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ABSTRACT: 

Cosmic inflation is considered assuming a cosmologically varying Newtonian gravitational 

constant, G.  Utilizing two specific models for G-1(a), where “a’’ is the cosmic scale parameter, 

we find that the Hubble parameter, H, at inception of G-1, may be as high as 7.56 E53 km/(s 

Mpc) for model A, or, 8.55 E53 km/(s Mpc) for model B, making these good candidates for 

inflation.  The Hubble parameter is inextricably linked to 𝐺 by Friedmann’s equation, and if 𝐺 did 

not exist prior to an inception temperature, neither did expansion.  The CBR temperatures at 

inception of 𝐺−1 are estimated to equal 6.20 E21 Kelvin for model, A, and 7.01 E21 for model, B, 

somewhat lower than CBR temperatures usually associated with inflation.  These temperatures 

would fix the size of Lemaitre universe in the vicinity of 3% of the Earth’s radius at the beginning 

of expansion, thus avoiding a singularity, as is the case in the ΛCDM model.  In the later 

universe, a variable G model cannot be dismissed based on 𝑆𝑁𝐼𝑎 events.  In fact, there is now 

some compelling astronomical evidence, using rise times and luminosity, which we discuss, 

where it could be argued that 𝑆𝑁𝐼𝑎 events can only be used as good standard candles if a 

variation in G is taken into account.  Dark energy may have more to do with a weakening G with 

increasing cosmological time, versus an unanticipated acceleration of the universe, in the late 

stage of cosmic evolution. 
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I Introduction, Cosmic Inflation with a Varying G: 

The Friedman equations and the ΛCDM model both assume that Newton’s constant, 𝐺, is a true 

constant of nature.  Recently [1,2], it was argued that this may not be the case.  Actually, a 

variable 𝐺 has a long history going back to the early works of Dirac in his large number 

hypothesis (LNH) [3-5], and Jordan [6-9].  They both claimed that 𝐺 must vary as a function of 

cosmological time, and moreover, in the case of Jordan, that 𝐺 must be related to Hubble’s 

parameter via the relation, �̇�/𝐺 =  −𝐻.  Jordan also introduced [6] a scalar field, 𝜑, already in 

1937, within a year of Dirac’s LNH, to represent Newton’s constant, realizing that G is now 

some sort of order parameter.  The history of a variable G is long and extensive, and will not be 

repeated here.  There have been very many theoretical and observational attempts to measure 

a variation in G, if it indeed exists.  Some of those attempts have been presented in reference 

[1], and we refer the reader to that work, and references therein. 

In reference [1] we sought an explanation for the cosmological constant problem.  We assumed 

that the quintessence parameter, 𝑤, is not precisely equal to −1, as in the ΛCDM model, but 

rather, that its value is closer to,  𝑤 = −.98 , as measured observationally.  Within 

observational error, however, 𝑤 = −1 can easily be accommodated, but perhaps this is not its 

true value.  Assuming that, 𝑤 = −.98 , we were able to demonstrate that, �̇�/𝐺 =  .06 𝐻, in 

the current epoch, a value within present observational bounds.  The dot over a quantity 

represents a derivative with respect to cosmological time.  Jordan’s original hypothesis that, 

�̇�/𝐺 =  −𝐻, seems to be ruled out by observational evidence, but not, �̇�/𝐺 =  −.06 𝐻.   This 

represents a very slight variation in the present epoch but in previous epochs, �̇�/𝐺 , or, 

𝐺−1 𝑑𝐺(𝑎)/𝑑𝑎, where “a” equals the cosmic scale parameter, was much more drastic.  Our 

theory and models went further and gave a new cosmology assuming that 𝐺 does vary.  In the 

limit where,  𝑤 → −1 , we retrieve all the standard results of the ΛCDM model.  Our two 

models deviate appreciably from the ΛCDM model only at relatively high CBR temperatures.  In 

this short paper we wish to discuss some of the implications for inflation.  We also wish to 

consider some of the ramifications in the more recent epochs, where dark energy dominates. 
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Inflation a theory [10-13] is needed to explain the homogeneity, as well as the perturbations, 

associated the WMAP/Planck CBR temperature maps.  What is mapped occurred at photon 

matter decoupling, the era of last scattering, roughly 380,000 years after the Big Bang.  A so-

called “inflaton” field is assumed much earlier, which causes a rapid and drastic, almost 

explosive, expansion of the universe in its very earliest development, within 10𝐸 − 32 seconds 

after the big bang.  Within this fraction of a second, the entire universe went from roughly the 

size of a proton to the size of a ball, roughly 10 cm across [10].  Not all physicists are 

comfortable with this idea.  A-causal expansion is required where the Hubble envelop expands 

at faster than the speed of light.  It is also a mind-boggling thought trying to imagine such a 

physical process, where the entire universe, as we know it, can be collapsed to what is, 

essentially, a singularity. 

