝑑𝑒𝑙 𝐵, 𝐼𝐼)                (4 − 33𝑑) 

Surprisingly, the net polarization, in the era of last photon scattering, is about the same as the 
net polarization in the current epoch.  In the present epoch, 𝑃0

̅̅ ̅  =   2.396 𝑘𝑔/𝑚2.  We are 
within, 72 − 99% , of this current value, depending on the model combination. 

 

V Summary and Conclusions 

We have considered the gravitational susceptibility of space assuming that space is made up of 
a vast assembly (sea) of positive and negative mass particles, called planckions.  These particles, 
first put forward by Winterberg, form a very stiff, two component superfluid/ supersolid, 
interact with particles within their species, and offer possible explanations for the vacuum 
energy, quantum mechanical indeterminacy (the Heisenberg relation), the Schroedinger 
equation, and, now, dark matter/ dark energy.  It is specifically the polarization of space and 
bound mass, which leads to dark matter.  For dark energy, we are led to gravitational field mass 
density, due to both source, as well as bound, mass, within the universe.  For the polarization of 
space, gravitational dipoles are needed, which can be ordered or aligned in some sense.  These 
are formed from the positive and negative mass planckions, which are assumed to be real, 
versus virtual, sub-nuclear particles.  We presented two specific models for cosmic 
susceptibility, equations, (3 − 5), with (3 − 8), which we call model, 𝐼 , and equation, (3 − 7), 
with (3 − 9), which  is referred to as model, 𝐼𝐼.  These susceptibilities do not hold locally, but 
cosmically as smeared quantities, which hold for the universe as a whole.  Cosmic susceptibility 
is thought to be epoch dependent, and can be expressed in terms of the cosmic scale 
parameter,  𝑎 , as, 𝜒 = �̅� = �̅�(𝑎). 

With the help of our two models for, �̅�(𝑎), we can predict how space, i.e., the vacuum, will 
polarize as a function of cosmological time.  We worked out several numerical examples.  We 
can also have a localized version of susceptibility, 𝜒 = 𝜒(�⃗�), where no specific models are 
given.  For that we need a comprehensive microscopic theory, which is being worked on.  The 
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ratio of applied gravitational field, 𝑔(0)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , which promotes order, to ambient temperature, which 
promotes disorder, is crucial.  The applied field will lead through a series of steps to the 

molecular field, 𝑔(2)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , which is what the individual dipole experiences within the superliquid/ 
supersolid.  This takes into account the gravitational field set up by the neighboring dipoles.  
What is also important in determining,  𝜒(�⃗�), are the gravitational dipole moments themselves.  

These dipole moments, 𝑝𝑑⃗⃗⃗⃗⃗ = 𝑀𝑃𝑙  𝑑, are formed from the positive and negative mass 
planckions comprising the vacuum.  The theory is involved, and will be left for another paper.  
We keep in mind, however, that even if the cosmic susceptibility is quite low in certain epochs, 
the localized values for susceptibility within the same epoch can be quite high. 

This result is significant because we have worked out the cosmic susceptibility at the end of 
recombination, the era of last photon scattering, 380,000 𝑦𝑒𝑎𝑟𝑠 after the big bang.  The results 
are given in equations, (3 − 10), and (3 − 11).  For comparison, the present epoch value for 
cosmic susceptibility is, 𝜒0 = .842.  In the era of last scattering, the cosmic susceptibility is very 
small, leading to virtually no cosmic dark matter in this epoch.  Localized pockets of dark 
matter, however, can exist at this 𝐶𝐵𝑅 temperature of 3000 𝐾𝑒𝑙𝑣𝑖𝑛 (a cosmic average), and 
even, at much higher temperatures.  The bullet cluster has considerable dark matter, and it is 
known that the temperature in the surrounding space is very, very high.  This tells us that the 
gravitational fields, and dipole moments are substantial enough to overcome the disruptive 
effects of ambient temperature.  Localized dark matter (𝐿𝐷𝑀)  is probably needed for 
aggregation of ordinary matter at the end of recombination.  Other mechanisms, however, can 
also contribute to the clumping of ordinary matter into gravitational wells in this epoch. 

