
 A Model of Gravitational 

Waves Based on a 

Modified Yukawa 

Potential 
 

 
 

 

Michael Harney
 1

 

 
1
mharney1268@yahoo.com 

 

  

 

 

 

 

 

 

Abstract:  A model of gravitational waves is proposed using a 

complex Yukawa potential which is non-singular and predicts 

a dual-wave structure composed of incoming and outgoing 

waves. Using this potential, a fundamental gravitational wave 

frequency associated with the mass of the Universe is 

calculated to be the equal to Hubble’s Constant. The 

characteristic out wave frequency of the Earth is calculated to 

be 3.38 � 10�	 Hz, which is in good agreement with the 

range of frequency of gravitation waves as predicted by 

Hawking and Israel. Also, the Lorentz transformation of the 

outgoing wave speed to the incoming wave speed predicts 

the same time dilation as the G44 solution from the Einstein 

field equations. 
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I. Introduction 

The recent discovery of gravitational waves by LIGO has provided valuable confirmation of 

many predictions around gravitational waves. In particular, Hawking and Israel predicted 

gravitational waves would be observed in the frequency bands of 10
-8

 Hz to 10
11 

Hz [1]. The 

Laser Interferometer Space Antenna (eLISA) is a unique position to detect the lower end of this 

band at around 10
-5

 Hz, where it should be able to measure the signal of gravitational waves 

from the static potential due to the Earth and Moon. The European Pulsar Timing Array (EPTA) 

has high sensitivity in the 10
-8

 Hz range where it should be able to measure the static 

gravitational waves from the Sun. The following derivations of a non-singular Yukawa potential 

describes continuous gravitational waves that result from this static potential. The 

intermodulation of these continuous wave static wave sources, along with their associated 

motion, produces the modulated waves which are currently measured by LIGO and which will 

be measured in the future by eLISA and EPTA. 

 

II. A Complex Yukawa Potential 

The standard, non-singular Yukawa potential is modeled by the following equation [2]: 

 


�� = ��� ����
�  

         (1) 

Where A is the amplitude of the potential, k is a coupling constant associated with the 

particular force involved (in this case a gravitational constant that covers both the far field case 

of G and near field case of quantum gravity) and r is the range over which the potential acts, in 

this case the range is assumed to be from 0 to a limited distance encompassed within the 

Hubble sphere. We modify (1) to become a complex exponential : 
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         (2) 

 

Where � is the wave frequency and ∅ is the corresponding phase shift of the wave. In an 

environment where several of the waves in (2) travel towards a single point from all directions, 

with some asymmetry due to the slight variation of the mass density of local space, we theorize 



a situation where the incoming waves meet at single point but also experience rotational 

asymmetry at a high-level. This would result in waves coming back in the same direction they 

originally came from, producing an interference pattern based on the changes in � and ∅.  With 

two potentials of this type oscillating in free space but moving in opposite directions with 

possibly a different frequency and different phase shifts, we arrive at the final potential: 
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         (3) 

 

III. Properties of Interacting Yukawa Potentials 

 

Figure 1 shows a graph of some possible interactions of standing wave potentials shows that 

the typical singularity of a particle potential (an electron in this case) associated with 1/r  is 

replaced with a limiting value of A as r approaches zero due to the Yukawa potential. Figure 2 

shows a similar situation where the wave potential has a negative amplitude (relative to the 

positive amplitude in Figure 1), resulting in the equivalent of a positron. 

 

Figure 1. Interaction Between Potentials Moving in Opposite Directions – Electron  

 

 

 



 

Figure 2. Interaction Between Potentials Moving in Opposite Directions with phase change – 

Positron  

 

 

As discussed previously, in an environment where several of the waves in (2) travel towards a 

single point from all directions, there is the possibility of an asymmetry due to the slight 

variation of the mass density of local space, where the interacting wave center can experience 

rotational asymmetry (left-handed or right-handed rotation) which can be interpreted as spin 

of the particle. There is also the possibility of a phase shift between two wave centers which 

can correlate with the nature of charge (space tension due to wave centers that are out of 

phase). In the examples of Figure 1 and Figure 2, this would correspond to the wave centers 

between the electron and positron being out of phase by 180 degrees. Extensive characteristics 

of the spin and rotation associated with these interacting wave potentials has been evaluated 

previously by Wolf [3]. 

As the Yukawa potential in (2) has no dependency on the other spherical coordinates of ф or �, 

the resulting scalar potentials of (2) and (3) can be interpreted as results of a scalar force 

equation of the form: 

��� =  �! + #�$ + %�  
        (4) 

Where   is considered a moving mass, # is considered the equivalent of a frictional coefficient, % is an elasticity constant of the corresponding wave medium and � is the range of interaction. 

