A NEW ASYMPTOTIC FORMULA FOR THE PARTIAL SUM OF THE LOGARITHMIC FUNCTION

THEOPHILUS AGAMA

ABSTRACT. In this short paper we estimate the size of the partial sum of the logarithmic function $\sum\limits_{n\leq x}\log n$ using a different method. We also use it to give an upper and lower bound for the factorial of any positive integer.

INTRODUCTION

Stirling's formula gives $n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$ as $n \longrightarrow \infty$ [?]. Expressed as an inequality

$$\sqrt{2\pi} \cdot n^{n+\frac{1}{2}} \cdot e^{-n} \le n! \le \sqrt{2\pi} \cdot n^{n+\frac{1}{2}} e^{-n} e^{\frac{1}{12n}}.$$

The Ramanujan estimate [1] also gives

$$\begin{split} \sqrt{\pi} \bigg(\frac{n}{e}\bigg)^n \bigg(8n^3 + 4n^2 + n + \frac{1}{30}\bigg)^{\frac{1}{6}} \bigg(1 - \frac{11}{11520(n+a)^4}\bigg) < n! \\ & \leq \sqrt{\pi} \bigg(\frac{n}{e}\bigg)^n \bigg(8n^3 + 4n^2 + n + \frac{1}{30}\bigg)^{\frac{1}{6}} \bigg(1 - \frac{11}{11520(n+b)^4}\bigg), \\ & \text{e } a = \frac{39}{54} \text{ and} \end{split}$$

where 54

$$b = \left(\frac{11}{11520\left(1 - \left(\frac{30e^6}{391\pi^3}\right)^{\frac{1}{6}}\right)}\right)^{\frac{1}{4}} - 1 = 0.35499112666\dots$$

1. Representation formula

Theorem 1.1. If a is an odd positive integer, then

$$\frac{a-1}{2} = \sum_{\substack{1 \le j \le a \\ (2,j)=1}} \left\lfloor \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\rfloor.$$

Proof. Consider an odd positive integer a. There are as many even integers as odd integers less than a. That is, for $1 \le m < a$, there are $\frac{a-1}{2}$ such possibilities. On the other hand, notice that the set of all positive even integers is the union of the sequences $\{m2^{\alpha}\}$, where m is distinct for each sequence and runs through the

Date: July 8, 2020.

odd integers and α runs through the positive integers ($\alpha = 1, 2, \cdots$). Consider the sequence

$$2, 2^2, \ldots, 2^m$$
.

Clearly there are $\lfloor \frac{\log a}{\log 2} \rfloor$ such terms in this sequence. Again consider those of the form

$$3\cdot 2, 3\cdot 2^2\ldots, 3\cdot 2^m.$$

Clearly there are $\lfloor \frac{\log(a/3)}{\log 2} \rfloor$ such number of terms in this sequence. We terminate the process, by considering the sequence

$$2 \cdot j, j \cdot 2^2, \ldots, j \cdot 2^m,$$

where (2, j) = 1 and there are $\left\lfloor \frac{\log(\frac{a}{j})}{\log 2} \right\rfloor$ such number of terms in this sequence. In comparison with the previous count, we obtain $\frac{a-1}{2} = \sum_{\substack{1 \le j \le a \\ (2,j)=1}} \left\lfloor \frac{\log(\frac{a}{j})}{\log 2} \right\rfloor$, which is

what we set out to prove.

Remark 1.2. Having establish this formula, we are ready to give a different estimate for the partial sum of the logarithmic function. Here is how it goes.

Corollary 1.1. For all positive integers *a*

$$\sum_{j \le a} \log j = a \log a - a \log 2 + \log 2 - \log 2 \sum_{j \le a} \left\{ \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\} + \mathcal{O}(1).$$

/ \ .

.

Remark 1.3. In the forthcoming proof we consider a to be an odd integer. And it is very easy to see that it will remain valid for all positive integers once the proof goes through for all odd integers.

