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Abstract 

To bypass Lehmann’s theorem against Heisenberg’s “Unified Field Theory of Elementary 

Particles,” requiring a Hilbert space with an indefinite metric, which is in conflict with the 

quantum mechanical probability interpretation, it was proposed by the author that Lorentz 

invariance, on of the fundamental assumptions made by Heisenberg, is a dynamic symmetry, 

approximately only valid for energies small compared to the Planck energy of ~1019 𝐺𝑒𝑉, with 

the fundamental symmetry of nature the Galilei group, in agreement with Mach’s principle. 

There then Heisenberg’s theory can be reformulated as an exactly non-relativistic quantum field 

theory with a positive definite metric in Hilbert space. With the Hamiltonian operator in such a 

theory commuting with the particle number operator, Heisenberg’s ground state of the vacuum is 

permitted to be a zero temperature plasma made up of positive and negative Planck mass 

particles which are one Planck mass per Planck length volume, interacting with the Planck force 

over a Planck length. Making for this Planck mass plasma the Hartree-Foch approximation, one 

obtains the Landau-Ginzburg equation of a super-fluid, and from the Boltzmann equation the 

quantum potential of the Madelung transformed Schrödinger equation. Quantum mechanics is 

thereby explained as a completely deterministic theory, as required by Kant’s law of causality. 

This paper was inspired by a remarkable paper recently published by I. Licata [1], who 

compared the work by the author for a deterministic interpretation of quantum mechanics to the 

work of ‘t Hooft with the same goal. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1. Introduction 

The author was an eyewitness when in a seminar talk by Heisenberg in 1954 [2], at the Max 

Planck Institute in Göttingen, where Heisenberg had for the first time presented his 

groundbreaking idea that all elementary quantities should be obtained from the solution of a 

nonlinear spinor field equation with a novel kind of quantization assuming the existence of a 

large cut-off energy (by him called a large limiting mass). From the first moment I was 

convinced of his idea, and that I had become a witness of a historic event in science. 

Following his lecture, he told me that he first tried to make a model of his idea with a 

nonlinear scalar field equation, but after Symanzik had shown that this would not work, proposed 

a nonlinear spinor field theory, which he had in mind to explain the half-integer spin particles 

like the electron. But his assumption of a limiting mass, required for the regularization of his 

theory, necessitated the assumption of a (non-positive) indefinite metric in Hilbert space. 

However, because of the quantum mechanical probability definition, this would imply the 

existence of states with a negative probability (“ghosts”). Furthermore, the regularization of his 

theory by a large limiting mass is in violation of a theorem by Lehmann [3], who under very 

general conditions had shown that the singularities on the lightcone cannot be eliminated in a 

theory with interaction. 

Following his lecture I had asked him why he did not assume for his large limiting mass the 

Planck mass of ~1019𝐺𝑒𝑉. His answer was that as an extremely weak force gravity can be 

neglected, an opinion repeated in a letter he had written me in 1957, (copy with my translation 

into English attached) about my proposal to test general relativity by placing atomic clocks onto 

artificial earth satellites [4] (realized in the GPS), where he writes that one day in the future 

gravity might be explained by the weak nuclear force.  

Many years before Heisenberg, Einstein tried to find equations of physics with his general 

theory of relativity and gravitation, but like Heisenberg, he failed. But how was it possible that 

two great geniuses failed? There can be only one answer: they erred because they wanted to err. 

They did not wish to believe that the special—and by implication, the general—theory of 

relativity could be only an approximation. The reason why can be found in a paper by Kurt 

Symanzik [5], outlining the axiomatic structure of a theory in “field free space.” By “field free,” 

he means the vacuum of space, that is in Minkowski space-time. But because in Einstein’s 

general theory of relativity gravitational fields can be transformed away by the principle of 

equivalence, Symanzik’s paper also can be extended from the uncurved Minkoski space-time to 

a curved Riemannian space-time. 