In this paper we argue for a different interpretation, one incorporating a variation in 𝐺 with 

respect to cosmological time.  In reference [1], we introduced two specific models for 𝐺−1, 

which we called models 𝐴 and 𝐵.   Both were one parameter, non-linear functions, which mimic 

order parameter behavior.  We believe that 𝐺−1 is an intrinsic property of the vacuum, which 

involves some sort of self-organization within the vacuum, i.e., space.  It is purely an artifact of 

space, which does not necessarily involve ordinary mass, made up of quarks and leptons.  In 

fact, we know that the Planck mass, 𝑀𝑃𝑙, and 𝐺 are related by the equation, 

     𝑀𝑃𝑙 = (ħ𝑐/𝐺)1/2                (1 − 1) 

We square this result, and claim moreover, that 𝐺−1 is an order parameter, satisfying, 

    𝑀𝑃𝑙
2 = ħ𝑐 𝐺−1 = < 0|𝜑2|0 >                (1 − 2) 

Here, the 𝑀𝑃𝑙
2  is no longer a constant, but the vacuum expectation value (VEV) of a scalar field,  

𝜑, squared.  As the scalar field, 𝜑  , freezes out of the vacuum, 𝐺−1 changes its value, a process 

lasting eons.  In our scenario, 𝐺−1 is no longer a constant, and neither is the Planck mass.  We 

identify the scalar field in equation, (1 − 2) , with the scalar field of Jordan, first introduced in 

1937, but largely ignored when discussing inflation.   
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It should be noted that 𝑀𝑃𝑙
2  has the same canonical dimensions as magnetization in condensed 

matter physics, or 𝑀𝑊±

2  in particle physics.  Thus, it could very well be an order parameter 

based on inherent dimension alone.  It is well known that 𝑀𝑊±

2  is essentially the Fermi 

constant,𝐺𝐹, which disappears at high energies, and is only constant well below 100 𝐺𝑒𝑉.  

Newton’s constant, and the Fermi constant, are the only two known “fundamental” constants 

in physics, which have an inherent dimension, and that canonical dimension is the same for 

both.  It can be expressed as inverse mass squared.   

Model A assumes [1] a  𝐺−1 scaling law as follows: 

    𝐺−1(𝑇) = 𝐺∞
−1(1 − 𝑒𝑏/𝑇)  (𝑚𝑜𝑑𝑒𝑙 𝐴)            (1 − 3) 

In this equation, 𝑇 is the CBR temperature of the universe and 𝐺∞
−1 is a saturation value, 

achieved in the limit where, 𝑇 → 0.  The constant “𝑏” has units of temperature, but is 

independent of temperature.  In model 𝐴, the constant, 𝑏 = 11.663 , which was determined by 

demanding that 𝑤 = −.98 .  Also, 𝐺∞
−1 = 1.014 𝐺0

−1 , where 𝐺0 is Newton’s constant.  In the 

current epoch we have the well-known, 𝐺0 = 6.674 𝐸 − 11 , in 𝑀𝐾𝑆 units.  All units not 

explicitly written out in this paper, are 𝑀𝐾𝑆.  The cosmic scale parameter, “𝑎” , can be 

expressed as, 𝑎 = (1 + 𝑧)−1 = 𝑇0/𝑇 = 𝑅/𝑅0 , where 𝑇 is the CBR temperature, and in the 

present epoch, 𝑇0 = 2.725 𝐾𝑒𝑙𝑣𝑖𝑛.  Using this relation, equation (1 − 3) can be rewritten as, 

    𝐺−1(𝑇) = 𝐺∞
−1(1 − 𝑒−4.28𝑎)     (𝑚𝑜𝑑𝑒𝑙 𝐴)             (1 − 4) 

