Creation of an infinite Fibonacci Number Sequence Table

(Weblink to the Infinite Fibonacci NumberSequence Table)

- by Dipl. Ing. (FH) Harry K. Hahn -

Ettlingen / Germany
12. June 2019 - Update from 3. August 2020

Note: This study is not allowed for commercial use !

Abstract

: A Fibonacci-Number-Sequences-Table was developed, which contains infinite Fibonacci-Sequences. This was achieved with the help of research results from an extensive botanical study. This study examined the phyllotactic patterns (Fibonacci-Sequences) which appear in the tree-species "Pinus mugo" at different altitudes (from 550 m up to 2500 m) With the increase of altitude above around 2000 m the phyllotactic patterns change considerably, the number of patterns (different Fibonacci Sequences) grows from 3 to 12, and the relative frequency of the main Fibonacci Sequence decreases from 88% to 38%. The appearance of more Fibonacci-Sequences in the plant clearly is linked to environmental (physical) factors changing with altitude. Especially changes in temperature- / radiation- conditions seem to be the main cause which defines which Fibonnacci-Patterns appear in which frequency. The developed (natural) Fibonacci-Sequence-Table shows interesting spatial dependencies between numbers of different Fibonacci-Sequences, which are connected to each other, by the golden ratio (constant Phi) \rightarrow see Table An interesting property of the numbers in the main Fibonacci-Sequence $F 1$ seems to be, that these numbers contain all prime numbers as prime factors ! in all other Fibonacci-Sequences \geq F2, which are not a multiple of Sequence F1, certain prime factors seem to be missing in the factorized Fibbonacci-Numbers (e.g. in Sequences F2, F6 \& F8). With the help of another study (Title: Phase spaces in Special Relativity: Towards eliminating gravitational singularities) a way was found to express (calculate) all natural numbers and their square roots only by using constant Phi (φ) and 1 . An algebraicterm found by Mr Peter Danenhower, in his study, made this possible. With the formulas which I found, it seems to be possible to eliminate number systems and base mathematics only on Phi (φ) and 1 (see my 12 conjectures)

Introduction:

In botany Phyllotaxis describes the arrangement of leaves on spiral paths on the stem of a plant. Phyllotactic spirals form a distinctive class of patterns in nature. But the true cause of these phyllotactic spirals, which appeareverywhere in nature, still isn't found yet! The current believe ist that the spiral patterns of leaves on the stem of a plant, which can be explained and described by Fibonacci Number Sequences, is controlled by plant hormones like Auxin.
Howeverthis can't be the true cause for the precise Fibonacci-spiral-patterns seen on plants! Because the extensive botanical study carried out by Dr. lliya Vakarelov clearly shows that the Fibonacci-spiral formation is influenced by environmental conditions, especially temperature and radiation (light).
Therefore the Fibonacci-spiral formation seems to have a fundamental physical cause! Dr. Vakarelov's study also showed that the phyllotactic-patterns changed cyclic, with six year duration of the cycles. I
I have written an own hypothesis about the cause of phyllotactic (Fibonacci) patterns :
see study : $\boldsymbol{\rightarrow}$ Microscope Images indicate that Water Clusters are the cause of Phyllotaxis, alternative: Weblink 2
Please also have a look at this study : \rightarrow EHT2017 may provide evidence for a Poincare Dodecahedral Space Universe

Contents

Page

1 Extracts from the botanical study, produced by Dr. Iliya Iv. Vakarelov

Title: "Changes in phyllotactic pattern structure in Pinus mugo due to changes in altitude"

2 An infinite Fibonacci-Sequence-Table was developed, derived from the Fibonacci-Sequences 4 shown by "Pinus mugo" at 2200 m and $\mathbf{2 5 0 0}$ m altitude

3 A new general rule which connects numbers of different Fibonacci-Sequences by the golden ratio φ
4 Interesting properties of the Fibonacci-F1 Sequence

1. Extracts from a study produced by Dr. Iliya Iv. Vakarelov, University of Forestry, Bulgaria (1982-1994)

Title: "Changes in phyllotactic pattern structure (Fibonacci Sequences) in Pinus mugo due to changes in altitude" from the book „Symmetry in Plants" by Roger V. Jean and Denis Barabe, Universities of Quebec and Montreal, Canada (Part I. - Chapter9, pages 213-229), weblinks: Weblink 1 (Google Books), Weblink 2

Research Site and methods :

Pinus Mugo grows in high mountainous parts at altitudes up to 2500 m forming vast communities. The vertical profile of the research sites for Pinus mugo was situated along the northern slopes of the eastern part of the Rila mountain, and test specimens were collected from the following altitudes : 1900, 2200 and 2500 m . Test specimens were al so collected from the city of Sofia (at 550 m) where Pinus mugo is grown as decorative plant.
The research was carried out overa period of 12 years (except of altitude 550m here research was carried out only around 6 years). The initation of leaf primordia in the bud (meristem) occurs at the end of the growing period. The apical meristem of Pinus mugo starts this process around the beginning of mid of August and ends in autumn when the air temperature goes below a certain point.