The question both Einstein and Heisenberg were faced with was “Could it be that the theory 

of relativity, both special and general, are only approximations?” This was a price too high for 

them to pay. In the general theory of relativity it would mean to extend the theory for 11 

dimensions with 10500 or more possibilities, in opposition to Einstein’s belief that “God is 

subtle, not malicious;” one might think that a God in 11 dimensions would be. 

There can be little doubt that Einstein’s general theory of relativity and gravitation, 

predicting the perhelion motion of Mercury, the deflection of light by the Sun, the time dilation 



by the GPS, and the existence of gravitational waves, must be an extremely good approximation, 

but there are at least three things which show that the theory cannot be entirely correct: 

1. The singularities of its solutions, not permitted in a theory describing physical reality. 

2. The black hole information paradox, in violation of the quantum mechanical unitarity. 

3. The double slit experiment, where the gravitational field of a particle is split into two 

such parts. 

In quantum mechanics, it is the indeterministic Copenhagen interpretation, which is in 

contradiction to Kant’s fundamental law of causality. 

Heisenberg had requested the existence of a highly degenerate vacuum state. Such a state is 

in line with Mach’s principle 

It was Hund [6], who had shown that all the known and explored consequences of Einstein’s 

general theory of relativity and gravitation can be obtained from Mach’s principle, assuming a 

preferred reference system at rest with the star-filled universe. And by replacing rods and clocks 

with Lorentz-contracted rods and clocks, one obtains what has been called “Lorentzian 

Relativity.” It was with “Lorentzian Relativity” that the author succeeded to explain the 

mysterious gamma ray bursts, where in a very short time the rest mass of a large star is converted 

into radiation [7]. In “Lorentzian Relativity,” matter becomes unstable when approaching the 

event horizon, implying a small—but significant—departure from Einstein’s theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2. The Planck Aether Hypothesis 

In his “Optics,” Newton makes the conjecture that the ultimate building blocks of matter are 

hard frictionless spheres. With a few assumptions, similar but different from those made by 

Newton, I will derive quantum mechanics with a spectrum of elementary particles greatly 

resembling the known spectrum of elementary particles, and Lorentz invariance as a dynamic 

symmetry for energies which are small compared to the Planck energy. These assumptions are 

(with 𝐺 being Newton’s constant, ħ being Planck’s constant, and 𝑐 the velocity of light): 

1. The ultimate building blocks of matter are Planck mass particles which obey the laws 

of classical Newtonian mechanics, but there can also be negative Planck mass 

particles. 

2. A positive Planck mass particle exerts a short-range repulsive—and a negative Planck 

mass particle likewise exhibits an attractive—force on a positive Planck mass 

particle, with magnitude and range equal to the Planck force 𝐹𝑝 and Planck length 𝑟𝑝. 

3. Space is filled with an equal number of positive and negative Planck mass particles 

whereby each Planck length volume is in the average occupied by one Planck mass 

particle. 

From the two Planck relations 

𝐺𝑚𝑝
2 = ħc 

𝑚𝑝𝑟𝑝𝑐 = ħ 

(ℎ = 2𝜋ħ) Planck’s mass, length, and time are obtained: 

𝑚𝑝 = √ħc/G = 10−5𝑔 

r𝑝 = √ħG/𝑐3 =̃ 10−33𝑐𝑚 

𝑡𝑝 = √ħG/c5 =̃ 10−44𝑠𝑒𝑐 

Expressed in terms of these units the Planck force is 

𝐹𝑝 =
𝑐4

𝐺
 =̃ 1050𝑑𝑦𝑛 

Unlike 𝑚𝑝, r𝑝, and 𝑡𝑝, 𝐹𝑝 does not depend on ħ. The potential of 𝐹𝑝 over the range 𝑟𝑝 is equal to 

𝑈 = 𝐹𝑝𝑟𝑝 = 𝑚𝑝𝑐2. 