This equation came into being at a temperature estimated [1] to be, 6.20 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛 .  We are 

also close to full saturation in the present epoch since, 𝐺0 = .986 𝐺∞ .  Saturation for all 

practical purposes, will occur at 10 times the current Hubble radius in this model, or when, 

𝑎 ≅ 10 .  We are using the convention where 𝑎0 = 1.  Equations, (1 − 3), and (1 − 4), are 

modeled as a charging capacitor, and we call model 𝐴 our charging capacitor model.  What is 

charging up as a function of decreasing CBR temperature is the Planck mass squared, or the VEV 

of 𝜑2, as seen explicitly in equation, (1 − 2).  As mentioned, this is a very time consuming 

process, covering over 20 orders of magnitude CBR temperature wise. 

Model 𝐵 assumes an entirely different scaling law, namely, 
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    𝐺−1(𝑇) = 𝐺∞
−1 [coth(𝑏/𝑇)  −  𝑇/𝑏]      (𝑚𝑜𝑑𝑒𝑙 𝐵)              (1 − 5) 

Again, 𝐺∞
−1 is the saturated value, applicable in the limit where the CBR temperature, 𝑇 → 0.  

We could just as well have called  𝐺∞
−1 =  𝐺𝑇=0

−1  .  The constant, “𝑏” , having units of Kelvin, has 

been determined to equal, 𝑏 = 48.15 𝐾𝑒𝑙𝑣𝑖𝑛 , in order to guarantee that the quintessence 

parameter, 𝑤 = − .98 .  Again, the parameter, “𝑏” , per se, is independent of temperature, 

even though it is measured in units of 𝐾𝑒𝑙𝑣𝑖𝑛.  Here, in model 𝐵, it is found that, 𝐺∞
−1 =

1.054 𝐺0
−1 . 

This nonlinear function, equation, (1 − 5) , is recognized as the Langevin function, defined as, 

𝐿(𝑥) ≡ coth(𝑥) − 1/𝑥 , used in magnetism.  This is another approach towards modeling, 

𝐺−1(𝑎) , and we call this model 𝐵.   The quantity, 𝐺−1(𝑎) , has inherent canonical dimension of 

magnetization.  Referring to equation, (1 − 2), we treat < 0|𝜑2|0 >  as an order parameter, 

much like magnetization.  In terms of canonical dimension, magnetization has the same units as 

inverse mass squared. 

Another way to rewrite equation, (1 − 5) , is to remember that, 𝑎 = (1 + 𝑧)−1 = 𝑇0/𝑇 =

𝑅/𝑅0 , where 𝑧 is the redshift, and 𝑅, the Hubble radius.  The temperature, 𝑇0 = 2.725 , is the 

current CBR temperature.  We substitute “𝑎” in place of temperature, using the above 

expression for “𝑎”.  In equation, (1 − 5) , this gives,  

   𝐺−1(𝑎) = 𝐺∞
−1 [coth(17.67𝑎)  −  1/(17.67𝑎]      (𝑚𝑜𝑑𝑒𝑙 𝐵)         (1 − 6) 

This order parameter surfaced [1] at a Curie temperature of, 7.01 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, which is very, 

very close to the value indicated by model 𝐴.  Even though the two underlying functions, 

equations, (1 − 4) and, (1 − 6), are very different and distinct functions, they lead, 

remarkably, to approximately the same inception temperature.  The order of magnitude is 

perfect. 

In model, 𝐵, 𝐺0, the current value for Newton’s constant, is not far from the final saturation 

value.  In fact, we have  𝐺0 = .949 𝐺∞ .  Saturation in model 𝐵 will effectively occur at a CBR 
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temperature, roughly half the present temperature of, 2.725 𝐾𝑒𝑙𝑣𝑖𝑛.  The universe will then 

have expanded its Hubble radius to twice its present radius. 

When plotted separately as a function of “𝑎”, the scale parameter, both models 𝐴 and model 𝐵 

functions look very smilar.  At inception, 𝐺−1 , will rise very dramatically from zero.  This is 

because, at very high temperatures, the 𝐺−1  is proportional to inverse temperature, 𝑇−1, in 

both models.  As the CBR temperature decreases, 𝐺−1 will start to level off, and eventually start 

approaching a saturation value, indicated by,  𝐺∞
−1 .  Currently, in the present epoch, we are 

close to saturation and that is the reason why �̇�/𝐺 is very nearly equal to zero.  In the current 

epoch, �̇�/𝐺  is of the order, 10 𝐸 − 12 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟, a very small value. 