Fig: Pinusmugo

The interesting results of the study:

(3) With the increase of altitude from 1900 m to 2500 m the phyllotactic pattern structure of "Pinus mugo" twigs changes considerably, the number of patterns (different Fibonacci Sequences) grows from 3 to 12, and the relative frequency of the main sequence decreases from 88% to $\mathbf{3 8 \%}$.
At the upper boundary of Pinus mugo natural distribution - at about 2500m, the variation of phyllotactic twig pattern structure (entropy) becomes cyclic, with six year duration of the cycles.
(5) The changes in temperature during the period of phyllotactic pattern formation of Pinus mugo twigs determine about 48% of the changes in pattern structure, the latter lagging behind with one or two years.
It is obvious that when the altitude increases, the number of phyllotactic patterns (Fibonacci-Sequences) of the vegetative organs of Pinus mugo also increases above a given altitude. \rightarrow see Table below !
(?)

	FIBONACCI- Sequences present in given altitude	Altitute in (m)										Total		
		550		1900		2200			2500					
		Frequency	Relative Frequency	Frequency	Relative Frequency	Frequency		Relative Frequency	Frequency		Relative Frequency	Frequency	Relative Frequency	
F1	$\langle 1,2,3,5,8,13, \ldots\rangle$	231	0.902	431	0.885	619	F1	0.812	246	F1	0.381	1527	0.710	
F3	$2(1,2,3,5,8,13, \ldots)$	16	0.063	34	0.070	35	F3	0.046	111	F3	0.172	196	0.092	
F2	$\langle 1,3,4,7,11,18, \ldots\rangle$	3	0.012	22	0.045	49	F2	0.064	86	F2	0.133	160	0.074	
F4	$3\langle 1,2,3,5,13, \ldots\rangle$	6	0.023	-	-	29	F4	0.038	98	F4	0.152	133	0.062	
F8	$\langle 2,5,7,12,19.31 \ldots .$.		-	-	-	10		0.013	50		0.077	60	0.028	
F11	〈3,7,10,17,27,44, .. \rangle	-		-	-	5		0.007	18		0.028	23	0.011	
F6	$\langle 1,4,5,9,14,23, \ldots\rangle$	-			-	1		0.001	8		0.012	9	0.004	
F9	2(1,3,4,7,11,18, ..)	-	-		-	4		0.005	7		0.011	11	0.005	
F6	$\langle 1.7 .8,15,23,38, \ldots\rangle$	Note : The number of Fibonacci-Sequences is increasing with altitude!			-	2		0.003	7		0.011	9	0.004	
F5	$4(1,2,3,5,8,13, \ldots)$				8		0.011	9		0.013	17	0.008		
F13	〈1,6,7,13,20,33,...)					-		3		0.005	3	0.001		
F10	$\langle 2,7,9,16,25,41, \ldots$.	-	-	-		-	-	1		3		0.005	3	0.001

Table 1: Data on the frequency and relative frequency of the different phyllotactic patterns for Pinus mugo twigs at different altitudes. Specimen formed during the period 1982-1994 have been tested for all sites except for the one at 550 m where the period covers the years 1989-1993.

1.1 Different Temperatures at different altitudes caused changes in Phyllotactic-pattern-variation

Different temperatures at the research sites at different altitudes ($550-2500 \mathrm{~m}$), during the period of phyllotactic-pattern formation, caused the changes in variability of the found phyllotactic patterns.
The number of found patterns (different Fibonacci Sequences) increased with altitude. But because "temperature at different altitudes" is a complex subject, we must understand „temperature \& radiation at different altitudes" precisely, to understand the causes of pattern variability! \rightarrow see also my study : Weblink 1

Some fundamental facts about „Temperature" :

The temperature (thermal energy) of a solid body (e.g. a plant) is associated primarily with the vibrations of it's molecules. Heat transfer to the plant happens through thermal conduction or thermal radiation. Here especially heat transfer through thermal radiation to the plant must be examined more closely! This is the transfer of energy by means of eloctromagnetic waves (photons). Especially Infrared-Radiation is important for the heat transfer to the plant Infrared radiation lies energetically in the area of the rotation niveaus of small molecules and in the area of the oscillation niveaus of molecule bindings. That means the absorption of infrared light (infrared radiation) leads to an vibration excitation of the molecule bindings and of the matter in the plant in general, or in other words to an increase of the heat energy (temperature) of the plant. The energetic Near-Infrared-Radiation (IR-A/B), with approximately 0.7 to $\mathbf{3 \mu m}$ wavelength can excite overtone or harmonic vibrations in matter (in the plant molecules/plant structure)

1.2 Radiation is different at different altitudes

The temperature (thermal energy) of the plant increases or decreases by absorbing (see Spectroscopy) or by emitting radiation, or through thermal conduction. Especially Near-Infrared-Radiation with wave-lengths of 0.7 to $\mathbf{3 \mu m}$ is absorbed by the water molecules of the plant and is responsible for the temperature of the plant The distribution of Infrared-Radiation in the atmosphere is different in different altitudes, as the diagram on the right clearly shows. The sun's IR-A/Bradiation with 1 to $3 \mu \mathrm{~m}$ wave-lengh is absorbed by $\mathrm{H}_{2} \mathrm{O}$, CO_{2} and other atmospheric gas, more and more on it's way from $10 \mathbf{k m}$ altitude to sealevel. But also IR-C and Far-IR radiation with $3-50 \mu \mathrm{~m}$ gets absorbed more \&
Ahpother important result ot Dr. Vakarelov's study:

Fig. 2 : Distribution of radiation in the atmosphere, at 11 km altitude and at sealevel. It is obvious that at higher altitude the variation of radiation with different wave lengths is higher than at sea level

Fig. 3

Fig. 4: see: Sun-Climate-Connections

2 From the Fibonacci-Sequences shown by Pinus mugo at 2500m an infinite Fibonacci-Table was developed :
There are clear spatial interdependencies noticable between the different Fibonacci-Sequences, which are connected by the golden ratio $\boldsymbol{\varphi}$. There is a complex network visiblebetween the numbers of all Sequences. This table of FibonacciNumberSequences can be extended towards infinity and all natural numbers are contained in the lower half only once!