Because the compactified assembly of positive and negative Planck mass particles defines an 

absolute system at rest with these particles, one may speak of an aether composed of densely 

packed Planck mass particles which one may simply call the Planck aether. 

 

 



 

      3. Boltzmann Equation for the Planck Aether 

Because two negative Planck mass particles repel each other, as do two positive Planck mass 

particles, the outcome of a collision between two negative Planck mass particles is the same as 

between two positive Planck mass particles, but the outcome of a collision between a positive 

and negative Planck mass particle is different. Under the assumed force law, a positive and 

negative Planck mass particle are attracted towards each other. With a negative mass thereby 

accelerated in a direction opposite to the acceleration of the positive mass, the law of linear 

momentum conservation is violated even though linear momentum is restored to its original 

value after the completion of the collision, in contrast to the energy which is conserved during 

the entire collision process, with the sum of kinetic and potential energies remaining unchanged. 

A force between a positive and negative mass of equal magnitude obeying Newton’s actio = 

reactio axiom conserving linear momentum would lead to the self-accelerated positive-negative 

mass dipoles. The only other way a force, accelerating the positive and negative Planck mass 

particles can be realized is through the constraint that space is densely filled with an equal 

number of positive and negative Planck mass particles, with each Planck length volume in space 

occupied in the average by one Planck mass particle. 

During the collision of a positive with a negative Planck mass particle, momentum of each 

Planck mass particle fluctuates by Δp = m𝑝𝑐, with the total fluctuation in momentum 2𝑚𝑝𝑐 

compensated by the recoil to the positive and negative Planck mass fluid. This momentum 

fluctuation is accompanied by an energy fluctuation Δ𝐸 = ħ/𝑡𝑝, hence  

Δ𝑝 = ħ/𝑟𝑝 

Δ𝐸 = ħ/𝑡𝑝 

Heisenberg’s uncertainty relations for momentum and energy are thus explained by the 

mechanical fluctuations of the positive-negative Planck mass particle fluid, and it is for this 

reason of no surprise, that Schrödinger’s equation for a Planck mass particle can be derived from 

the Boltzmann equation for such a field. 

The Boltzmann equation is given by:  

𝜕𝑓

𝜕𝑡
+ 𝒗 ⋅

𝜕𝑓

𝜕𝒓
+ 𝒂 ⋅

𝜕𝑓

𝑑𝒗
= ∫ 𝑣𝑟𝑒𝑙(𝑓′𝑓1

′ − 𝑓𝑓1)𝑑𝜎𝑑𝒗1 

where 𝑓 is the distribution function of the colliding particles, 𝑓′, 𝑓1
′ before and 𝑓, 𝑓1 after the 

collision, with 𝑓1
′ and 𝑓1 the distribution functions of the particles, which change distribution 

from 𝑓′ to 𝑓 during the collision. The magnitude of the relative collision velocity is 𝑣𝑟𝑒𝑙 and the 

collision cross section is 𝜎. The particle number density is ∫ 𝑓(𝒗, 𝒓, 𝑡)𝑑𝒗 and the average 

velocity 𝑽 = ∫ 𝒗𝑓(𝒗, 𝒓)𝑑𝒗 | 𝑛(𝒓, 𝑡). The acceleration is 𝒂 = +̅(
1

𝑚𝑝
)∇𝑈, where 𝑈(𝑡) is the 

potential of a force. 