Both models 𝐴 and 𝐵 indicate inception temperatures of, 6.20 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛 , and, 

7.01 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛 , respectively.  Since 𝐺−1 did not really exist prior to that point in 

cosmological time, neither did 𝐺.   And, in the simplest form of the Friedmann equation, 

     𝐻2 = 8𝜋𝐺 𝜌/3                (1 − 7) 

, this would indicate that the universe was not expanding at all until the temperature dropped 

down to the inception temperature.  What existed beforehand, or what caused the universe to 

suddenly expand, is unknown.  But as to what happened shortly thereafter, we have an idea 

given these two models for 𝐺−1. 

It turns out that using equations, (1 − 3),  and (1 − 5), we can find the values of 𝐺 at 

inception.  Let 𝐺𝐶 = 𝐺(𝑇𝐶) where, 𝑇𝐶  is the Curie temperature.   Then using the inception 

temperatures listed above, we find, 

    𝐺𝐶/𝐺0 = 5.27 𝐸20    (𝑚𝑜𝑑𝑒𝑙 𝐴)            (1 − 8𝑎) 

    𝐺𝐶/𝐺0 = 4.11 𝐸20    (𝑚𝑜𝑑𝑒𝑙 𝐵)            (1 − 8𝑏) 

The high 𝐺𝐶/𝐺0 values, indicated by equations, (1.8𝑎, 𝑏), were needed to explain the 

cosmological constant problem, as shown in reference [1].  The cosmological constant, 𝛬 , 

equals, 𝛬 =  8𝜋𝐺 𝜌𝛬/𝑐2 , where 𝜌𝛬 is the mass density associated with dark energy.  We see 
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that 𝛬 is related to both 𝐺, and 𝜌𝛬, and if 𝐺 had a very large value in prior epochs, this would 

help explain the gross disparity between present and early universe 𝛬 values.  We can prove, 

namely, that [1],  𝛬/𝛬0  =  (𝐺/𝐺0)2.  The  𝐺0refers, as always, to the current value for 

Newton’s constant. 

We next wish to find the corresponding Hubble parameter values at inception of 𝐺−1.  We will 

use equation, (1 − 7).  The  𝐻𝐶  values would indicate the rate of expansion at roughly, 

10 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛.  To determine, 𝐻𝐶  , we first need to estimate the mass/ energy density, 𝜌𝐶,  at 

these very high temperatures.  At temperatures of the order, 10 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, no elementary 

particles have yet condensed out of the vacuum.  All quarks and leptons, i.e., all matter 

particles in the standard model, only froze out at lessor temperatures, below 10 𝐸16 𝐾𝑒𝑙𝑣𝑖𝑛 or 

approximately, 1 𝑇𝑒𝑉  [14-17].  So what remained above this temperature?  As far as we can 

tell, only radiation existed, in the form of blackbody photons and, possibly, blackbody 

neutrinos.  The energy density, or equivalent mass density, for blackbody radiation scales as, 

𝑎−4, as is well known.  And the current estimate for the equivalent mass density is, 

𝛺𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝜌0 = (8.3 𝐸 − 5) 𝜌0 , where,  𝜌0 = 8.624 𝐸 − 27 𝑘𝑔/𝑚3 is the total mass/ energy 

density in the current epoch.  Therefore the radiative energy density at inception must equal, 

    𝜌𝐶 = 𝑎𝐶
−4 (8.3 𝐸 − 5) (8.624 𝐸 − 27)              (1 − 9) 

This, however, is only part of the story, because we have not taken into account the masses of 

the known elementary particles.  When their flavors, and their degrees of freedom, are taken 

into account, we should properly multiply equation, (1 − 9), by a correction factor, 𝑔∗ =

106.75.  See references [16-17].  This still does not take into account dark matter, nor dark 

energy, but it does factor in what is definitely known.  If we multiply equation, (2 − 9) , by this 

correction factor, 𝑔∗ = 106.75, we will have effectively taken into account, as well, the 

radiation that coalesced as material particles between then and now. 