For 3 numbers A, B and C in the below shown arrangement, which belong to the same 3 (or 2) different Fibonacci-Sequences, the following rule is true :

The ratio of the difference (C-A) indicated by a "red line", to the difference (B-C) indiated by a "black line" is approaching the golden ratio $\boldsymbol{\varphi}$ for the further progressing Fibonacci-Number Sequences towards infinity (downwards in the table).
„Main Bow-Structures" are also linked by the „golden ratio" $\boldsymbol{\varphi}$!

FIBONACCI - Number Sequences No. 1 to 14 (F1-F14) \rightarrow see extended table in the Appendix !

	F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12	F13	F14
Row No.	Fibonacci- BaseSequence	LucasSequence	FibonacciSequence $(\times 2)$	FibonacciSequence (x3)	FibonacciSequence (x4)				LucasSequence $(\times 2)$				LucasSequence (x 3)	
1	1					1	1							
2	2		2					2	2	2				
3	3			3							3	3	3	
4		$\cdots 4$			- 4	4								4
5	$5<$					5	5	5						
6		-	$\bigcirc 6$				6		6					
7		-				5		7		7	7			
8	8%								8			8		
9		.	-	9						9			9	9
10		-	$\bigcirc 10$								10			
11		11							(bottom			11		
12		- - - -	-	-	12								12	
13	13													13
14				-	-				14				this line	
15				15									this line	
16			16							16			conta	in the
17							17				17	nacci	quences	once !
18		/ 18												
19												19	ibonacci-	uence
20			-	\cdots	- 20									
21	21	-....									11		21.	
22							- -		22					22
23				-		23								
24				24										
25			-							25				
26			26											
27		-									27			
28							28							
29		29												
30			,						\cdots	\cdots		30		
31				-		-	\cdots	31						
32				-	32									
33	$\%-$												33	
34	34	-												
35			.					- -	- - - - -		-	-		35
36						-			$\cdots 36$					
37					-	37								
38														
39														
40			\%										
41										41				
42		42											
43				\cdots		\ldots								
44		-									44			
45		. 1.					45							
46		\%												\ldots
47		47											
48			\cdots	\ldots		\cdots							-	- -1.
49		-							- $=$	\cdots	...	49		
50		\%				- :-	,	50						
51					-									
52				- -	- 52				.					
53	1.	-						\ldots					
54		$\cdots=$											- 54	
55	55	-												
56			-	-		\ldots	\ldots							
57														57
58									- 58					
59														-
60														

3 A general rule exists which connects numbers of different Fibonacci-Sequences by the golden ratio φ

\rightarrow The following two examples explain the rule which was described in general on the previous page :

The examples show how the quotient of the differences between the numbers of designated Fibonacci-Sequences (indicated by red-and black-lines in the table), is approaching the golden ratio for the number sequences progressing towards infinity.
For the examples we look at the Fibonacci Sequences F1, F2 and F3 (\rightarrow F2 is the Lucas-Sequence, F3 $=$ F1 $\times 2$)

4 Interesting properties of the Fibonacci-F1 Sequence (and other Fibonacci-Sequences):

- The numbers of the Fibonacci F1 - NumberSequence seem to contain all prime numbers as prime factors !
- This is not the case for all other Fibonacci-Sequences where certain primefactors are missing ! (see Appendix)
- And all prime factors appear periodic in defined "number-distances" in the sequence (see left side of table)
- This is the case for all Fibonacci-Sequences! (\rightarrow These mentioned properties must be analysed in more detail!)

Table 2: Periodicity of the prime factors of the Fibonacci F1 - Number Sequence

\rightarrow See some selected Fibonacci-Sequences in more detail in the Appendix !

5 Constant $\varphi(\Phi)$ defines all Fibonacci-Sequences and the square roots of all natural numbers

The asymptotic ratio of successive Fibonacci numbers leads to the Golden Ratio constant φ (or Φ)
The Fibonacci Sequences describe morphological patterns in a wide range of living organisms. It is one of the most remarkable organizing principles mathematically describing natural and man made phenomena.

The constant φ is the positive solution of the following quadratic equation:

$$
\begin{aligned}
& x+1=x^{2} \\
& \rightarrow \quad \varphi=\frac{1+\sqrt{ }(5)}{2}=1.618034 \ldots
\end{aligned}
$$

Because the value of constant $\boldsymbol{\varphi}$ is close to the square root of $\mathbf{2}$ and the square root of $\mathbf{3}$, I draw $\boldsymbol{\varphi}$ into the start section of the
 Square Root Spiral :

5.1 To the discovery of an important algebraic equation regarding Constant $\boldsymbol{\varphi}$ (Phi)

\rightarrow This discovery indicates that constant φ and the base unit $\mathbf{1}$ form the base of mathematics and geometry. And the distribution and structure of matter (energy) in space, is fundamentally based on constant Phi and 1

The start of the Square Root Spiral is shown with the constant φ drawn in :

Now we see what we can do with this arrangement of right triangles, and with the help of the Pythagorean theorem.
From the right triangle φ, square root of $2 \& u$ follows :
$\boldsymbol{\varphi}^{2}=(\sqrt{2})^{2}+u^{2} \quad ;$ application of the Pythagorean theorem
$\rightarrow u=\sqrt{\varphi^{2}-2}=0,786151377 \quad$; we can calculate this value of u with the calculator
I did research with Google, and I found a study where the constant u was expressed with an algebraic term !
With the help of this algebraic term it was possible to find interesting new properties of constant φ !
\rightarrow see next page!

