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GENERATOR AND APPLICATIONS

THEOPHILUS AGAMA

Abstract. In this paper we introduce a complex space, which we choose to

call the space of generators M. This space is basically a complex space C

equipped with the bilinear map 〈; 〉 : C × C −→ C called the generator. We

study a particular example of this space and define the generator on any two

element in the space as

〈a; b〉 := ab+ a+ b.

1. Introduction and motivation

Devising a very efficient algorithm for factorizing sufficiently large composites is

one of the biggest and long-standing problem at the heart of modern mathematics

and it’s allied areas such as cryptography. Many more of these methods ranging

from the classical to the modern methods, including the method of eliptic curves

found in the literature (See [2], [3], [4]) are in full use. In this paper, we develop a

method for carrying out such an activity, but with a somewhat poor running-time

argument. By writing any odd number, say N > 1 as a generator 〈a; b〉, we can

write

〈a; b〉 = d1〈1; 1〉+ d2〈1; 0〉

The factors of N can be obtained by finding an equivalent representation of the

generator of the form

〈a; b〉 = s1〈1; 1〉+ s2〈1; 0〉,

so that gcd(s1, s2) > 1, thereby guaranteeing at least a factor of N .

2. The space of generators

Definition 2.1. Let C be a bilinear map 〈; 〉 : C×C −→ C such that for a, b, c ∈ C

(i) 〈a; b〉 = 〈b; a〉

(ii) 〈a; 0〉 = a

(iii) 〈a; b+ c〉 = 〈a; b〉+ 〈a; c〉 − 〈a; 0〉,
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then 〈; 〉 is said to be a generator on C. The space of complex numbers equipped

with a generator 〈; 〉 is a generator space. The pairM = (C, 〈; 〉) is called the space

of generators

There are many examples of generator spaces. It can very easily be seen that by

taking the space of complex numbers equipped with the bilinear map 〈a; b〉 := a+ b

is a generator space, by definition 2.1. Another good example of a generator space

could be the space of complex numbers with the bilinear map 〈a; b〉 := ab+ a+ b.

In the following sequel we examine the complex generator space with generator

defined by 〈a; b〉 := ab+ a+ b.

3. An example of a generator space

In this section we give an example of a generator space. We show that by defining

the generator of any two elements a, b ∈ C as 〈a; b〉 := ab + a + b, then the pair

(C, 〈; 〉) is a complex generator space. It turns out that this particular example of

a generators space has some other properties and whose generator is endowed with

some other identities that a general generator space might not have.

Proposition 3.1. The space of complex numbers C equipped with the bilinear map

〈; 〉 : C× C −→ C defined by 〈a; b〉 = ab+ a+ b is a generator space.

Proof. It suffices to show that definition 2.1 holds in this setting. First, by definition

2.1, we can write 〈a; b〉 = ab+ a + b = ba + b+ a = 〈b; a〉 and the first part of the

definition holds trivially. Again, by setting b = 0 in the definition of 〈a; b〉 the

second axiom is also satisfied trivially. Now

〈a; b+ c〉 = a(b+ c) + a+ b+ c

= ab+ ac+ a+ b+ c

= (ab+ a+ b) + (ac+ a+ c)− a

= 〈a; b〉+ 〈a; c〉 − 〈a; 0〉,

where we have used again the definition of 〈a; b〉 on C. This completes the proof of

the proposition. �

It turns out that the above generator space is one among the many space of complex

generators. The setting may vary somewhat, depending on the application. One

may also take the space in definition 2.1 to be R. In such case we have a real space

of generators. By using the complex generator space in Proposition 3.1, we can

introduce some other properties that a general generator space may not have. By

keeping the above setting, we examine those properties in the following sequel.

Theorem 3.1. Let C be the complex space equipped with the bilinear map 〈; 〉 :

C× C −→ C, defined by 〈a; b〉 = ab+ a+ b, then the following remain valid

(i) 〈a; a〉 = 0 if and only if a = 0 for a ∈ C
+.
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(ii) 〈a; b〉 = 〈a; b〉.

