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Self-similarity and the Foundation of Effective Field Theory 

Ervin Goldfain 

Abstract 

We argue that the fundamental symmetries of effective field theory can be traced to the onset of self-

similarity. In particular, the scale-free structure of fractal geometry lies at the heart of invariance principles 

in classical and quantum field theory. 
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1. Introduction 

The relevance of continuous symmetries in theoretical physics can hardly be overstated. 

Conservation laws form the backbone of both quantum and relativistic phenomenology 

and are organically tied to Lorentz symmetry, gauge groups and the diffeomorphism 

invariance of General Relativity. 

A set of observables 1 2{ , ,..., }Nq q q q  associated with a system may be naturally 

represented as coordinates of an N dimensional vector q  in q  space. The general 

principle of invariance demands that the laws of physics must be independent of any 

origin or orientation of q . Moreover, the general principle of covariance demands form 

independence of the laws of physics from any particular choice of coordinates in q   

space.  
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The goal of this brief report is to show that fundamental symmetries of effective field 

theories emerge from self-similarity, the latter being inspired by the geometry of fractal 

and multifractal sets. As we shall see below, in the context of theoretical physics, self-

similarity reflects invariance of the action under the most general scale transformation 

related to dilations, rotations, and translations [Appendix A, 1, 14]. 

2. Noether theorem from scale transformations  

Consider a classical field theory with fields i  and action  

 4 ( , )S d x L      (1) 

An infinitesimal transformation of coordinates and fields can be formulated in terms of a 

set of 1,2,3,...,l N  infinitesimal parameters l  as in [2] 

 ' ( )l

lx x x x         (2) 

 ,( ) '( ') ( ) ( , )l

i i i i lx x x            (3) 

for a given set of functions ( )l x  and , ( , )i l    . By definition, (2) and (3) represent a 

continuous symmetry transformation if they leave (1) invariant.   

It is readily seen that (2) and (3) may be cast in the form of infinitesimal scale 

transformations via 

 ( ) ( )l

lx x x x            (4a) 

 ,( ) ( , ) ( ) ( )l

i i l ix x x              (4b) 
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In what follows, ( )x  and ( )x  are referred to as scaling operators of magnitude 

substantially close to one    

 ( ) ( ) 1 , 1x x         (5) 

In keeping with the standard terminology, the scaling operator is deemed local if it is 

coordinate-dependent and global otherwise.  On account of (4), the infinitesimal Noether 

transformations are equivalent to local scaling operations that have no effect on the 

action. This insight suggests that invariance under properly defined scale 

transformations, and in particular self-similarity, must lie behind the fundamental 

symmetries of effective field theories.   

3. Self-similarity as underlying source of invariance     

Consider again the set of observables 1 2{ , ,..., }Nq q q q . Self-similarity in field theory and 

statistical physics enters through the generalized homogeneous function [3] 

 1 2( ) ( , ,..., ) ( )a a a a

Nf q f q q q f q      ,   0     (6) 

Some textbooks display (6) in an alternative form, using the substitution  

 
1

a a        (7) 

which turns (6) into the condition 

   
1

( ') ( ) ( )af q f q f q     (8) 
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Covariance is a particular embodiment of self-similarity in the limit a , in which case 

there is no distinction between the two sides of (8),   

   ( ') ( ) ( )f q f q f q  ,   a    (9) 

As detailed in [4-5], self-similarity has several applications in theoretical physics. 

Noteworthy examples include the behavior of classical oscillators, Newtonian gravitation, 

the virial theorem, Renormalization Group theory, random walk models, correlations and 

partition functions of Statistical Physics, and local scale invariance in field theory [6]. 

Equally important is the link between self-similarity and self-organized criticality (SOC), 

the latter being a universal paradigm for the onset of complex dynamics in systems 

outside equilibrium. On the same note, we mention here that surprising connections 

between SOC and several unsettled topics of contemporary theoretical physics have been 

brought up in [7-11, 16].        

To bridge the gap between self-similarity and SOC, one starts from the generalized 

homogeneous function of two variables 

 1 2 1 2( , ) ( , )a bf q q f q q   ,   0     (10) 

and show that (10) satisfies the power-law scaling [3] 

 
1

2
1 2 1

1

( , ) ( )a
b

a

q
f q q q

q
    (11) 

where (...)  is called the scaling or cutoff function. (11) can be presented in the alternative 

form  
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 2 2

1 1

( ) (1, )b b
a a

q q
f

q q
    (12) 

A generic paradigm for SOC is the sandpile model, whose “avalanche”-size probability 

distribution is given by                                            

 ( , )P s L ~ ( )s

c

ss
s


  ,   1, 1s L    (13) 

 ( )cs L  ~ DL  ,   1L    (14) 

in which s  is the avalanche size, L  the system size and ,s D  denote the avalanche-size 

exponent and its dimension, respectively. Term by term identification of (11) and (13)-

(14) yields  

 1
S

a b


     (15) 

The key observation of this report is that the scaling operator  of (5) can be naturally 

interpreted as a phase angle. Appealing to the concept of analytic continuation in 

Euclidean field theory [12-13], leads to 

 exp exp[ ]Ei      (16) 

in which E  is the Euclidean phase. Since any phase angle is the product of an angular 

frequency   with time Et it  , we can write      

 ( )E Et it i t          (17) 
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and the Euclidean scaling operator E  can be presented as 

 )exp(E E E Et i         (18) 

An elementary example showing the equivalence of infinitesimal scaling and rotation 

operations is discussed in the Appendix B.  