(1) 

(2) 



 The Boltzmann equation for the distribution function 𝑓± of the positive and negative Planck 

mass particles is  
𝜕𝑓±

𝜕𝑡
+ 𝑣± ⋅

𝜕𝑓±

𝜕𝒓
+̅

1

𝑚𝑝

𝜕𝑈

𝜕𝒓
⋅

𝜕𝑓±

𝜕𝒗±
= 4𝛼𝑐𝑟𝜌

2 ∫(𝑓±
′ 𝑓+̅

′ − 𝑓±𝑓+̅)𝑑𝒗+̅ 

where we have set 𝜎 = (2𝑟𝑝)
2

= 4𝑟𝑝
2 and 𝑣𝑟𝑒𝑙 = 𝛼𝑐 with 𝛼 a numerical factor. In (3), 𝑈 

describes the average potential of all Planck mass particles on one Planck mass particle. The 

constraint keeping constant the average number density of all Planck mass particles leads to a 

pressure which has to be included in the potential 𝑈. It can be viewed as a potential holding 

together by the positive and negative Planck mass particles, which otherwise would fly apart. 

The effective interaction between the positive and negative Planck mass particles is separated 

into the short range “Zitterbewegung” part entering the collision integral and the long range 

average potential part included in the potential 𝑈. 

Because of  

𝑓±
′ (𝐫) = 𝑓±(𝐫 ±

𝒓𝒑

𝟐
) 

where one has to average over all possible displacements and velocities of the “Zitterbewegung.” 

With the distribution index function 𝑓′ before the collision set equal the displaced distribution 

function 𝑓′ the direction of the “Zitterbewegung” velocity is in the opposite direction of the 

displacement vector 
𝚪𝑝

2
. With (4) the integrand in the collision integral becomes  

𝑓±
′ 𝑓+̅

′ − 𝑓±𝑓+̅ = 𝑓± (𝒓 ±
𝒓𝜌

2
) 𝑓+̅ (𝒓+̅

𝒓𝜌

2
) − 𝑓±(𝒓)𝑓+̅(𝒓) 

Expanding 𝑓± (𝒓 ±
𝚪𝜌

2
) and 𝑓+̅ (𝒓+̅

𝚪𝜌

2
) into a Taylor series  

𝑓± (𝒓 ±
𝒓𝜌

2
) = 𝑓± ±

𝒓𝜌

2
⋅

𝜕𝑓±

𝜕𝒓
+

𝒓𝜌
2

8
⋅

𝜕2𝑓±

𝜕𝒓2
+ ⋯ 

𝑓+̅ (𝒓+̅
𝒓𝜌

2
) = 𝑓+̅ +̅

𝒓𝜌

2
⋅

𝜕𝑓+̅

𝜕𝒓
+

𝒓𝜌
2

8
⋅

𝜕2𝑓+̅

𝜕𝒓2
+ ⋯ 

one finds up to second order that 

𝑓±
′ 𝑓+̅

′ − 𝑓±𝑓+̅ =̃ ±
𝒓𝜌

2
⋅ (𝑓+̅

𝜕𝑓±

𝜕𝒓
− 𝑓±

𝜕𝑓+̅

𝜕𝒓
) −

𝒓𝜌
2

4
⋅ (

𝜕𝑓±

𝜕𝒓
⋅

𝜕𝑓+̅

𝜕𝒓
) +

𝒓𝜌
2

8
(𝑓+̅

𝜕2𝑓±

𝜕𝒓2
+ 𝑓±

𝜕2𝑓+̅

𝜕𝒓2
) 

with higher order terms suppressed by the Planck length. Because 𝑓+̅(𝒗+̅, 𝒓, 𝑡) =̃ 𝑓±(𝒗±, 𝒓, 𝑡), 

one has 

𝑓±
′ 𝑓+̅

′ − 𝑓±𝑓+̅ =̃ −
𝒓𝜌

2

4
⋅ (

𝜕𝑓±

𝜕𝒓
)

2

+
𝒓𝜌

2

4
(𝑓±

𝜕2𝑓±

𝜕𝒓2
) = (

𝒓𝜌

2
)

2

𝑓±
2

𝜕2 log(𝑓±)

𝜕𝒓2
= (

𝒓𝜌

2
)

2

𝑓±𝑓+̅

𝜕2 log(𝑓±)