The algebraic calculation of the square roots of all natural numbers only with constant φ \& 1

From Equation (4.10) from the study shown on the righthand side I have found the algebraic term which describes the calculated value of u :

$$
\frac{\sqrt{2 \sqrt{5}-2}}{2}=0,786151377 \ldots=u
$$

From this algebraic term it follows:

$$
\sqrt{\varphi^{2}-2}=\frac{\sqrt{2 \sqrt{5}-2}}{2}
$$

$\rightarrow 4 \varphi^{2}-8=2 \sqrt{5}-2$; we square both sides and transform

$$
\begin{array}{ll}
\varphi^{2}=\frac{\sqrt{5}+3}{2} ; & \text { (1) we solve for } \varphi^{2} \\
\sqrt{5}=2 \varphi^{2}-3 & ; \quad \text { (2) } \text { we solve for } \sqrt{5}
\end{array}
$$

Now we go back to the square root spiral and use the following right triangle :

$$
\begin{aligned}
(\sqrt{6})^{2} & =(\sqrt{5})^{2}+1^{2} \quad ; \text { application of the Pythagorean theorem } \\
6 & =\left(2 \varphi^{2}-3\right)^{2}+1 \quad ; \text { we replace } \sqrt{5} \text { by equation (2) and transform } \\
\rightarrow \quad 3 & =\frac{\varphi^{4}+1}{\varphi^{2}} \quad(3) \quad \rightarrow \quad \sqrt{3}=\sqrt{\frac{\varphi^{4}+1}{\varphi^{2}}} \quad(4) \quad ; \text { square root } 3 \text { expressed by } \varphi \text { and } 1 \text { ! }
\end{aligned}
$$

Now we use the following right triangle :

$$
\begin{array}{rl}
& (\sqrt{3})^{2}=(\sqrt{2})^{2}+1^{2} \\
\rightarrow & ; \quad \text { application of the Pythagorean theorem } \& \text { inserting equation (3) } \tag{6}\\
\varphi^{2} & 2=\frac{\varphi^{4}+1}{\varphi^{2}}
\end{array}
$$

Now we insert equation (3) in equation (2):
square root 2 expressed by φ and 1 !
$\rightarrow \quad \sqrt{5}=2 \varphi^{2}-\frac{\varphi^{4}+1}{\varphi^{2}} \rightarrow \sqrt{5}=\frac{\varphi^{4}-1}{\varphi^{2}} \quad ; \quad(7)$; square root 5 expressed by φ and 1 !

Now we use the following right triangle :

$$
\begin{align*}
& (\sqrt{6})^{2}=(\sqrt{5})^{2}+1^{2} \\
\rightarrow & ; \text { application of the Pythagorean theorem \& inserting equation (7) } \tag{9}\\
\rightarrow & 6=\left(\frac{\varphi^{4}-1}{\varphi^{2}}\right)^{2}+1 \quad \rightarrow \quad 6=\frac{\varphi^{8}-\varphi^{4}+1}{\varphi^{4}} \quad(8) \text { and } \sqrt{6}=\sqrt{\frac{\varphi^{8}-\varphi^{4}+1}{\varphi^{4}}}
\end{align*}
$$

We can now continue and use the following right triangles of the square root spiral :

$$
\begin{align*}
&(\sqrt{7})^{2}=(\sqrt{6})^{2}+1^{2} \quad ; \text { application of the Pythagorean theorem \& inserting equation (8) } \\
& \rightarrow \quad 7=\frac{\varphi^{8}+1}{\varphi^{4}}(10) \quad \rightarrow \quad \sqrt{7}=\sqrt{\frac{\varphi^{8}+1}{\varphi^{4}}} \quad \text { (11) } \tag{11}
\end{align*}
$$

In the same way we can now calculate all square roots of all natural numbers with the next right triangles :

$$
\begin{align*}
& \rightarrow \quad 8=\frac{\varphi^{8}+\varphi^{4}+1}{\varphi^{4}}(12) \text { and } \sqrt{8}=\sqrt{\frac{\varphi^{8}+\varphi^{4}+1}{\varphi^{4}}} \tag{13}\\
& \rightarrow \quad 10=\frac{\varphi^{8}+3 \varphi^{4}+1}{\varphi^{4}}(14) \text { and } \sqrt{10}=\sqrt{\frac{\varphi^{8}+3 \varphi^{4}+1}{\varphi^{4}}} \tag{15}\\
& \rightarrow \quad 11=\frac{\varphi^{8}+4 \varphi^{4}+1}{\varphi^{4}}(16) \text { and } \sqrt{11}=\sqrt{\frac{\varphi^{8}+4 \varphi^{4}+1}{\varphi^{4}}} \tag{17}\\
& \rightarrow \quad 12=\frac{\varphi^{8}+5 \varphi^{4}+1}{\varphi^{4}}(18) \text { and } \sqrt{12}=\sqrt{\frac{\varphi^{8}+5 \varphi^{4}+1}{\varphi^{4}}} \tag{19}
\end{align*}
$$