4. Self-similarity and the Lorentz group 

The Lorentz group represents the group of linear coordinate transformations 

 'x x x   

     (19) 

that leave invariant the relativistic interval 

 
32 2 2

1 is x x t x 

     (20) 

Infinitesimal coordinate transformations are given by [2] 

   

      ,           (21) 

and a set of objects i  ( 1,2,...,i n ) transform as 

 i i j

j    (22) 

where, by (16)-(18), the exponential matrix i

j  acts as scaling operator and takes the form 

 
1

[exp( )]
2

i i

j jJ 

       (23) 
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Here,   denotes the six independent elements of the antisymmetric matrix entering  

(21) and J   are the group generators. A similar line of reasoning is outlined in [14], 

where Lorentz transformations are regarded as similitudes. 

5. Self-similarity and gauge theory     

The QED Lagrangian written in the Feynman gauge is given by [2] 

 21 1
( ) ( )

4 2
QEDL i m F F A e A   

                 (24) 

Demanding that the QED Lagrangian conforms to local (1)U  gauge symmetry amounts to 

requiring that (24) stays unchanged under     

 ( ) exp[ ( )] ( )x x xie     (25) 

and 

 ( ) ( ) ( ) exp[ ( ( )] ( )A x A x x x A x          (26) 

By (16)-(18), (25) and (26) can be interpreted as local scaling operations in field space 

defined by 

 ln ( ) ( ) Ex x t      (27) 

 ln ( ( )) ( )A Ex x t       (28)  

It is known that imposing local gauge invariance leads to the introduction of the covariant 

derivative operator 
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 ( )D ieA        (29) 

which transforms in the same manner as (25), that is, as a local scaling operation in field 

space 

 exp[ ]( )D Di e x     (30) 

6. Self-similarity and General Relativity 

The gauge field concept brought up in the last section may be built from a straightforward 

geometric interpretation [13]. Consider the parallel transport of a complex vector   

round a closed rectangular loop. The difference between the value of  at the starting 

point (
0

 ) and at the end point 
0 f

  assumes the form 

 0f ig S F

           (31) 

in which S  denotes the area enclosed by the rectangle and the strength of the gauge 

field is 

 ,F A A ig A A      
         (32) 

It is seen that the effect of parallel transport is to induce a non-vanishing rotation of   

in internal space proportional to the strength of the gauge field. Likewise, the curvature 

tensor of General Relativity (GR) may be motivated through similar arguments. Taking a 

vector V   on a round trip by parallel transport, the difference between the initial and 

final components of the vector amounts to 
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1

2
V R V S   

     (33) 

This equation faithfully replicates (31) and signals the presence of a gravitational field via 

the curvature tensor R
 .  The geometric analogy between gauge theory and GR is 

captured in the table below. 

Gauge Theory General Relativity 

Gauge transformation Coordinate transformation 

Gauge group 
Group of coordinate 

transformations 

Gauge potential A  Connection coefficient 

  

Field strength F   Curvature tensor R

   

Comparison between the geometry of gauge and gravitational fields 

In closing, we note that the explicit connection between the spacetime geometry of GR 

and self-similarity is detailed in [15, 17]. It is worth recalling, however, that the onset of 

scale invariance in GR is not universal but problem dependent. In general, coordinate 

invariance and scale invariance of the gravitational action are known to be fundamentally 

incompatible [18]. 

APPENDIX A 

The group of affine transformations is a )( 1n n - dimensional Lie group defined by 

 U q' q a   (A1) 
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in which U  is a non-singular ( n n ) matrix and , 'q q , and a  are vectors. The case 0a  

represents an affine rotation, while U I  corresponds to a translation. The 

transformation (A1) in which the matrix U  is the product of an orthogonal matrix by a 

real number 1    is called  a similitude. Furthermore, if U I , the similitude becomes 

a self-similar transformation (homothety) described by 

 I q' q a   (1.1) 

It is apparent that a self-similar transformation is a composition of a dilation, a rotation 

and a translation of the types encoded in the Lorentz and gauge groups of effective field 

theory.    

APPENDIX B 

The standard representation of the Dirac field as a doublet of left and right components 

is 

 
( )

( )
( )

R

L

x
x

x






 
  
 

  (B1) 

A local transformation ( ) '( )x x    is formally identical to a (1)U  rotation in field space 

given by 

 
' ( ) ( )cos ( ) sin ( )

'( )
' ( ) ( )sin ( ) cos ( )

R R

L L

x xx x
x

x xx x

  


  

    
     

    
  (B2) 

For infinitesimal rotations defined by ( ) 1x  , (B2) turns into 
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' ( ) ( )1 ( )

' ( ) ( )( ) 1

R R

L L

x xx

x xx

 

 

    
    

    
  (B3) 

By (16), the angle ( )x  can be mapped to an infinitesimal scaling operation as in 

 ( ) 1 ( )x x   ≈ exp( ( )) exp[ ( )]Ex i x       (B4) 
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