𝜕𝒓2
 

(3) 

(4) 

(5) 

(6) 

(7) 



To obtain the net “Zitterbewegung” displacement over a sphere with a volume to surface 

ratio (
𝒓𝜌

2
)

3

/ (
𝒓𝜌

2
)2 =

𝒓𝜌

2
, (8) must be multiplied by the operator 

𝚪𝜌

2
⋅

𝜕

𝜕𝚪
, and to obtain the 

corresponding net value in velocity space it must in addition be multiplied by the operator 𝒄 ⋅
𝜕

𝜕𝒗±
 

with the vector 𝒄 in the opposite direction to 𝒓𝜌. 

Integrating the r.h.s. of (3) over 𝑑𝑣+̅ and setting ∫ 𝑓+̅𝑑𝒗+̅, the number density of one Planck 

mass species in the undisturbed configuration of the Planck mass particles filling space, one has 

𝜕𝑓±

𝜕𝑡
+ 𝒗± ⋅

𝜕𝑓±

𝜕𝒓
+̅ 

1

𝑚𝑝
⋅

𝜕𝑈

𝜕𝒓
⋅

𝜕𝑓±

𝜕𝒗±
= −

𝛼𝑐2𝒓𝜌
2

4
⋅

𝜕2

𝜕𝒗±𝜕𝒓
(𝑓±

𝜕2𝑙𝑜𝑔𝑓±

𝜕𝒓2
)  

For an approximate solution of (8), one computes its zeroth and first moment. The zeroth 

moment is obtained by integrating (8) over 𝑑𝒗±, with the result that 

𝜕𝑛±

𝜕𝑡
+

𝜕(𝑛±𝑽±)

𝜕𝒓
= 0 

which is the continuity equation for the macroscopic quantities 𝑛± and 𝑽±. The first moment is 

obtained by multiplying (8) with 𝑣± and integrating over 𝜕𝒗±. Because the logarithmic 

dependence can be written with sufficient accuracy as 
𝜕2𝑙𝑜𝑔(𝑓±)

𝜕𝒓2 ≈
𝜕2𝑙𝑜𝑔(𝑛±)

𝜕𝒓2 , one finds  

𝜕(𝑛±𝑽±)

𝜕𝑡
+

𝜕(𝑛±𝑽±)

𝜕𝒓
⋅ 𝑽± = +̅

𝑛±

𝑚𝜌
⋅

𝜕𝑈

𝜕𝒓
+

𝛼𝑐2𝒓𝜌
2

4
⋅

𝜕

𝜕𝒓
(𝑛±

𝜕2𝑙𝑜𝑔𝑛±

𝜕𝒓2
) 

With the help of (9), this can be written as 

𝜕𝑽±

𝜕𝑡
+ 𝑽±

𝜕𝑽±

𝜕𝒓
= +̅

1

𝑚𝜌
⋅

𝜕𝑈

𝜕𝒓
+

𝛼ħ2

4𝑚𝑝
2𝑛±

⋅
𝜕

𝜕𝒓
(𝑛±

𝜕2𝑙𝑜𝑔𝑛±

𝜕𝒓2
) 

for which one can also write 

𝜕𝑽±

𝜕𝑡
+ 𝑽±

𝜕𝑽±

𝜕𝒓
= +̅

1

𝑚𝜌
⋅

𝜕𝑈

𝜕𝒓
+

𝛼ħ2

2𝑚𝑝
2

⋅
𝜕

𝜕𝒓
(

1

√𝑛±

𝜕2√𝑛±

𝜕𝒓2
).  