What remains is to find  𝑎𝐶  .  But this is easy since we know the temperatures at inception, and, 

𝑎𝐶 = 𝑇0/𝑇𝐶.  For models, 𝐴, and, 𝐵, we find, respectively, that 

    𝑎𝐶 = 𝑇0/𝑇𝐶 = 4.40 𝐸 − 22  (𝑚𝑜𝑑𝑒𝑙 𝐴)        (1 − 10𝑎) 
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    𝑎𝐶 = 𝑇0/𝑇𝐶 = 3.89 𝐸 − 22  (𝑚𝑜𝑑𝑒𝑙 𝐵)        (1 − 10𝑏) 

These values are very close to one other because the inception temperatures were nearly 

equal.  We next substitute these cosmic scale factors into equation, (1 − 9) , and multiply the 

result by the correction factor, 𝑔∗ = 106.75 , to take masses, which were frozen out below 

1 𝑇𝑒𝑣  into account.  The results are, respectively,  

  𝜌𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛,𝐶 = 𝜌𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝐶) = 2.04 𝐸57  (𝑚𝑜𝑑𝑒𝑙 𝐴)        (1 − 11𝑎) 

  𝜌𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛,𝐶 = 𝜌𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑇𝐶)  = 3.34 𝐸57  (𝑚𝑜𝑑𝑒𝑙 𝐵)        (1 − 11𝑏) 

These are the values, which we will substitute into equation, (1 − 7).  Keep in mind that 

Newton’s constant gets replaced by a new value, 𝐺𝐶  , when we do that.  Those values are given 

by equations, (1 − 8𝑎), and, (1 − 8𝑏), respectively. 

We do this next.  We substitute equations, (1 − 11𝑎, 𝑏) , and  (1 − 8𝑎, 𝑏) into equation, 

(1 − 7), and find, respectively, that the Hubble parameter equals 

𝐻𝐶 = 2.45 𝐸34  𝑠𝑒𝑐𝑜𝑛𝑑𝑠−1   (𝑚𝑜𝑑𝑒𝑙 𝐴)        (1 − 12𝑎) 

    𝐻𝐶 = 2.77 𝐸34  𝑠𝑒𝑐𝑜𝑛𝑑𝑠−1  (𝑚𝑜𝑑𝑒𝑙 𝐵)        (1 − 12𝑏) 

In 𝑀𝐾𝑆 units, the Hubble parameter is measured in inverse seconds.  Converting to the more 

familiar,  𝑘𝑚/(𝑠 ∗ 𝑀𝑝𝑐), we obtain, 

𝐻𝐶 = 7.56 𝐸53  𝑘𝑚/(𝑠 ∗ 𝑀𝑝𝑐)  (𝑚𝑜𝑑𝑒𝑙 𝐴)        (1 − 13𝑎) 

    𝐻𝐶 = 8.55 𝐸53  𝑘𝑚/(𝑠 ∗ 𝑀𝑝𝑐) (𝑚𝑜𝑑𝑒𝑙 𝐵)        (1 − 13𝑏) 

Needless to say, these expansion rates are dramatic, especially in light of the fact that the 

current value of 𝐻0 equals 67.74 𝑘𝑚/(𝑠 ∗ 𝑀𝑝𝑐).  Our view is that these high values indicate 

inflation.  The so-called inflaton field, usually associated with inflation, will be replaced by a 

scalar field,  , first introduced by Jordan in 1937, and highlighted in equation, (1 − 2).  

Equations, (1 − 13𝑎) , or (1 − 13𝑏) , is our version of inflation. 
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As mentioned, what happens before this point in cosmological time is anyone’s guess.  How the 

CBR temperature dropped down to, 10 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛, in the first place if the universe didn’t 

expand prior to that point, is also a mystery.  Interestingly, when Lemaitre first introduced his 

expanding universe hypothesis in the mid 1920’s, he never claimed that it evolved from a 

singularity.  In fact, early critics derided his hypothesis by referring to it as his “cosmic egg” 

hypothesis [18-21].  We are advocating this view however… the universe did not start from a 

singularity.  It had a finite size, and a finite CBR temperature, before it started to expand. 