From the above shown formulas (equations) I have realized a general rule for all natural numbers >10:
$\underline{\text { Note }: ~} \rightarrow$ The expression (3+n) in the rule can be replaced by products and/or sums of the equations (3) to (13)

$$
\begin{equation*}
\rightarrow \underset{\text { For } n \rightarrow \infty}{(10+n)}=\frac{\varphi^{8}+(3+n) \varphi^{4}+1}{\varphi^{4}}(20) \text { and } \sqrt{(10+n)}=\sqrt{\frac{\varphi^{8}+(3+n) \varphi^{4}+1}{\varphi^{4}}} \tag{30}
\end{equation*}
$$

With this general formula we can express all natural numbers ≥ 10 and their square roots only with φ and 1 ! This statement is also valid for all rationals (fractions) and their square roots. This is a quite interesting discovery !!

Constant Phi (φ) which defines the structure of the Dodecahedron and Icosahedron (together with base unit 1) is a very important (space structure) constant for the real / physical world! Please also read my following study :

The Black Hole in M87 (EHT2017) may provide evidence for a Poincare Dodecahedral Space Universe
Weblink 1 to the study : http://vixra.org/abs/1907.0348 ; alternative : Weblink 2 : Weblink to_archive.org

Constant $\mathrm{Pi}(\pi)$ can also be expressed by only using constant φ and 1 !

\rightarrow It is also possible to derive from Viète's formula a related formula for π
that still involves nested square roots of two, but uses only one multiplication :

$$
\pi=\lim _{k \rightarrow \infty} 2^{k} \underbrace{\sqrt{2-\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{2+\cdots+\sqrt{2}}}}}}}_{k \text { square roots }}
$$

If we replace the number $\mathbf{2}$ in the above shown formulas by the found equation (5) where number $\mathbf{2}$ can be expressed by constant φ and 1 , then we can express the constant $\operatorname{Pi}(\pi)$ also by only using the constant φ and 1 ! Replace Number 2 in the above shown formulas with this term.

$$
\begin{equation*}
\rightarrow \quad 2=\frac{\varphi^{4}+1}{\varphi^{2}}-1 \quad 2=\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}} \quad(5) \text { and } \sqrt{2}=\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}} \tag{6}
\end{equation*}
$$

It becomes clear that the irrationality of $\operatorname{Pi}(\pi)$ is also only based on the constant φ and 1 , in the same way as the irrationality of all irrational square roots, is only based on constant φ \& 1 ! Numbers don't exist! Only φ \& 1 exist! Constant $\mathrm{Pi}(\pi)$ can now be expressed in this way, by only using constant φ and 1 :

$$
\pi=\lim _{k \rightarrow \infty}\left[\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}\right] \sqrt{\underbrace{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}-\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}+\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}+\cdots+\sqrt{\frac{\varphi^{4}-\varphi^{2}+1}{\varphi^{2}}}}}}_{k \text { square roots }} . \sqrt{\underbrace{\frac{1}{2}}}}
$$

It becomes clear that the irrationality of $\operatorname{Pi}(\pi)$ is only based on constant φ and 1 , in the same way as the irrationality of all irrational square roots, is only based on constant $\varphi \& 1$!
Natural Numbers, their square roots and irrational and transcendental constants like Pi (π) can be expressed (calculated) by only using constant φ and 1! This is also valid for all rationals (fractions) and their square roots.

Numbers and number-systems don't seem to exist! They are manmade and therefore can be eliminated.
This is an interesting discovery because it allows to define most (maybe all) geometrical objects only with φ \& 1 ! The result of this discovery may lead to a new base of number theory. Not numbers like $1,2,3, \ldots$. and constants like Pi (π) etc. are the base of Number Theory! Only the constant φ and the base unit 1 (which shouldn't be considered as a number) form the base of mathematics and geometry. This will certainly also have an impact on Physics !

Constant φ and the base unit 1 must be considered as the fundamental „space structure constants" of the real physical world!

In the physical world the geometries of all possible crystal-lattice-structures are fundamentally based on Phi and 1. There probably isn't something like a base unit if we consider a „wave model" as the base of physics and if we see the universe as one oscillating unit. In the universe everyting is connected with everything. see : Quantum Entanglement
\rightarrow Please also read my 12 Conjectures on the next page (Chapter 6)

Referring to my discovery regarding constant φ (Phi), I want to define the following 12 Conjectures :

Here the $\mathbf{1 2}$ conjectures : (\rightarrow you can call them Harry K. Hahn's conjectures)

1.) All Natural Numbers and their square roots can be expressed (calculated) by only using the mathematical constant Phi (golden mean =1.618..) and number 1. This statement is also valid for all rationals (fractions) and their square roots
2.) All existing irrational numbers seem to be constructions out of Phi and 1.

For example the irrational transcendental constant $\mathrm{Pi}(3.1415926 \ldots .$.$) can also be expressed by only using Phi and 1$!
3.) Phi and 1 are the base units of Mathematics! Numbers and number-systems don't exist! They are manmade and therefore can be eliminated. In principle Mathematical Science can be carried out by only using Phi and 1, as base units.
4.) All geometrical objects, including the Platonic Solids can be described by only using constant Phi and 1.