(iii) 〈a; 〈b; c〉〉 = 〈a; b〉+ 〈a; c〉+ 〈a; bc〉 − 2〈a; 0〉.

(iv) 〈a; b+ c〉 = 〈a; 〈b; c〉〉 − 〈a; bc〉+ 〈a; 0〉

(v) 〈a;λb〉 = λ〈a; b〉+ (λ− 1)〈a; 0〉 for λ ∈ Z
+.

Proof. The first property is trivial and follows immediately. Now, for (ii) we have

〈a; b〉 = ab+ a+ b

= ab+ a+ b

= ab+ a+ b

= 〈a; b〉.

Also for (iii), we have the following

〈a; 〈b; c〉〉 = 〈a; bc+ b+ c〉

= 〈a; bc〉+ 〈a; b+ c〉 − 〈a; 0〉

= 〈a; bc〉+ 〈a; b〉+ 〈a; c〉 − 〈a; 0〉 − 〈a; 0〉

= 〈a; b〉+ 〈a; c〉+ 〈a; bc〉 − 2〈a; 0〉.

Again, (iv) follows by subtracting (iii) from (iii) in definition 2.1. Since, by Propo-

sition 3.1, the above definition on the complex space C is a generator space, the

property (iv) follows immediately. �

Remark 3.2. Next we prove that in any such space, taking the generator on any two

elements reduces to taking the generator on the elements in the set {0, 1, i}. Before

then we launch the following Lemma, which establishes the relationship between

the generator on any two elements of the set.

Lemma 3.3. Let 〈; 〉 : C×C −→ C such that 〈a; b〉 = ab+a+b. Then the following

relations hold:

(i) 〈−1; i〉 = −〈1; 0〉.

(ii) 〈1;−i〉 = −〈i; i〉.

(iii) 〈−1; 1〉 = −〈1; 0〉.

(iv) 〈−1;−1〉 = −〈1; 0〉.

(v) 〈−i;−i〉 = −〈1; i〉.

Proof. Let 〈a; b〉 : C×C −→ C. Then it follows that 〈−1; i〉 = −1+ i− i = −〈1; 0〉.

Similarly, 〈1;−i〉 = 1−i−i = 1−2i = −〈i; i〉 and (ii) follows immediately. For (iii),

we observe that 〈−1; 1〉 = −1−1+1 = −〈1; 0〉. Again 〈−1;−1〉 = 1−1−1 = −〈1; 0〉.

For (v) we observe that 〈−i;−i〉 = −1 − 2i = −〈1; i〉, and the proof of the lemma

is complete. �
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Remark 3.4. It is important to notice that, none of these generators are linear

combination of the other. That is, by viewing the generators as vectors with scalar

field R, we conclude that they are linearly independent. Next we show that any

generator on any two elements of C can actually be reduced to taking the generators

on the two elements sets {1, 0}, {1, 1} ,{i, i} and {1, i}.

Theorem 3.5. Let 〈; 〉 : C×C −→ C be defined by 〈a; b〉 = ab+ a+ b. Then there

exist some d1, d2, d3, d4 ∈ C such that

〈a; b〉 = d1〈1; 0〉+ d2〈1; 1〉+ d3〈1; i〉+ d4〈i; i〉.

Proof. Let a, b ∈ C and take their generator given by 〈a; b〉. There exist some

b1, b2 ∈ C such that we can write

〈a; b〉 = 〈a; b1 + b2〉

= 〈a; b1〉+ 〈a; b2〉 − 〈a; 0〉

= 〈a; b1〉+ 〈a; b2〉 − a〈1; 0〉,

where we have used Theorem 3.1. By inducting on these decomposition and using

Lemma 3.3, we will arrive at the required representation. �

4. Applications to solutions of diophantine equations and the

goldbach problem

Theorem 4.1. The equation ab+a+b = 0 has no non-trivial solution in the region

spanned by the line joining the points 2i− 1, 2i+ 1 and 3 to the origin.