If we identify particles of a standing wave nature as being permanent entities which is the 



equivalent of # = 0, then for those transient particles that decay we infer that # is a non-zero 

value which controls the decay constant of #/  . Also, the frequency of the standing wave is 

controlled by the ratio of elasticity constant to the mass (%/   with the frequency being 

determined from: 

� = ' %   
         (5) 

 

 The rotational effects of the wave center also changes the speed of the out-going waves based 

on distance � from the wave center: 

( = ��  
         (6) 

 

IV. Gravitational Effects of Multiple Wave Centers 

 

To determine k for gravitational effects, we look at the results of potential energy equivalence 

to moving mass density, 

12 %�� =  12  (� 

         (7) 

From a previous determination of the wave velocity v as the speed of light and knowing there 

are two interacting waves [4] we arrive at, 

12 %�� =   *� 

         (8) 

We can determine k from (8) for gravitational effects for approximate values of the mass of the 

universe (  = 5.4 x 10
52

 Kg) and its radius (� = 1.9 x 10
26

 meters) [5], 

  
% =  2 *�

�� =  2.7 x 10-. Newtons/meter 

         (9) 



 

Then for waves that are traveling across the Hubble radius of the universe, � in (5) for the mass 

of the Universe becomes, 

  
� = ' % = ' 2.7 x 10-.
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         (10) 

The results of (10) shows that the fundamental node of standing wave frequencies in this 

universal model is the Hubble frequency, which is the in-coming wave for all matter in the 

Universe. Using this model, the cosmological redshift can be explained by understanding the 

energy transfer through incoming waves and how we view that energy as a function of distance, 

removing the need for a Doppler shift due to universal expansion [6]. 

To determine the out-going wave frequency of an object, we need to consider the local mass 

density around that object. The in-coming waves converge on a local mass density and are 

rotated and reflected back at a frequency based on local mass density. The results of (7) – (10) 

can be applied at individual wave level but are demonstrated here by aggregating wave affects 

to a macroscopic level, with many wave centers combining to produce the gravitational effects 

that we measure.  

For the mass of the Earth, ME = 5.972 x 10
24

 Kg we find the characteristic � as, 

� = ' % = ' 2.7 x 10-.
5.97 x 10�G = 2.13 � 10�G �;<=;>??�* = 3.38 � 10�	 @H 

        

         (11) 

 

For the mass of the Sun, MS = 2.0 x 10
30

 Kg we find the characteristic � as, 

� = ' % = ' 2.7 x 10-.
2.0 x 10IJ = 3.67 � 10�. �;<=;>??�* = 5.85 � 10�: @H 

        

         (12) 



For the mass of the Moon, MM  = 7.34 x 10
22

 Kg we find the characteristic � as, 

� = ' % = ' 2.7 x 10-.
7.34 x 10�� = 1.92 � 10�I �;<=;>??�* = 3.05 � 10�G @H 

        

       (13) 

As the wave energy falls off as 1/r and the amplitude-squared (A
2
) of the wave is proportional 

to the rest-energy of the object, we can expect similar results of gravitational influence by 

applying the traditional gravitational potential of GM/r to determine the effect from a given 

distance. 

It is interesting to note that (6) shows the out wave speed from a mass is proportional to 

frequency and distance (( = ��). From a given out-wave speed we can also determine a time 

dilation relative to the in-wave speed (which is the speed of light for most cases) through the 

Lorentz transformation of the out-wave velocities relative to the in-wave velocities: 

L = LJ
M1 − ����*�

= LJ
M1 − (�*�

 

                 (14) 

If we use the Earth as an example,  � = 2.13 � 10�G  and at distance from the center of the 

Earth of r = 26,000 km (GPS orbit) we find that the time dilation from (14) is: 

  
L = LJ

M1 − �2.13 � 10�G  � 26 � 10N�*�
= 1.0000000001703 = OPQ. R STUV VWXYZU 

                 (15) 

Performing the same calculation with General Relativity G44 solution (assuming a non-rotating 

sphere) gives the same result: 

   
L = LJ

M1 − 2[\�*�
= LJ

M1 − 2 ∗ �6.67 �10�--�5.97 �10�G�26 � 10N*�
=  1.0000000001703

_= OPQ. R STUV VWXYZU
 



              (16) 

 

V. Measurement and Potential Applications 

The platforms currently in use or in development that has the potential to directly measure 

static gravitational waves or the result of up-modulation between two static wave sources 

(such as in binary black-hole mergers) (Figure 3). 

 

Figure 3. Gravity Wave Detectors in Use or Planned for Future Use 

 

From Figure 3, it is most likely going to be the Evolved Laser Interferometer Space Antenna 

(eLISA) which sees the monthly variation in the static gravitational wave source between the 

Earth and Moon (both out wave frequencies fall within the 10
-5

 Hz to 10
-3

 Hz range) when it is 

fully implemented [7]. The low-frequency static waves from the Earth and Moon are likely to 

present as a low-noise background with an orbital variation based on the satellite position with 

respect to the Earth-Moon orbit. The static out wave signal of  9.54� 10�: @H from the Sun 

would be measurable with the orbital variation of the European Pulsar Timing Array (EPTA). 

Another implication of the presences of these continuous static waves from a mass is the 

possibility of creating an artificial signal that will destructively interfere with these waves. In the 

case of the out waves from the Earth, the task is one of generating a signal of frequency 3.38 � 10�	 @H and a continuously changing wavelength based on the radius r from the center 

of the Earth. This could be accomplished with a vacuum-sealed, high-voltage grid which 



accelerates electrons or protons to a speed in which their associated out-waves will be of the 

correct wavelength to cancel the out waves from the Earth for at least part of the out wave 

cycle. Previous evidence exists from similar experiments such as the Biefield-Brown effect 

where Thomas Brown demonstrates the results of a positive thrust of two highly-charged, 

parallel plates in a vacuum [8]. 
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