Because all natural numbers, their square roots, rationals (fractions) and probably all irrational and all transcendental numbers too, can be expressed by only using Phi and 1.
5.) Point 4.) leads me to the conclusion that in the physical world the geometries of all possible crystal -lattice-structures are fundamentally based on Phi and 1. The more fundamental the lattice the simpler it can be expressed by Phi and 1.
6.) Point 4.) 5.) \& 7.) leads me to the conclusion that on the molecular level (and probably on the atomiclevel too), as well as on the macroscopic (cosmic) level the distribution and structure of matter (=energy) in space, is fundamentally based on constant Phi and 1. \rightarrow Phi represents a fundamental physical „Space Structure Constant"
Together with Point 7.) this indicates that the curvature of spacetime at the molecularlevel (crystals) and at the atomic level, as well as on the macroscopic level is defined only by the "Space Structure Constant Phi" and the base unit 1. \rightarrow This idea will help to unify General Relativity with Quantum Mechanics! If the gravitational singularity in M87 indeed has a dodecahedral structure then gravitation, which is the geometric property of spacetime, can be described in Quantum Mechanics and at the cosmic level by the same constant duo: Phi and base unit 1!
7.) The structure of the M87 black hole (\rightarrow EHT2017) indicates a dodecahedral structure. The distribution of matter in gravitational singularities therefore seems to be defined essentially by constant Phi and base unit 1 ! The largescale distribution of matter in the universe seems to be predominantly based on an order-5 Poincare-Dodecahedral-Space.
\rightarrow weblink to my study (or alternatively here : http://vixra.org/abs/1907.0348)
Title : "EHT2017 may provide evidence for a Poincare Dodecahedral Space Universe"
8.) The natural numbers can be assigned to a defined infinite set of Fibonacci-Number Sequences.
9.) This infinite set of Fibonacci-NumberSequences, and the numbers contained in these sequences, are connected to each other by a complex precisely defined spatial network based on constant Phi. (\rightarrow see table in Appendix A). For the progressing Fibonacci-Sequences towards infinity, the connections between the numbers approach constant Phi.
\rightarrow see explanation in Chapter 2 and 3 and in Appendix A
10.) Constant Phi (golden mean =1.618..) must be a fundamental constant of the final equation(s) of the universal mathematical and physical theory. (\rightarrow It may be the only irrational constant that appears in the(se) equation(s))
11.) The number-5-oscillation (\rightarrow the numbers divisible by 5) in the two number sequences $6 n+5$ (Sequence 1) and $6 n+1$ (Sequence 2), with $n=(0,1,2,3, \ldots)$, defines the distribution of the prime numbers and non-prime-numbers. The number-5-oscillation defines the starting point and the wave length of defined non-prime-number-oscillations in these Sequences $1+2$ (SQ1 \& SQ2). (Note : the combination of the two sequences SQ1 \& SQ2 is considered here) \rightarrow weblink to my study: https://arxiv.org/abs/0801.4049 (or alternatively here : http://vixra.org/abs/1907.0355) For a quick overview pleasesee pages 15 to 18 in this study : weblink to the study: "EHT2017 may provide evidence..."
12.) The importance of the number-5-oscillation for the distribution of primes and non-primes is a further indication for the conjecture that the largescale structure of the universe seems to be predominantly (mainly) based on an order-5 Poincare-Dodecahedral-Space structure. \rightarrow The space structure of the universe seems to be based essentially on the 5.Platonic Solid: the Dodecahedron (\rightarrow consisting of 12 regular pentagonal faces, three faces meeting at each vertex)

The time will show if my Conjectures are correct !

References :

Symmetry in Plants - by Roger V. Jean \& Denis Barabe (1998) - University Quebec, CA - ISBN No. : 981-02-2621-7
Weblink (Google Books) : https://books.google.de/books/about/Symmetry_In_Plants.html?id=2fbsCgAAQBAJ\&redir_esc=y
Changes in phyllotactic pattern structure in Pinus mugo due to changes in altitude
Study to Fibonacci pattern variation in Pinus Mugo by Dr. Iliya Iv. Vakarelov, University of Forestry, Bulgaria (1982-1994) From the book „Symmetry in Plants" by Roger V. Jean and Denis Barabe, Universities of Quebec and Montreal, Canada (Part I. Chapter 9 , pages 213-229), ISBN : 981-02-2621-7, Weblinks: Weblink_1 ; Weblink_2 (Google Books)

Other studies which indicate phyllotactic pattern variability (with a noticeable distribution pattern) within the same species \rightarrow in all probability depending mainly on environmental factors :

Aberrant phyllotactic patterns in cones of some conifers: a quantitative study - by Veronika Fierz
Weblink: Aberrant phyllotacticpatterns in cones of some conifers (researchgate.net)
Novel Fibonacci and non-Fibonacci structure in the Sunflower - by J. Swinton, E. Ochu \& Others
https://www.researchgate.net/publication/303354855_Novel_Fibonacci_and_non-Fibonacci_structure_in_the_sunflower;Weblink2

A study which indicates that far-red \& infrared radiation with wave-lengths $>750 \mathrm{~nm}$ is the trigger for phyllotactic-pattern formation \& bud-induction :