Proof. Let us set 〈a; b〉 = ab + a + b for a, b ∈ C. Then by Theorem 3.1, 〈; 〉 is a

generator on C and by Theorem 3.5, we can write

〈a; b〉 = d1〈1; 0〉+ d2〈1; 1〉+ d3〈1; i〉+ d4〈i; i〉,

where d1, d2, d3, d4 ∈ C. By moving to the region spanned by the line joining the

complex numbers 2i−1, 2i+1 and 3 to the origin, we can take d1 = 0 and it follows

that

〈a; b〉 = d2〈1; 1〉+ d3〈1; i〉+ d4〈i; i〉.

The generators 〈1; 1〉, 〈1; i〉 and 〈i; i〉 are linearly independent vectors, thus if 〈a; b〉 =

ab + a + b = 0, then it follows that d1 = d2 = d3 = d4 = 0. This can only happen

if a = b = 0, thereby ending the proof. �

It is a well-known result of Rommanof (See [1]) that any number can be partitioned

into a bounded number of primes. We give a some what different proof of a weaker

version of this result using the real space of generators. We give a precise statement

as follows:
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Theorem 4.2. For any positive integer n, there exist some primes p1, p2, . . . , pr
and some integer a such that

n = p1 + p2 + · · ·+ pr + ak

for some k ∈ N.

Proof. Let us specify 〈; 〉 : R× R −→ R defined by

〈a; b〉 := a+ b.

It is easy to see, first of all, that 〈; 〉 is a generator on R. Without loss of generality,

let N be any odd number, then we can write N = 〈1;N1〉, where N1 > 2 is even.

There exist some N2 < N1 such that N2 + 1 = p1 where p1 is some prime. Thus

we can write

N = 〈1;N1 +M1〉

= 〈1;N1〉+ 〈1;M1〉 − 〈1; 0〉

= p1 + 〈1;M1〉 − 〈1; 0〉.

If 〈1;M1〉 = p2, where p2 is prime, then we can write N+1 = p1+p2 and the result

holds. Otherwise, there must exist some N2 < M1 such that N2 +1 = p3, where p3
is prime. Then in such a case, we can write

N = p1 + 〈1;N2 +M2〉 − 〈1; 0〉

= p1 + 〈1;N2〉+ 〈1;M2〉 − 2〈1; 0〉

= p1 + p2 + 〈1;M2〉 − 2〈1; 0〉.

Since the sequence M1 > M2 > · · ·Mn · · · is decreasing, the result follows immedi-

ately by induction. �

5. Application to Factorization and primality testing

In this section we examine a method for deciding when a number is prime or

composite. There are vast array of methods in the literature - both classical and

modern - for deciding when a given number is prime and for factorizing [2, 3, 4]. In

the following sequel we develop a method for decomposing any number into smaller

prime factors.

Definition 5.1. Let 〈; 〉 : R× R −→ R be defined by 〈a; b〉 = ab+ a+ b. Then 〈; 〉

is a real generator and we can write

〈a; b〉 = d1〈1; 1〉+ d2〈1; 0〉.

Then the representation s1〈1; 1〉+ s2〈1; 0〉 is said to be equivalent to the represen-

tation d1〈1; 1〉+ d2〈1; 0〉 if and only if

d1 − d2 ≡ s1 − s2 (mod 4),

and 〈a; b〉 = s1〈1; 1〉+ s2〈1; 0〉.
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Definition 5.2. Let 〈; 〉;R × R −→ R such that 〈a; b〉 = ab + a + b. Then we can

write

〈a; b〉 = d1〈1; 1〉+ d2〈1; 0〉,

Then we say 〈a; b〉 is prime if there is no equivalent representation of the generator

of the form 〈a; b〉 = s1〈1; 1〉+ s2〈1; 0〉 such that gcd(s1, s2) > 1.