The polarization of the vacuum will also depend on,  , Newton’s constant.  Newton’s constant 
determines the mass of the positive and negative mass planckions.  See equation, (2 − 6), 
where this is made explicit .  We believe that Newton’s constant may vary cosmologically with 
time, and we include that possibility in this paper.  The reasons for this are presented 
elsewhere, and are glanced over here.  In a follow up paper, there is also compelling evidence 
for this conjecture.  For the most general scaling laws for the polarization of space, we include 
such a term.  Two models for, 𝐺−1 = 𝐺−1(𝑎), were included.  Model, 𝐴, has equation, (2 − 2), 
as its basis.  Model, 𝐵, uses a different function to model, 𝐺−1(𝑎), namely equation, (2 − 4).  
All the equations for scaling in this paper, can accommodate both scenarios, a varying 𝐺, or a 
non-varying 𝐺.  For a constant 𝐺 value, simply set, = 𝐺0 , in all equations.  With the help of two 
sets of scaling laws, one set for, (𝑎) , and another set for, 𝐺(𝑎) , we can predict how the 
polarization of space on a cosmic level will evolve. 

Dark matter, and to some extent, dark energy, are thought to depend on the susceptibility of 

the vacuum.  We also have cosmic polarization, �̅� = 𝜀 𝜒 �̅� = 𝜀 𝜒 ̅�̅� = 𝜀 𝑔(1)̅̅ ̅̅ ̅ , where the cosmic 
susceptibility and cosmic gravitational field, are smeared quantities holding for the universe as 
a whole.  The gravitational permittivity is defined by, 𝜀 ≡ 1/(4𝜋𝐺).  Dark matter is given by 
equation, (4 − 5).  The scaling law is relation, (4 − 4).  This scaling law involves, 𝜒 =  𝜒 ̅ =
𝜒 ̅(𝑎).  Dark energy is identified as equations,  (4 − 7), with (4 − 8𝑎, 𝑏).  The scaling laws, here, 
are equations, (4 − 9), and (4 − 10).  At the end of recombination, dark matter scales 
numerically by the amount indicated in equations, (4 − 6𝑎, 𝑏).  For dark energy, in the era of 
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last scattering, we have the specific increases over present value, specified by equations, 
(4 − 14𝑎, 𝑏).  Also, the density parameters at the end of recombination have been worked out.  
Their relative weightings are indicated by equation, (4 − 19).  Although this is a somewhat 
unconventional assignment/ prediction, we believe it is correct.  We gave several reasons for 
how this could be reconciled with power spectrum data, not the least being that localized 
pockets of dark energy (𝐿𝐷𝑀) can survive at this temperature, and, in fact, at much, much 
higher temperatures.  There is a fundamental difference between cosmic dark matter (𝐶𝐷𝑀), 
and, localized dark matter (𝐿𝐷𝑀).  Localized dark matter follows its own rules. 

The ordinary matter to dark matter transition in the cosmos can be determined using our 
cosmic susceptibility models.  We obtained either equation, (4 − 23𝑎), or (4 − 23𝑏), 
depending on the model.  These values are for the universe as a whole.  We also determined 
the gravitational field scaling laws as one changes epochs.  These will depend on any variation 
in Newton’s constant, if a cosmological variation exists.  We have equations, (4 − 26), 
(4 − 28), and (4 − 30).  Particular numerical values have been worked out at the end of 
recombination.  Those results are presented in equations, (4 − 27𝑎, 𝑏), (4 − 29𝑎, 𝑏, 𝑐, 𝑑), and 
(4 − 31𝑎, 𝑏, 𝑐, 𝑑), assuming 𝐺 varies according to either equation, (2 − 8𝑎) , or, (2 − 8𝑏).  If 𝐺 
does not vary, minor modifications have to be made in those equations.  Finally the cosmic 
polarization scaling has been ascertained.  We believe equation, (4 − 32), is valid.  At, 
𝑎1 = 1100−1, the era of last photon scattering, we obtain equations, (4 − 33𝑎, 𝑏, 𝑐, 𝑑).  The 
results are surprising because there is virtually little change in cosmic polarization from the 
current era. 

We are currently working on a detailed microscopic theory of space as it relates to positive and 
negative mass planckions.  Other work is in progress.  Results should soon be forthcoming. 
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