Proof. Invoking theorem (??), we have that

(1.1)
$$\frac{a-1}{2} = \sum_{\substack{j \le a \\ (2,j)=1}} \frac{\log\left(\frac{a}{j}\right)}{\log 2} - \sum_{\substack{j \le a \\ (2,j)=1}} \left\{ \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\}$$
$$= \frac{1}{\log 2} \sum_{\substack{j \le a \\ (2,j)=1}} \log\left(\frac{a}{j}\right) - \sum_{\substack{j \le a \\ (2,j)=1}} \left\{ \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\}.$$

Also we observe that

(1.2)
$$\frac{a-1}{2} = \frac{1}{\log 2} \sum_{\substack{j \le a \\ (2,j) \neq 1}} \log\left(\frac{a}{j}\right) - \sum_{\substack{j \le a \\ (2,j) \neq 1}} \left\{\frac{\log\left(\frac{a}{j}\right)}{\log 2}\right\} + \mathcal{O}(1).$$

 $\mathbf{2}$

Combining equations (1) and (1.2), we have

$$(1.3) \qquad a - 1 = \frac{1}{\log 2} \sum_{j \le a} \log\left(\frac{a}{j}\right) - \sum_{j \le a} \left\{\frac{\log\left(\frac{a}{j}\right)}{\log 2}\right\} + \mathcal{O}(1)$$
$$= \frac{1}{\log 2} \left(\sum_{j \le a} \log a - \sum_{j \le a} \log j\right) - \sum_{j \le a} \left\{\frac{\log\left(\frac{a}{j}\right)}{\log 2}\right\} + \mathcal{O}(1).$$

It follows from (1.3) that

(1.4)
$$\log 2^{a-1} + \log 2 \sum_{j \le a} \left\{ \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\} = \sum_{j \le a} \log a - \sum_{j \le a} \log j + \mathcal{O}(1)$$
$$= a \log a - \sum_{j \le a} \log j + \mathcal{O}(1).$$

Arranging terms, we have

$$\sum_{j \le a} \log j = a \log a - a \log 2 + \log 2 - \log 2 \sum_{j \le a} \left\{ \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\} + \mathcal{O}(1),$$

where $\left\{ \frac{\log\left(\frac{a}{j}\right)}{\log 2} \right\} = G(n)$ denotes the fractional part of $\frac{\log\left(\frac{a}{j}\right)}{\log 2}$.

Remark 1.4. Stirling's formula gives an upper and lower bound for the factorial of any positive integer. We present here a slightly different version.

Theorem 1.5. For all $n \ge 1$ and for some constant C(n) > 1

$$\frac{n^n}{2^{n-1+G(n)}} \le n! \le C(n) \frac{n^n}{2^{n-1+G(n)}},$$

where

$$G(n) := \sum_{m \le n} \left\{ \frac{\log\left(\frac{n}{m}\right)}{\log 2} \right\}.$$

Proof. Recall from Corollary 1.1

$$\sum_{m \le n} \log m \ge n \log n - n \log 2 + \log 2 - \log 2 \sum_{m \le n} \left\{ \frac{\log\left(\frac{n}{m}\right)}{\log 2} \right\}.$$

Recall $\sum_{m \le n} \log m = \log n!$. Using this identity, it follows that

$$\log n! \ge n \log n - n \log 2 + \log 2 - \log 2G(n),$$

from which we see that

(1.5)
$$n! \ge \frac{n^n}{2^{n-1+G(n)}}.$$

Also it is clear from Corollary 1.1

(1.6)
$$n! = \frac{n^n}{2^{n-1+G(n)}} e^{\mathcal{O}_n(1)} \le C(n) \frac{n^n}{2^{n-1+G(n)}}$$

From (1.5) and (1.6), we obtain the inequality

$$\frac{n^n}{2^{n-1+G(n)}} \le n! \le C(n) \frac{n^n}{2^{n-1+G(n)}},$$

where $G(n) := \sum_{m \le n} \left\{ \frac{\log\left(\frac{n}{m}\right)}{\log 2} \right\}.$

References

- 1. Chen, Chao-Ping , A sharp version of Ramanujan's inequality for the factorial function, The Ramanujan Journal, vol. 39.1, 2016, pp. 149–154
- 2. Robbins, Herbert, A remark on Stirling's formula, Amer. Math. Mon., vol. 62.1, 1955, pp.26–29

AFRICAN INSTITUTE FOR MATHEMATICAL SCIENCE

 $E\text{-}mail\ address:$ Theophilus@aims.edu.gh/emperordagama@yahoo.com