5.1. The method. Suppose we have a number n > 1. If n = pk where p is prime,

then we have nothing to do. Without loss of generality, let us assume n is odd and

that n 6= pk. Then we can write n = 〈a; b〉 for some a, b ∈ Z. We can write

〈a; b〉 = d1〈1; 1〉+ d2〈1; 0〉,

for some d1, d2 ∈ Z. If there exist no other equivalent representation of the generator

〈a; b〉, then it certainly must be prime. Otherwise, there exist some λ1, µ1 ∈ Z with

gcd(λ1, µ1) > 1 such that

〈a; b〉 = λ1〈1; 1〉+ µ1〈1; 0〉.

Then it follows by definition 5.1 that d1−d2 ≡ λ1−µ1 (mod 4). Since gcd(λ1, µ1) >

1, we can write d1 − d2 ≡ gcd(λ1, µ1)(λ2 − µ2) (mod 4). The usphot is that the

representation d1〈1; 1〉+ d2〈1; 0〉 is equivalent to the representation

gcd(λ1, µ1)λ2〈1; 1〉+ gcd(λ1, µ1)µ2〈1; 0〉.

Thus the problem reduces to finding an equivalent representation for the represen-

tation λ2〈1; 1〉+ µ2〈1; 0〉. If there is no such equivalence, then it must certainly be

a prime, then we stop the process and carry out the process on the components

that are not prime. Otherwise, there exist some λ3, µ3 ∈ Z with gcd(λ3, µ3) > 1

such that λ3〈1; 1〉+ µ3〈1; 0〉 is equivalent to λ2〈1; 1〉+ µ2〈1; 0〉, and it follows that

λ2 − µ2 ≡ λ3 − µ3 (mod 4)

≡ gcd(λ3, µ3)(λ4 − µ4) (mod 4).

It follows that

d1 − d2 ≡ gcd(λ1, µ1) gcd(λ3, µ3)(λ4 − µ4) (mod 4),

and it follows that

〈a; b〉 = gcd(λ1, µ1) gcd(λ3, µ3)λ4〈1; 1〉+ gcd(λ1, µ1) gcd(λ3, µ3)µ4〈1; 0〉.

This process terminates, since the sequence λ1 − µ1 > λ3 − µ3 > λ5 − µ5 > · · · 1 is

decreasing and it is positive. Thus we can write

n = gcd(λ1, µ1) gcd(λ3, µ3) · · · gcd(λ2k−1, µ2k−1)

= n1n3 · · ·n2k−1.

If each of the components ni is prime then we have obtained a prime decomposition

of n. Otherwise we iterate the process on the composite factors until we obtain a

complete decomposition of n into prime factors.
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5.1.1. Example. Suppose we seek to obtain a complete factorization of n = 143.

Then we first write 143 as a generator, given by 〈71; 1〉 Applying Theorem 3.1, we

can write

143 = 〈71; 1〉

= 〈〈5; 11〉; 1〉

= 〈1; 5〉+ 〈1; 11〉+ 〈1; 55〉 − 2〈1; 0〉

= 5〈1; 1〉 − 4〈1; 0〉+ 11〈1; 1〉 − 10〈1; 0〉+ 55〈1; 1〉 − 54〈1; 0〉 − 2〈1; 0〉

= 71〈1; 1〉 − 70〈1; 0〉.

The generator 〈71; 1〉 = 66〈1; 1〉 − 55〈1; 0〉 is equivalent to the generator 71〈1; 1〉 −

70〈1; 0〉, since 71 + 70 ≡ 66 + 55 (mod 4). Thus we have that

143 = 66〈1; 1〉 − 55〈1; 0〉

= 11(6〈1; 1〉 − 5〈1; 0〉).

By definition 5.2 the representation 6〈1; 1〉 − 5〈1; 0〉 is prime, and it follows that

143 = 11(6〈1; 1〉 − 5〈1; 0〉) = 11 · 13.
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