Unbihexium $\frac{310}{126}Ubh/\frac{354}{126}Ubh$ or orion nucleus $\frac{307}{125}Or$?

Michael Tzoumpas

Mechanical and Electrical Engineer National Technical University of Athens Irinis 2, 15234 Athens, Greece

E-mail: m.tzoumpas@gmail.com

July 2020

Abstract. The structure of the nuclei begins with the so-called lower-order nuclei, as the deuterium, tritium and helium ${}^{3}_{2}He$, which evolve into helium nucleus ${}^{4}_{2}He$ and then first upper-order oxygen nucleus ${}^{16}_{8}O$. The second upper-order calcium nucleus ${}^{40}_{20}Ca$ is based on the fundamental natural phenomenon of mirror symmetry, by repetition of the first upper-order oxygen nucleus and one half of it, i.e. at the 2,5 factor. The same stands with the third upper-order tin nucleus $\frac{120}{50}Sn$, which emerged from the second upper-order calcium nucleus, according to the mirror symmetry and the same 2,5 factor. Furthermore, orion nucleus $^{307}_{125}Or$ forecast, as a theoretical construction, is derived by repetition of the third upper-order tin nucleus and one half of it for the connection as the fourth upper-order nucleus, according to the mirror symmetry. The atomic numbers Z of the above four upper-order nuclei are the so-called four magic numbers, i.e. $Z_1 = 8$, $Z_2 = 8 \cdot 2$, 5 = 20, $Z_3 = 20 \cdot 2$, 5 = 50 and $Z_4 = 50 \cdot 2$, 5 = 125. That is the simple and elegant structure model, according to which the nuclei consist of fixed helium nuclei ${}_{2}^{4}He$ (plus deuterium, tritium and helium ${}_{2}^{3}He$, all evolving into helium $\frac{4}{2}He$) and neutrons rotating around of them. It is noted that the word orion comes from the Greek $\delta \rho \iota \rho \nu$, meaning the limit. Thus, orion nucleus $^{307}_{125}Or$ means the limited nucleus of Nature that cannot be further divided, due to the indivisible original deuterium. Additionally, orion nucleus $^{307}_{125}O_r$ is the corresponding hypothetical chemical element with atomic number Z = 126 and placeholder symbol Ubh $\binom{310}{126}Ubh$ or $^{354}_{126}Ubh$), also known as element 126 or eka-plutonium.

Keywords: Upper-order nuclei; mirror symmetry; magic numbers.

PACS numbers: 03.50.Kk, 12.10.-g

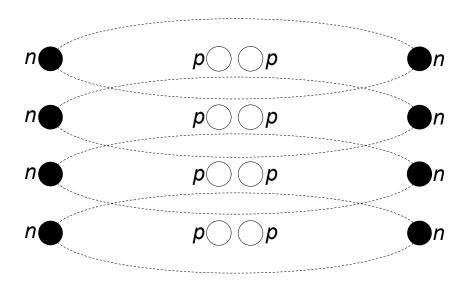
1. Structure model of four upper-order nuclei

According to the unified theory^{1,2} of dynamic space the atomic nuclei^{3,4} have been structured through two fundamental phenomena.⁵ The inverse electric field⁶ of the proton and the electric entity of the macroscopically neutral neutron.⁷

The structure of the nuclei begins with the so-called lower-order nuclei, as the deuterium ${}_{1}^{2}H$, tritium ${}_{1}^{3}H$ and helium ${}_{2}^{3}He$, which evolve into helium ${}_{2}^{4}He^{5}$ and then

first upper-order oxygen nucleus ${}_{8}^{16}O$,⁸ that has four helium nuclei ${}_{2}^{4}He$ in a column of strong negative electric field (Fig. 1).