Red Light Affects Flowering under long days in a Short-day Strawberry Cultivar by Fumiomi Takeda \& D. Michael Glenn - USDA-ARS, Appalachian Fruit Research Station (USA), Kearneysville, WV 25430 - publication: HortScience 43(7):2245-2247.2008 - Weblinks to study: Weblink 1, Weblink 2

To the importance of constant $\mathrm{Phi}(\varphi)$ for the physical world, and studies regarding the Square Root Spiral :
Phase Spaces in Special Relativity : Towards eliminating Gravitational Singularities by Peter Danenhower, Weblink: https://arxiv.org/pdf/0706.2043.pdf

Microscope Images indicate that Water Clusters are the cause of Phyllotaxis - by Harry K. Hahn https://archive.org/details/microscope-images-indicate-that-water-clusters-are-the-cause-of-phyllotaxis alternative weblink: https://vixra.org/abs/2005.0118

The Black Hole in M87 (EHT2017) may provide evidence for a Poincare Dodecahedral Space Universe - by Harry K. Hahn https://archive.org/details/TheBlackHolelnM87EHT2017MayProvideEvidenceForAPoincareDodecahedralSpaceUniverse/page/n1 alternative Weblink: http://vixra.org/abs/1907.0348

The golden ratio Phi (φ) in Platonic Solids: http://www.sacred-geometry.es/?q=en/content/phi-sacred-solids
The Ordered Distribution of Natural Numbers on the Square Root Spiral - by Harry K. Hahn
http://front.math.ucdavis.edu/0712.2184 PDF : http://arxiv.org/pdf/0712.2184
The Distribution of Prime Numbers on the Square Root Spiral - by Harry K. Hahn
http://front.math.ucdavis.edu/0801.1441 PDF:http://arxiv.org/pdf/0801.1441

Appendix A.):

Infinite Fibonacci - Number - Sequence - Table : Sequences No. 1 to 33 shown (F1-F33):

Note: The numbers of the Fibonacci F1 - Number Sequence seem to contain all prime numbers as prime factors ! and all prime factors appear periodic in defined "number-distances" in the sequence (see left side of table)

Table 2: Periodicity of some of the prime factors of the numbers of the Fibonacci F1-Number Sequence :

some prime factors shown in table form													in prime factors factorized Fibonacci-Numbers repeating products new products			Fibonacci-Sequence F1			
41	37	31	29	23	19	17	13	11	7	5	3	2				F	F'	F"	Nr.
															1	1			1
															1	1			2
															2	2	1		3
															3	3	1		4
															5	5	2	1	5
												2^3		2x2x2	8	8	3	1	6
															4	13	5	2	7
									7		3			3x7	3	21	8	3	8
						17						2		2x17	7	34	13	5	9
								11		5				5×11	10	55	21	8	10
															17	89	34	13	11
											3^2	2^4	2x2x2	2x3x3	9	144	55	21	12
															8	233	89	34	13
			29				13							13×29	17	377	144	55	14
										5		2		2x5x61	7	610	233	89	15
									7		3		$3 \times 7 \mathrm{x}$	47	24	987	377	144	16
															22	1597	610	233	17
					19	17						2^3	2x17x	2x2x19	19	2584	987	377	18
	37													37x113	14	4181	1597	610	19
41								11		5	3		5x11x	3x41	24	6765	2584	987	20
							13					2		2x13x421	20	10946	4181	1597	21
														89x199	17	17711	6765	2584	22
															28	28657	10946	4181	23
				23					7		3^2	2^5	$2 \times 2 \times 2 \times 2 \times 3 \times 3 \mathrm{x}$	2x7x23	27	46368	17711	6765	24
										5^2				5x5x3001	19	75025	28657	10946	25
														233x521	19	121393	46368	17711	26
						17						2		2x17x53x109	29	196418	75025	28657	27
			29				13				3		13x29x	3×281	21	317811	121393	46368	28
															23	514229	196418	75025	29
		31						11		5		2^3	2x5x61x	2x2x11x31	17	832040	317811	121393	30
														557×2417	31	1346269	514229	196418	31
									7		3		3 x 7 x 47 x	2207	30	2178309	832040	317811	32
												2		2x89x19801	34	3524578	1346269	514229	33
														1597×3571	37	5702887	2178309	832040	34
							13			5				$5 \times 13 \times 141961$	35	9227465	3524578	1346269	35
					19	17					3^3	2^{\wedge}	$2 \times 2 \times 2 \times 17 \times 19 \mathrm{x}$	$2 \times 3 \times 3 \times 3 \times 107$	27	14930352	5702887	2178309	36
														$73 \times 149 \times 2221$	35	24157817	9227465	3524578	37
	37												37x113x	9349	44	39088169	14930352	5702887	38
												2		2x233x135721	43	63245986	24157817	9227465	39
41								11	7	5	3		$3 \times 5 \times 11 \times 41 \mathrm{x}$	7x2161	24	102334155	39088169	14930352	40
														2789x59369	31	165580141	63245986	24157817	41
			29				13					2^3	2x13x421x	$2 \times 2 \times 29 \times 211$	46	267914296	102334155	39088169	42
															41	433494437	165580141	63245986	43
											3		89x199x	$3 \times 43 \times 307$	33	701408733	267914296	102334155	44
						17				5		2		2x5x17x61×109441	29	1134903170	433494437	165580141	45
														139x461x28657	35	1836311903	701408733	267914296	46
															37	2971215073	1134903170	433494437	47
				23					7		3^2	$2^{\wedge} 6$	$2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 23 \times$	2x47x1103	54	4807526976	1836311903	701408733	48