The finite size can be estimated at the start of expansion.  Since, 𝑎 = 𝑅/𝑅0 = 𝑇0/𝑇, we can set, 

𝑅𝐶 = 𝑎𝐶  𝑅0 .  Using a currently accepted estimate [22-23] for the Hubble radius in the present 

epoch, 𝑅0 ≅ 4.4 𝐸26 𝑚𝑒𝑡𝑒𝑟𝑠 , we find using equations, (1 − 10𝑎, 𝑏), that 

𝑅𝐶 = 𝑎𝐶  𝑅0 = 1.94 𝐸5 𝑚𝑒𝑡𝑒𝑟𝑠 (𝑚𝑜𝑑𝑒𝑙 𝐴)        (1 − 14𝑎) 

    𝑅𝐶 = 𝑎𝐶  𝑅0 = 1.71 𝐸5 𝑚𝑒𝑡𝑒𝑟𝑠 (𝑚𝑜𝑑𝑒𝑙 𝐵)        (1 − 14𝑏) 

This is roughly 3 percent of the earth’s radius.  This would be our estimate for the size of 

Lemaitre’s cosmic egg at the beginning of expansion. 

 

II Dark Energy and Late Epoch Development: 

We now turn to the later stages of cosmic evolution where we have dark energy.  We want to 

consider, specifically, the increased luminosity distance associated with 𝑆𝑁𝐼𝑎 events, which led 

one to conclude that the universe is currently expanding more rapidly than anticipated. 

Consider a specific 𝑆𝑁𝐼𝑎 event, where the energy flux, measured on earth bound satellites, 

fixes a specific distance to the source using the luminosity-distance-flux relation.  𝑆𝑁𝐼𝑎 

explosions make for good standard candles because of their brightness, and excellent 

predictable luminosity.  The observed distances, measured in the late 1990’s, and after, suggest 

that the universe is expanding faster than we thought.  We have an unanticipated acceleration 

leading one to surmise, erroneously we believe, that in the later stages of evolution, a type of 
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antigravity or negative pressure surfaces, which we identify as dark energy.  What happens 

however, if 𝐺 varies cosmologically? 

The luminosity of a 𝑆𝑁𝐼𝑎 event varies as 𝐺−3/2 [24-27], and if 𝐺 is unequal to a constant, the 

luminosity would vary.  Since 𝐺−1 increases as cosmological time increases, 𝐺−3/2 must also 

increase.  So gravity gets weaker as time progresses, and the universe would appear to 

accelerate more expansion wise.  The two functions that we introduced for 𝐺−1 in reference [1] 

can be used to model this behavior. 

Taking this a step further, we know that the energy flux received by an observer here on earth 

is related to the luminosity distance by the relation, 𝛷 = 𝐿/(4𝜋𝑑𝐿
2) , where 𝛷 is the flux, 𝑑𝐿 , 

the luminosity distance, and, 𝐿 , the luminosity.  Thus, if 𝑑𝐿 seems to increase unexpectedly, it 

may actually be due to 𝐿 decreasing if one goes back in cosmological time.  At higher redshifts, 

the luminosity, 𝐿, could be weaker.  Let 𝐿0 be the luminosity in the present epoch, and set 𝑑𝐿 

equal to the expected distance without dark energy.   Then the observed flux gives, 

     𝐿0/ 𝑑𝐿
′2 = 𝐿/ 𝑑𝐿

2                (2 − 1) 

        = (𝐺/𝐺0)−3/2 𝐿0/ 𝑑𝐿
2 

In this equation, 𝑑𝐿
′  is the perceived and unanticipated, accelerated luminosity distance, leading 

to the notion of dark energy.  By contrast, 𝑑𝐿 is the true luminosity distance.  The increase in 𝑑𝐿
′   

over 𝑑𝐿 is really due to a decrease in 𝐺−1 if one goes back in time.  Equation, (2 − 1), can 

namely be rewritten as 

     𝑑𝐿
′ /𝑑𝐿 = (𝐺/𝐺0)3/4                (2 − 2) 

It is apparent by this equation, that if 𝐺 increases, then, 𝑑𝐿
′  also increases.  Depending on the 

look-back time, at a specific redshift, 𝑧 , the 𝐺 is stronger in value, and thus by equation, 

(2 − 2) , this makes the ratio, 𝑑𝐿
′ /𝑑𝐿, larger. 