So, the second upper-order calcium nucleus ${}^{40}_{20}Ca^9$ is based on the fundamental natural phenomenon of mirror symmetry, by repetition of the first upper-order oxygen nucleus and one half of it, i.e. at the 2,5 factor (Fig. 2). The same stands with the third upper-order tin nucleus ${}^{120}_{50}Sn$, ¹⁰ which emerged from the second upper-order calcium nucleus, according to the mirror symmetry and the same 2,5 factor (Figs 3 and 4).

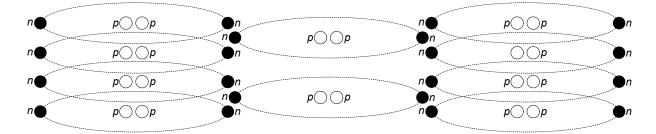

Furthermore, orion nucleus ${}^{307}_{125}Or$ forecast, as a theoretical construction, is derived by repetition of the tin nucleus ${}^{120}_{50}Sn$ and one half of it for the connection as the fourth upper-order nucleus, according to the mirror symmetry.

The atomic numbers Z of the above four upper-order nuclei are the so-called four magic numbers, i.e. $Z_1 = 8$, $Z_2 = 8 \cdot 2$, 5 = 20, $Z_3 = 20 \cdot 2$, 5 = 50 and $Z_4 = 50 \cdot 2$, 5 = 125, according to the 2,5 factor. It is noted that, this orion nucleus ${}^{307}_{125}O_r$ with an atomic number $Z_4 = 125$ is the corresponding hypothetical unbihexium ${}^{310}_{126}Ubh$ or ${}^{354}_{126}Ubh$ with a different atomic number Z = 126.

Additionally, the tin nucleus ${}^{120}_{50}Sn$ will further form the basis for the structure of all heavy nuclei up to the radioactive uranium nucleus ${}^{235}_{92}U$.¹¹

That is the simple and elegant structure model, according to which the nuclei consist of fixed helium nuclei ${}_{2}^{4}He$ (plus deuterium, tritium and helium ${}_{2}^{3}He$, all evolving into helium ${}_{2}^{4}He$) and neutrons rotating around of them.

1.1. Structure model of first upper-order oxygen nucleus $^{16}_{8}O$


Figure 1. Structure model of oxygen ${}_{8}^{16}O = 4{}_{2}^{4}H_{e}$, as a column of strong electric field of four coaxial helium nuclei ${}_{2}^{4}H_{e}$

Oxygen nucleus ${}^{16}_{8}O$ is derived from the successive evolution⁸ of lithium ${}^{6}_{3}Li = {}^{4}_{2}H_{e} + {}^{2}_{1}H$, lithium ${}^{7}_{3}Li = {}^{6}_{3}Li + n$, beryllium ${}^{9}_{4}Be = {}^{7}_{3}Li + {}^{2}_{1}H$, boron ${}^{10}_{5}B = {}^{4}_{2}H_{e} + {}^{3}_{1}H$, boron ${}^{11}_{5}B = {}^{4}_{2}H_{e} + {}^{3}_{2}H_{e} + {}^{3}_{1}H + n$, carbon ${}^{12}C = {}^{3}_{2}H_{e}$ and nitrogen ${}^{14}_{7}N = {}^{12}_{6}C + {}^{2}_{1}H$ by completing of one deuterium ${}^{2}_{1}H$, evolving into carbon ${}^{12}_{6}C$ and helium ${}^{4}_{2}H_{e}$, that are four coaxial helium nuclei ${}^{4}_{2}H_{e}$ as a column of strong negative electric field⁶ (Fig. 1)

$${}^{16}_{8}O = {}^{14}_{7}N + {}^{2}_{1}H = {}^{12}_{6}C + {}^{4}_{2}H_e = 4{}^{4}_{2}H_e \Rightarrow {}^{16}_{8}O = 4{}^{4}_{2}H_e.$$
(1)