Note: all prime numbers are marked in yellow \qquad and all numbers not divisible by 2,3 or 5 are marked in orange

Table 3: Periodicity of some of the prime factors of the numbers of the Fibonacci F2 (Lucas) - Number Sequence :

Note: all prime numbers are marked in yellow \qquad and all numbers not divisible by 2,3 or 5 are marked in orange

Table 4: Periodicity of some of the prime factors of the numbers of the Fibonacci F6 - Number Sequence :

Periodicity of the prime factors 2-41
shown in table form

in prime factorsfactorizedFibonacci-(F6)-Numbers	$\begin{aligned} & \overline{0} \\ & \stackrel{0}{6} \\ & \frac{1}{\omega} \end{aligned}$	Fibonacci-F6 Sequence			
		F6	F6'	F6"	Nr .
		1			1
2×2		4			2
		5	1		3
3×3		9	4		4
2x7		14	5	1	5
		23	9	4	6
		37	14	5	7
2x2x3x5		60	23	9	8
		97	37	14	9
		157	60	23	10
2×127		254	97	37	11
3×137		411	157	60	12
$5 \times 7 \times 19$		665	254	97	13
$2 \times 2 \times 269$		1076	411	157	14
		1741	665	254	15
$3 \times 3 \times 313$		2817	1076	411	16
$2 \times 43 \times 53$		4558	1741	665	17
$5 \times 5 \times 5 \times 59$		7375	2817	1076	18
		11933	4558	1741	19
$2 \times 2 \times 3 \times 1609$		19308	7375	2817	20
7×4463		31241	11933	4558	21
		50549	19308	7375	22
$2 \times 5 \times 8179$		81790	31241	11933	23
$3 \times 31 \times 1423$		132339	50549	19308	24
		214129	81790	31241	25
2x2x37x2341		346468	132339	50549	26
		560597	214129	81790	27
$3 \times 3 \times 5 \times 6719$		907065	346468	132339	28
2x7x79x1327		1467662	560597	214129	29
$23 \times 223 \times 463$		2374727	907065	346468	30
19×202231		3842389	1467662	560597	31
$2 \times 2 \times 3 \times 379 \times 1367$		6217116	2374727	907065	32
5x227x8863		10059505	3842389	1467662	33
		16276621	6217116	2374727	34
2x641x20543		26336126	10059505	3842389	35
$3 \times 1637 \times 8677$		42612747	16276621	6217116	36
$7 \times 181 \times 54419$		68948873	26336126	10059505	37
$2 \times 2 \times 5 \times 5578081$		111561620	42612747	16276621	38
		180510493	68948873	26336126	39
$3 \times 3 \times 32452457$		292072113	111561620	42612747	40
2x1109x213067		472582606	180510493	68948873	41
67x2083x5479		764654719	292072113	111561620	42
$5 \times 5 \times 49489493$		1237237325	472582606	180510493	43
$2 \times 2 \times 3 \times 53 \times 3147629$		2001892044	764654719	292072113	44
$7 \times 7 \times 37 \times 1786613$		3239129369	1237237325	472582606	45
71×3613×20431		5241021413	2001892044	764654719	46
$2 \times 167 \times 3607 \times 7039$		8480150782	3239129369	1237237325	47
$3 \times 5 \times 914744813$		13721172195	5241021413	2001892044	48
$19 \times 83 \times 14078201$		22201322977	8480150782	3239129369	49
$2 \times 2 \times 337 \times 2664083$		35922495172	13721172195	5241021413	50
129631×448379		58123818149	22201322977	8480150782	51
$3 \times 3 \times 2671 \times 3912239$		94046313321	35922495172	13721172195	52
$2 \times 5 \times 7 \times 2173859021$		152170131470	58123818149	22201322977	53
$23 \times 31 \times 345324607$		246216444791	94046313321	35922495172	54
		398386576261	152170131470	58123818149	55

Table 5: Periodicity of some of the prime factors of the numbers of the Fibonacci F8 - Number Sequence :

$\begin{gathered} \text { in prime factors } \\ \text { factorized } \\ \text { Fibonacci-(F8)-Numbers } \end{gathered}$
$2 \times 2 \times 3$
$2 \times 5 \times 5$
$3 \times 3 \times 3 \times 3$
2x2x53
$7 \times 7 \times 7$
$3 \times 5 \times 37$
2x449
2x2x3x317
5×1231
23x433
2x7x1151
$3 \times 3 \times 2897$
$2 \times 2 \times 5 \times 3413$
19×5813
3x71x839
2x144577
67×6983
$5 \times 7 \times 43 \times 503$
$2 \times 2 \times 3 \times 103 \times 991$
$2 \times 37 \times 70117$
$3 \times 3 \times 5 \times 5 \times 37313$
2x2x397x13841
$7 \times 83 \times 61211$
$3 \times 31 \times 401 \times 1543$
$2 \times 5 \times 53 \times 175673$
6257×24077
919x265241
$2 \times 2 \times 3 \times 59 \times 97 \times 5743$
19×33587513
$5 \times 23 \times 229 \times 39209$
2x7x2677x44579
$3 \times 3 \times 3 \times 599 \times 167149$
2693×1624223

Fibonacci-F8 Sequence			

Note: all prime numbers are marked in yellow
\square and all numbers not divisible by 2, 3 or 5 are marked in orange \square