Models, 𝐴, and, 𝐵, for 𝐺 = 𝐺(𝑎) = 𝐺(𝑧), introduced in the last section,  can now be 

substituted for the right hand side of equation, (2 − 2).  We can predict the amount of 
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unanticipated luminosity distance as a function of redshift since, 𝑎 = (1 + 𝑧)−1.  Antigravity, or 

negative pressure, we argue, is caused by a declining 𝐺 value as cosmological time advances.  

Or, if we go back in time, we obtain a larger 𝑑𝐿
′  value. 

As specific examples of accelerated expansion, we calculate (𝐺/𝐺0) at a redshift of, 𝑧 = 1/2 , 

and then again, at 𝑧 = 2/3.  First, consider,  𝑧 = 1/2.   Since,  𝑎 = (1 + 𝑧)−1, this corresponds 

to 𝑎 = 2/3.  Equation, (1 − 4) , model 𝐴, gives 

 𝐺/𝐺0 = 𝐺0
−1/𝐺−1 = [1 − 𝑒−4.28]/[1 − 𝑒−(4.28∗2/3)] = 1.0465 (𝑚𝑜𝑑𝑒𝑙 𝐴)      (2 − 3) 

Substituting this into equation,(2 − 2) , we obtain 

     𝑑𝐿
′ /𝑑𝐿 = 1.035 (𝑧 = 1/2, 𝑚𝑜𝑑𝑒𝑙 𝐴)             (2 − 4) 

For model, 𝐵, we use equation, (1 − 6).  Here,   

 𝐺/𝐺0 = 𝐺0
−1/𝐺−1 = [coth (17.67) − 1/17.67]/[coth (17.67 ∗ 2/3) − 3/(17.67 ∗ 2)] = 1.031 

         (𝑚𝑜𝑑𝑒𝑙 𝐵)                   (2 − 5) 

And therefore, by equation, (2 − 2), we expect, 

     𝑑𝐿
′ /𝑑𝐿 = 1.023 (𝑧 = 1/2, 𝑚𝑜𝑑𝑒𝑙 𝐵)             (2 − 6) 

We emphasize that both functions, equation, (1 − 4),  and equation, (1 − 6) , for 𝐺−1(𝑎), are 

nonlinear. 

Let us now carry out the same analysis for one further redshift.   We now consider a redshift, 

𝑧 = 2/3 , or, 𝑎 = (1 + 2/3)−1 = .6 .  Following the same steps as before, but for this new 

redshift, we obtain for model, 𝐴,  

     𝑑𝐿
′ /𝑑𝐿 = 1.051 (𝑧 = 2/3, 𝑚𝑜𝑑𝑒𝑙 𝐴)             (2 − 7) 

For model, 𝐵, this ratio becomes, 

     𝑑𝐿
′ /𝑑𝐿 = 1.036 (𝑧 = 2/3, 𝑚𝑜𝑑𝑒𝑙 𝐵)             (2 − 8) 
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We have a clear increase in luminosity distance in equations, (2 − 7), and (2 − 8), when 

compared to equations, (2 − 4), and (2 − 6), respectively.  We also notice that model, 𝐴 is 

more aggressive than model, 𝐵,  in predicting increases in, 𝑑𝐿
′ /𝑑𝐿, at a specific 𝑧 value. 

There is some astronomical evidence that higher redshifted 𝑆𝑁𝐼𝑎 luminosities are weaker.  

Thorsett, et. al. [24], analyzed the energy release in 𝑆𝑁𝐼𝑎 explosions both near, at low 𝑧, and 

far, at higher 𝑧.  The lookback times were between, 1 𝐺𝑦𝑟, and, 12 − 13 𝐺𝑦𝑟.  He obtained  

�̇�/𝐺 = −.6 ± 4.2 𝐸 − 12  𝑦𝑟−1 .  He took a linear average, and thus, his results cannot be 

directly compared to our nonlinear functions for, 𝐺−1.  However, his results indicate a clear 

weakening, within experimental error, in luminosity.   In earlier epochs, 𝑆𝑁𝐼𝑎 events were just 

not as powerful, as they are today. 