The equivalence of (9) and (12) with the one-body Schrödinger equation for a positive or 

negative Planck mass can now be established by Madelung’s transformation 

𝑛± = 𝜓±
′ 𝜓± 

𝑛±𝑽± = +̅
𝑖ħ

2𝑚𝜌
[𝜓±

∗ ∇𝜓± − 𝜓±𝜓±
∗ ]  

transforming the equation of a Planck mass ±𝑚𝜌 

𝑖ħ
𝜕𝜓±

𝜕𝑡
= +̅

ħ𝟐

2𝑚𝜌
∇2𝜓±+𝑈(𝒓)𝜓± 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

} 



into 

𝜕𝑛±

𝜕𝑡
+

𝜕(𝑛±𝑽±)

𝜕𝒓
= 0 

𝜕𝑽±

𝜕𝑡
+ 𝑽±

𝜕𝐕±

𝜕𝒓
= +̅

1

𝑚𝜌

𝜕

𝜕𝒓
[𝑈 + 𝑄±] 

where  

𝑄± = ∓
ℏ2

2𝑚𝜌
⋅

1

√𝑛±

⋅
𝜕2√𝑛±

𝜕𝒓𝟐
 

is the so-called quantum potential. By comparison with (9) and (12), one finds full equivalence 

for 𝛼 = 1, that is for 𝑣𝑟𝑒𝑙 = 𝑐. 

 The uncertainty in quantum mechanics is not seen here due to a fundamental noncausal 

structure, but rather the consequence of the principal inability to make measurements for 

distances and times smaller than 𝒓𝜌 and 𝑡𝜌. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

} (15) 

(16) 



4. Quantum Mechanics of the Densely Packed Assembly of Positive and Negative 

Planck Mass Particles 

Having established quantum mechanics for a single Planck mass particle with a dense 

assembly of positive and negative Planck mass particles, a quantum mechanical description of 

the many body problem for all the Planck mass particles can be given, It is achieved 1) by setting 

the potential 𝑈 in (15) equal to 

𝑈 = 2ℏ𝑐𝑟𝜌
2[𝜓+

∗ 𝜓+ − 𝜓−
∗ 𝜓−] 

2) by replacing the field functions 𝜓±, 𝜓±
∗  with the operators 𝜓±, 𝜓±

✝ , obeying the canonical 

commutation relations  

[𝜓±(𝒓)𝜓±
✝ (𝒓)] = 𝛿(𝒓 − 𝒓′), [𝜓±(𝒓)𝜓±(𝒓′)] = [𝜓±

✝ (𝒓)𝜓±
✝ (𝒓′)] = 0 

whereby (15) becomes the operator field equation 

𝑖ℏ
𝜕𝜓±

𝜕𝑡
= ∓

ℏ2

2𝑚𝜌
∇2𝜓± ± 2ℏ𝑐𝑟𝜌

2(𝜓±
✝ 𝜓± − 𝜓∓

✝ 𝜓∓)𝜓± 

We justify this as follows: 1) an undisturbed dense assembly of Planck mass particles, each 

particle occupying the volume 𝑟𝜌
3, has the expectation value < 𝜓±

∗ 𝜓± > =
1

2
𝑟𝜌

3, whereby 

2ℏ𝑐𝑟𝜌
2 < 𝜓±

∗ 𝜓± > = 𝑚𝑝𝑐2, implying an average potential energy ±𝑚𝜌𝑐2 for the positive and 

negative Planck mass particles within the assembly of all Planck masses, consistent with the 

value of the potential 𝐹𝜌𝑟𝜌 = 𝑚𝜌𝑐2 of the Planck force acting over the distance 𝑟𝜌. The 

interaction term between the positive and negative Planck mass fluid results from the constraint 

demanding that the number density of Planck mass particles shall (in the average) be equal 

to 1 2𝑟𝜌
3⁄ . 2) The rules of quantum mechanics for one Planck mass imply the one-particle 

commutation rule [𝑝, 𝑞] =
ℏ

𝑖
, for which a many-particle system of Planck mass particles leads to 

the canonical commutation relation (18) applied to the operator field equation (19) describing the 

many Planck mass particle system. 