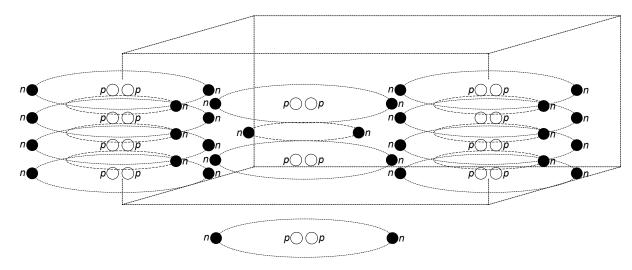
After the helium nucleus ${}_{2}^{4}H_{e}$, the oxygen nucleus ${}_{8}^{16}O$ is the second stable one in Nature and the first upper-order one, which the atomic number Z = 8 is the first magic number.

1.2. Structure model of second upper-order calcium nucleus ${}^{40}_{20}Ca$

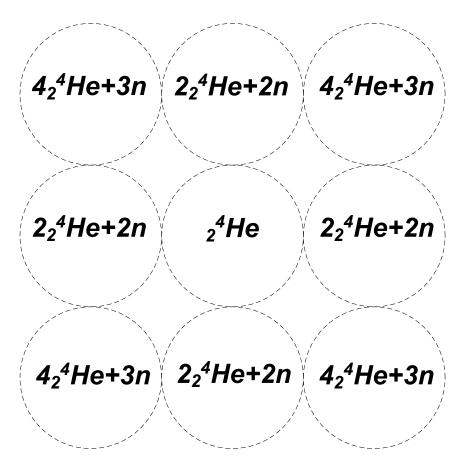
Figure 2. Structure model of calcium nucleus ${}^{40}_{20}Ca = {}^{16}_{8}O + 2{}^{4}_{2}He + {}^{16}_{8}O$, as a mirror symmetry of two oxygen nuclei ${}^{16}_{8}O$ and two helium nuclei ${}^{4}_{2}He$ (one half oxygen), according to the 2,5 factor

Calcium nucleus ${}^{40}_{20}Ca$ (Fig. 2) is derived from the successive evolution⁹ of the nuclei fluorine ${}^{19}_{9}F = {}^{16}_{8}O + {}^{3}_{1}H$, magnesium ${}^{24}_{12}Mg = {}^{16}_{8}O + {}^{4}_{2}He$, silicon ${}^{28}_{14}Si = {}^{16}_{8}O + {}^{4}_{2}He$ and specifically

$${}^{40}_{20}Ca = {}^{16}_{8}O + \frac{1}{2} \cdot {}^{16}_{8}O + {}^{16}_{8}O,$$
(2)


i.e. by repetition of the oxygen nucleus ${}^{16}_{8}O$ and one half of it for connection as the second upper-order nucleus, according to the mirror symmetry. The atomic number $Z = 8 \cdot 2, 5 = 20$ (2, 5 factor) of the calcium nucleus ${}^{40}_{20}Ca$ is the second magic number.

1.3. Structure model of third upper-order tin nucleus $\frac{120}{50}Sn$


Tin nucleus ${}^{120}_{50}S_n$ (Figs 3 and 4) is derived from the successive evolution¹⁰ of the nuclei iron ${}^{56}_{26}Fe = {}^{40}_{20}Ca + 3{}^{4}_{2}He + 4n$, nickel ${}^{60}_{28}Ni = {}^{40}_{20}Ca + 4{}^{4}_{2}He + 4n$ and specifically

$${}^{120}_{50}S_n = {}^{40}_{20}C_a + \frac{1}{2} \cdot {}^{40}_{20}C_a + {}^{40}_{20}C_a + 20n,$$
(3)

i.e. by repetition of the calcium nucleus ${}^{40}_{20}C_a$ and one half of it for connection as the third upper-order nucleus, according to the mirror symmetry, while twenty orbital bonding neutrons¹² are added, which reduce the strong negativity of the protons field and contribute to the stability of the nucleus. The atomic number $Z = 20 \cdot 2, 5 = 50$ (2, 5 factor) of the tin nucleus ${}^{120}_{50}S_n$ is the third magic number.

