Frame of Reference Moving Along a Line in Quantum Mechanics

Karl De Paepe

Abstract

We consider a frame of reference moving along a line with respect to an inertial frame of reference. We expect the rate of total energy expectation value not to depend on the order of transformations of a transformation that is a composition of a translation and a transformation that has a frame of reference accelerating with a time dependent acceleration with respect to an inertial frame of reference.

1 Introduction

Consider a frame of reference \mathcal{F}^{\prime} with coordinates $x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}$ and an inertial frame of reference \mathcal{F} with coordinates x, y, z, t. The coordinates of the frames being related by

$$
\begin{equation*}
x^{\prime}=x-f(t) \quad y^{\prime}=y \quad z^{\prime}=z \quad t^{\prime}=t \tag{1}
\end{equation*}
$$

The origin of \mathcal{F}^{\prime} will then be moving with acceleration $\ddot{f}(t)$ with respect to \mathcal{F}. With respect to \mathcal{F} consider a quantum system of a particle with mass m in a potential $V(x, y, z, t)$. For the wave function $\psi(x, y, z, t)$ with respect to \mathcal{F} and corresponding wave function $\psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)$ with respect to \mathcal{F}^{\prime} we have

$$
\begin{equation*}
\left|\psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)\right|^{2}=|\psi(x, y, z, t)|^{2} \tag{2}
\end{equation*}
$$

Consequently there is a real valued function $\beta(x, y, z, t)$ such that

$$
\begin{equation*}
\psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)=e^{-\frac{i}{\hbar} \beta(x, y, z, t)} \psi(x, y, z, t) \tag{3}
\end{equation*}
$$

Different ψ may have different β.

2 Schrödinger equations

With respect to \mathcal{F} the wave function ψ satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi(x, y, z, t)+V(x, y, z, t) \psi(x, y, z, t)=i \hbar \frac{\partial \psi}{\partial t}(x, y, z, t) \tag{4}
\end{equation*}
$$

With repect to \mathcal{F}^{\prime} we have an additional force $m \ddot{f}\left(t^{\prime}\right)$ and hence additional potential $m \ddot{f}\left(t^{\prime}\right) x^{\prime}+V_{0}\left(t^{\prime}\right)$. Consequently the wave function ψ^{\prime} satisfies the Schrödinger equation

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{\prime 2} \psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)+\left[V^{\prime}\left(x^{\prime}+f\left(t^{\prime}\right), y^{\prime}, z^{\prime}, t^{\prime}\right)+m \ddot{f}\left(t^{\prime}\right) x^{\prime}+V_{0}\left(t^{\prime}\right)\right] \psi^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right)=i \hbar \frac{\partial \psi^{\prime}}{\partial t^{\prime}}\left(x^{\prime}, y^{\prime}, z^{\prime}, t^{\prime}\right) \tag{5}
\end{equation*}
$$

Now

$$
\begin{equation*}
V^{\prime}=V \quad \nabla^{\prime}=\nabla \quad \frac{\partial}{\partial t^{\prime}}=\dot{f} \frac{\partial}{\partial x}+\frac{\partial}{\partial t} \tag{6}
\end{equation*}
$$

and on substituting (3) in (5) and using (1), (4), and (6) gives

$$
\begin{equation*}
\left[\frac{i \hbar}{2 m} \nabla^{2} \beta+\frac{1}{2 m}(\nabla \beta)^{2}+m \ddot{f}(x-f)+V_{0}-\dot{f} \frac{\partial \beta}{\partial x}-\frac{\partial \beta}{\partial t}\right] \psi+\frac{i \hbar}{m}\left[\nabla \beta \cdot \nabla \psi-m \dot{f} \frac{\partial \psi}{\partial x}\right]=0 \tag{7}
\end{equation*}
$$

Adding and subtracting (7) and its complex conjugate gives the two equations

$$
\begin{align*}
2\left[\frac{1}{2 m}(\nabla \beta)^{2}+m \ddot{f}(x-f)+V_{0}-\dot{f} \frac{\partial \beta}{\partial x}-\frac{\partial \beta}{\partial t}\right] A^{2} & +\frac{i \hbar}{m} \nabla \beta \cdot\left(\psi^{*} \nabla \psi-\psi \nabla \psi^{*}\right) \\
& -i \hbar \dot{f}\left(\psi^{*} \frac{\partial \psi}{\partial x}-\psi \frac{\partial \psi^{*}}{\partial x}\right)=0 \tag{8}\\
A \nabla^{2} \beta+2 \nabla A \cdot \nabla \beta & =2 m \dot{f} \frac{\partial A}{\partial x} \tag{9}
\end{align*}
$$

where $A^{2}=\psi^{*} \psi$.