Equation (19) has the form of a nonrelativistic nonlinear Heisenberg equation, similar to 

Heisenberg’s nonlinear spinor field equation proposed by him as a model of elementary particles. 

The two values for the chirality of the zero rest mass spinors in his equation are relaced by the 

two signs for the Planck mass 𝑚𝜌 in the kinetic energy term of (19). The limiting mass 

conjectured by Heisenberg to separate the Hilbert space I, containing states of positive norm 

from those of Hilbert space II having those of negative norm, becomes the Planck mass. But in 

contrast to Heisenberg’s relativistic spinor equation, (19) is nonrelativistic. The Hilbert space 

derived from it is, for this reason, always positive definite. 

 

 

 

(17) 

(18) 

(19) 



5. Hartree and the Hartree-Fock Approximation 

To obtain solutions of the nonlinear quantized field equation (19), suitable nonperturbative 

approximation methods must be used. Perturbation theory would contradict the spirit of the 

theory, because before perturbation theory can be applied, a spectrum of elementary particles 

should be derived nonperturbatively. Fortunately, this is possible for a nonrelativistic theory. The 

most simple nonperturbative method which can be used to obtain approximate solutions of (19) 

is the self-consistent Hartree approximation. 

In the Hartree approximation, one sets the expectation value of the product of three field 

operators equal to the product of their expectation values: 

< 𝜓±
✝ 𝜓±𝜓± >=̃ 𝜙±

∗ 𝜙±
2  

< 𝜓∓
✝ 𝜓∓𝜓± >=̃ 𝜙∓

∗ 𝜙∓𝜙± 

where < 𝜓± > =  𝜙±, < 𝜓±
✝ >= 𝜙±

∗ . Taking the expectation value of (19), one obtains in this 

approximation: 

𝑖ℏ
𝜕𝜙±

𝜕𝑡
= ∓

ℏ2

2𝑚𝜌
∇𝜙±

2 ± 2ℏ𝑐𝑟𝜌
2[𝜙±

∗ 𝜙± − 𝜙∓
∗ 𝜙∓]𝜙± 

which is the classical field equation. 

However, if the temperature of the Planck aether is close to absolute zero, each component is 

superfluid and should therefore be described by a completely symmetric wave function. Under 

these circumstances, the Hartree approximation has to be replaced by the more accurate Hartree-

Fock approximation, taking into account the exchange interactions neglected in the Hartree 

approximation. In the Hartree-Fock approximation, one has to consider the symmetric wave 

function of two identical Planck masses 

𝜓(1,2) =
1

√2
[𝜙1(𝒓)𝜙2(𝒓′) + 𝜙1(𝒓′)𝜙2(𝒓)] 

There, the expectation value for a delta-function-type contact interaction between the 

identical Planck mass particles is  

< 𝜓(1,2)|𝛿(𝒓 − 𝒓′)|𝜓(1,2) > = 2𝜙1
2(𝒓)𝜙2

2(𝒓) 

with the direct and exchange integrals making an equal contribution. One therefore has to put 

instead of (20) 

< 𝜓±
✝ 𝜓±𝜓± >=̃ 2𝜙±

∗ 𝜙±
2  

< 𝜓∓
✝ 𝜓∓𝜓± >=̃ 𝜙∓

∗ 𝜙∓𝜙± 

In this approximation, one obtains from (18): 

(20) 

(21) 



𝑖ℏ
𝜕𝜙±

𝜕𝑡
= ∓

ℏ2

2𝑚𝜌
∇2𝜙± ± 2ℏ𝑐𝑟𝜌

2[2𝜙±
∗ 𝜙± − 𝜙∓

∗ 𝜙∓]𝜙± 

In the Hartree-Fock approximation the twice as large interaction between identical Planck 

masses results from the completely symmetric wave function of the superfluid state, which is the 

Ginzburg-Landau equation. 
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Fig. Epilogue: Letter from W. Heisenberg and its Translation 