Figure 3. Stereoscopic representation of the tin nucleus $\frac{120}{50}Sn$, where the same image on the other three sides of the rectangular parallelepiped is repeated, while the lonely helium nucleus $\frac{4}{2}He$ is placed in its center

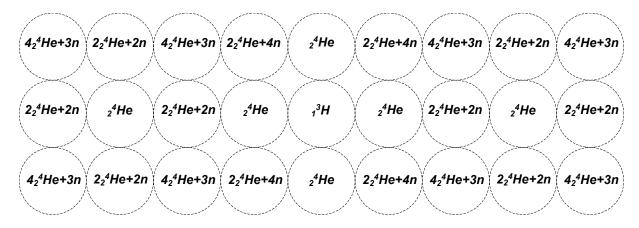


Figure 4. Top view of Fig. 3, where the mirror symmetry of the 2,5 factor for the construction of the tin nucleus $\frac{120}{50}Sn$ appears

In Fig. 3 it is repeated the same image on the other three sides of the rectangular parallelepiped, while the lonely helium nucleus ${}_{2}^{4}He$ of the above figure is placed in its

center. In Fig. 4, the four corner columns of negative potential appear with the four helium nuclei ${}_{2}^{4}He$ and the three neutrons each, also the four middle columns of negative potential appear with the two helium nuclei ${}_{2}^{4}He$ and the two neutrons each, while the lonely helium nucleus ${}_{2}^{4}He$ appears in the center.

1.4. Structure model of fourth upper-order orion nucleus $^{307}_{125}Or$

Figure 5. Representation of the fourth upper-order orion nucleus ${}^{307}_{125}Or$, where is constructed by repetition of the third upper-order tin nucleus ${}^{120}_{50}Sn$ and one half of it for the connection (mirror symmetry/2,5 factor)

Orion nucleus ${}^{307}_{125}Or$ forecast, as a theoretical construction (Fig. 5), is derived from the successive evolution¹¹ of the nuclei tin ${}^{120}_{50}Sn$ (Eq. 3), iodine ${}^{127}_{53}I = {}^{120}_{50}Sn + 2{}^{2}_{1}H + {}^{3}_{1}H$, rhenium ${}^{187}_{75}Re = {}^{120}_{50}Sn + {}^{1}_{2} \cdot {}^{120}_{50}Sn + 6n + n$, lead ${}^{208}_{82}Pb = {}^{187}_{75}Re + {}^{3}_{2}He + {}^{3}_{1}H + 6n$, bismuth ${}^{209}_{83}Bi = {}^{187}_{75}Re + {}^{4}_{2}He + 6n$, uranium ${}^{235}_{92}U = {}^{209}_{83}Bi + ({}^{4}_{2}He + {}^{3}_{1}H + n) + ({}^{2}_{2}He + {}^{3}_{1}H + 4n)$ and specifically

$${}^{307}_{125}Or = {}^{120}_{50}Sn + \frac{1}{2} \cdot {}^{120}_{50}Sn + {}^{120}_{50}Sn + 6n + n,$$
(4)

i.e. by the repetition of the tin nucleus ${}_{50}^{120}Sn$ and one half of it for the connection as the fourth upper-order nucleus, according to the mirror symmetry, while six orbital bonding neutrons¹² in the middle connection unit $(\frac{1}{2} \cdot {}_{50}^{120}Sn)$ are added plus one neutron for the central original deuterium nucleus ${}_{1}^{2}H$ (one half of the initial helium nucleus ${}_{2}^{4}He$) that evolves into the unstable tritium nucleus ${}_{1}^{3}H$ (Fig. 5).