3 Solution to equations

Let $\gamma(x, y, z, t)$ be any real valued function satisfying the homogeneous equation of (9)

$$
\begin{equation*}
A \nabla^{2} \gamma+2 \nabla A \cdot \nabla \gamma=0 \tag{10}
\end{equation*}
$$

hence

$$
\begin{equation*}
\nabla \cdot\left(A^{2} \nabla \gamma\right)=A\left(A \nabla^{2} \gamma+2 \nabla A \cdot \nabla \gamma\right)=0 \tag{11}
\end{equation*}
$$

With respect to \mathcal{F} choose the potential V and a wave function ψ for this potential such that for any t the set of points where ψ is zero is a sphere S. Let the ball B be S and the set of points interior to S. Assume there is $p_{1} \in B$ and $p_{1} \notin S$ such that $\nabla \gamma\left(p_{1}\right) \neq 0$. We then have $A^{2}\left(p_{1}\right) \nabla \gamma\left(p_{1}\right) \neq 0$. There is a curve in B with tangent vector $\nabla \gamma$ and containing p_{1}. Following this curve from $p_{1} \in B$ we will reach a $p_{2} \in B$ where either γ is a maximum on B or p_{2} is a point of S. In either case $A^{2}\left(p_{2}\right) \nabla \gamma\left(p_{2}\right)=0$. By $A^{2}\left(p_{2}\right) \nabla \gamma\left(p_{2}\right)=0$ and (11) we have $A^{2}\left(p_{1}\right) \nabla \gamma\left(p_{1}\right)=0$. This is a contradiction hence $\nabla \gamma=0$ for all points of B. Let U_{0} be the set of points where $\nabla \gamma=0$. We have $B \subset U_{0}$. Assume $U_{0} \neq \mathbb{R}^{3}$. There is then a curve with tangent vector $\nabla \gamma$ that contains a point p_{3} on the boundary of U_{0} and a point $p_{4} \notin U_{0} \supset S$ hence $A^{2}\left(p_{4}\right) \nabla \gamma\left(p_{4}\right) \neq 0$. Now $A^{2}\left(p_{3}\right) \nabla \gamma\left(p_{3}\right)=0$ and by (11) we would have $A^{2}\left(p_{4}\right) \nabla \gamma\left(p_{4}\right)=0$. This is a contradiction so we must have $U_{0}=\mathbb{R}^{3}$. Consequently $\nabla \gamma=0$ for all points. We can conclude, for a ψ that is zero on S for all t, that γ depends only on t.

Since γ depends only on t there is then a function $F(t)$ such that the solution to (9) has form

$$
\begin{equation*}
\beta(x, y, z, t)=m \dot{f}(t) x+F(t) \tag{12}
\end{equation*}
$$

Substituting this in (8) gives

$$
\begin{equation*}
\dot{F}=V_{0}-m f \ddot{f}-\frac{1}{2} m \dot{f}^{2} \tag{13}
\end{equation*}
$$

4 Rates of total energy expectation values

Total energy expectation values are

$$
\begin{equation*}
\bar{E}^{\prime}=i \hbar \int \psi^{\prime *} \frac{\partial \psi^{\prime}}{\partial t^{\prime}} d \tau^{\prime} \quad \bar{E}=i \hbar \int \psi^{*} \frac{\partial \psi}{\partial t} d \tau \tag{14}
\end{equation*}
$$

We have from (3), (12), (13), and 14)

$$
\begin{equation*}
\frac{d \bar{E}^{\prime}}{d t^{\prime}}=\dot{V}_{0}-m \ddot{f} \dddot{f}+m \dddot{f} \int \psi^{*} x \psi d \tau+\frac{d}{d t} \int \psi^{*} x \psi d \tau+i \hbar \ddot{f} \int \psi^{*} \frac{\partial \psi}{\partial x} d \tau+i \hbar \dot{f} \frac{d}{d t} \int \psi^{*} \frac{\partial \psi}{\partial x} d \tau+\frac{d \bar{E}}{d t} \tag{15}
\end{equation*}
$$

Now results of measurements do not depend on V_{0} hence for $d \bar{E}^{\prime} / d t^{\prime}$ we must have $\dot{V}_{0}=0$. Consequently we have for the rate of total energy expectation value

$$
\begin{equation*}
\frac{d \bar{E}^{\prime}}{d t^{\prime}}=-m \dddot{f} \dddot{f}+m \dddot{f} \int \psi^{*} x \psi d \tau+\frac{d}{d t} \int \psi^{*} x \psi d \tau+i \hbar \ddot{f} \int \psi^{*} \frac{\partial \psi}{\partial x} d \tau+i \hbar \dot{f} \frac{d}{d t} \int \psi^{*} \frac{\partial \psi}{\partial x} d \tau+\frac{d \bar{E}}{d t} \tag{16}
\end{equation*}
$$

Perform the transformation

$$
\begin{equation*}
\hat{x}=x-b \quad \hat{y}=y \quad \hat{z}=z \quad \hat{t}=t \tag{17}
\end{equation*}
$$

and then

$$
\begin{equation*}
x^{\prime}=\hat{x}-f(\hat{t}) \quad y^{\prime}=\hat{y} \quad z^{\prime}=\hat{z} \quad t^{\prime}=\hat{t} \tag{18}
\end{equation*}
$$

Also perform the transformation

$$
\begin{equation*}
\tilde{x}=x-f(t) \quad \tilde{y}=y \quad \tilde{z}=z \quad \tilde{t}=t \tag{19}
\end{equation*}
$$

and then

$$
\begin{equation*}
x^{\prime}=\tilde{x}-b \quad y^{\prime}=\tilde{y} \quad z^{\prime}=\tilde{z} \quad t^{\prime}=\tilde{t} \tag{20}
\end{equation*}
$$

We expect (16) to be the same for these two composition of transformations but it is not if $\dddot{f} \neq 0$. The values of $d \bar{E}^{\prime} / d t^{\prime}$ for the two different orders of composition of transformations differ by $m f b$.

5 Conclusion

The rate of total energy expectation value depends on the order transformations are performed for a transformation that is a composition of a translation and a transformation that has a frame of reference moving along a line with a time dependent acceleration with respect to an inertial frame of reference.

References

[1] Physics Essays, September 2008, June 2013
k.depaepe@utoronto.ca