The weak link of orion nucleus ${}^{307}_{125}Or$ is the above unstable tritium nucleus ${}^{3}_{1}H$, which is located at its center, where the strong negative electric field of the protons prevails. So, this critical point becomes an attraction pole of neutrons, i.e. of a thermal neutron and rarely of a fast one, which it is cleaved (beta decay β^{-}), incorporating the produced proton into the tritium nucleus ${}^{3}_{1}H$, turning it into helium nucleus ${}^{4}_{2}He$. This is the mechanism that acts as a catalyst for the nuclear fission of the theoretical orion nucleus ${}^{307}_{125}Or$, due to which it is considered an unstable nucleus.

The atomic number (2, 5 factor)

$$Z = 50 \cdot 2, 5 = 125 \tag{5}$$

of the hypothetical orion nucleus $^{307}_{125}Or$ is the fourth magic number.

The orbital bonding neutrons are formed as the sum shown in Fig. 5 plus the above one neutron of the unstable tritium nucleus ${}_{1}^{3}H$, namely

$$20 + 16 + 20 + 1 = 57. \tag{6}$$

Hence, the mass number of orion nucleus $^{307}_{125}Or$, due to Eq. 5, will be then

$$A = 2Z + 57 = 2 \cdot 125 + 57 = 307 \Rightarrow A = 307.$$
⁽⁷⁾

However, we will give also an etymological interpretation for orion ${}^{307}_{125}Or$. The word orion comes from the Greek $\delta\rho\iota\sigma\nu$, meaning the limit. Thus, orion nucleus ${}^{307}_{125}Or$ means the limited nucleus of Nature that cannot be further divided, due to the indivisible original deuterium ${}^{2}_{1}H$.

Additionally, orion nucleus $^{307}_{125}O_r$ is the corresponding hypothetical chemical element with atomic number Z = 126 and placeholder symbol Ubh $(^{310}_{126}Ubh$ or $^{354}_{126}Ubh$), also known as element 126 or eka-plutonium.

2. References

- [1] N.I.Gosdas, The Unified Theory of Dynamic Space, Greek Edition (Trohalia, Athens, 1999).
- [2] M.Tzoumpas, Hubble's Law and antigravity Higgs boson and gravity, http://viXra.org/abs/1710.0082 [Quantum Gravity and String Theory].
- [3] M.Tzoumpas, *Structure model of atomic nuclei*, http://viXra.org/abs/2001.0155 [Quantum Physics].
- [4] N.I.Gosdas, The Structure of Nuclei (chapter 4, pages 69-203), Greek Edition (SALTO, Thessaloniki, 2001).
- [5] M.Tzoumpas, Structure model of helium nucleus $\frac{4}{2}H_e$, http://viXra.org/abs/2002.0340 [High Energy Particle Physics].
- [6] M.Tzoumpas, *Inverse electric-nuclear field*, http://viXra.org/abs/1902.0266 (sections 1 and 2) [High Energy Particle Physics].
- [7] M.Tzoumpas, Structure model of atomic nuclei, http://viXra.org/abs/2001.0155 (section 3) [Quantum Physics].
- [8] M.Tzoumpas, Structure model of oxygen nucleus ¹⁶₈O, http://viXra.org/abs/2004.0145 [High Energy Particle Physics].
- [9] M.Tzoumpas, Structure model of calcium nucleus ⁴⁰₂₀C_a, http://viXra.org/abs/2004.0507 [High Energy Particle Physics].
- [10] M. Tzoumpas, Structure model of tin nucleus ¹²⁰₅₀Sn, http://viXra.org/abs/2005.0168 [High Energy Particle Physics].
- [11] M. Tzoumpas, Structure model of uranium nucleus ²³⁵₉₂U, http://viXra.org/abs/2006.0143 [High Energy Particle Physics].
- [12] M.Tzoumpas, Structure model of oxygen nucleus ¹⁶₈O, http://viXra.org/abs/2004.0145 (subsection 1.2) [High Energy Particle Physics].