Not only is luminosity affected by Newton’s constant, 𝐺, but also 𝜏, the rise and fall time, for 

𝑆𝑁𝐼𝑎 events [25-27].  The width of the peak of the light curve, which we call, 𝜏 , is proportional 

to 𝐺−3/4.  Rise and fall times between, 𝜏 = 17.50 ± .4 𝑑𝑎𝑦𝑠 , and, 𝜏 = 19.95 ± .15 𝑑𝑎𝑦𝑠 , have 

been observed at high 𝑧, and low 𝑧, 𝑆𝑁𝐼𝑎 events, respectively.  So not only are the luminosities 

weaker for high z events, but also, 𝜏 , the width of the light curve. 

In summary, a 𝐺−3/2 behavior for luminosity, and a 𝐺−3/4 behavior for light curve widths, 

cannot be dismissed in a variable 𝐺 model.  𝑆𝑁𝐼𝑎 events may not be the good standard candles 

we take them for, unless a variation in 𝐺 is taken into account.  Our models, 𝐴 and 𝐵, attempt 

to do just that, i.e., make reasonable predictions for 𝑑𝐿
′ /𝑑𝐿 given a specific redshift. 

 

III Summary and Conclusion: 

Cosmic inflation, i.e., the rapid expansion of the universe in its earliest phase, has been 

considered assuming a cosmologically varying 𝐺.  The Friedmann equation, in particular, is 

invoked to argue that Hubble expansion is only possible if 𝐺 is unequal to zero.  If 𝐺 varies with 

cosmological time, then it must be a property of the vacuum.  Moreover, it must be related to a 

scalar field, 𝜑 , as first suggested by Jordan.  The Planck mass squared, 𝑀𝑃𝑙
2  , is no longer a 
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constant, but related to 𝜑2, as shown explicitly in equation (1 − 2) .  The 𝜑 may also be 

interpreted as a new type of inflaton field, one associated with a time varying  𝐺, surfacing at a 

temperature we estimate to be about 10 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛. 

Two models for a time varying 𝐺 were presented, models 𝐴 and 𝐵, given by equations, (1 − 4) 

, and, (1 − 6), respectively.  Both functions rise dramatically at their respective inception 

temperatures, 6.20 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛 for model, 𝐴, and 7.01 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛 in model, 𝐵.  In fact, at 

about these temperatures, both models give a 𝐺−1 value, which is proportional to, 1/𝑇, where 

𝑇 is the 𝐶𝐵𝑅 temperature.  The cosmological scale parameter, “𝑎”,  is related to 𝐶𝐵𝑅 

temperature by way of the equation, 𝑎 = 𝑇0/𝑇 = (1 + 𝑧)−1.  Eventually, as the universe cools 

upon expansion, 𝐺−1 levels and tapers off and approaches a saturation value, a constant in the 

limit where, 𝑎 → ∞. 

There are only two fundamental constants in nature, which have an inherent dimension.  The 

first is the Fermi constant, 𝐺𝐹, in the theory of weak interactions.  We now know that, up to 

inconsequential factors of the order of unity, 𝐺𝐹 is essentially equal to,  𝑀𝑊±
2 , where 𝑀𝑊± is 

the mass of the 𝑊± boson.  This is at low energies.  At high energies, above, 100 𝐺𝑒𝑣, the 𝐺𝐹  

value increases.  The second fundamental constant with inherent canonical dimension is 

Newton’s constant.  In fact it has exactly the same canonical dimension as, 𝐺𝐹.  If we replace 

the mass of the 𝑊±  boson squared by the Planck mass squared, we have an entirely analogous 

situation with regards to gravity.  Keep in mind that the theory of weak interactions, in and of 

itself, is not renormalizable, at high energies.  It is only the broader electro-weak interaction, 

which is consistent at high energy/ momentum transfers or exchanges.  We believe a similar 

situation holds for gravity.  The Fermi constant, 𝐺𝐹, is definitely an order parameter.  Above a 

certain high temperature, 𝑀𝑊± is effectively massless and at low temperatures it reduces to a 

constant.  We believe the same scenario holds true for gravity and Newton’s constant, just at a 

much higher threshold temperature of approximately, 10 𝐸21 𝐾𝑒𝑙𝑣𝑖𝑛. 

Using our two models for, 𝐺−1(𝑎), we predict very high values for the Hubble parameter, at 

inception of 𝐺−1  The values, which were obtained, were given by equations, (1 − 12𝑎, 𝑏), and 

(1 − 13𝑎, 𝑏).  We believe that these could be interpreted as inflation, where the “inflaton” field 
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of inflation is replaced by Jordan’s scalar field, 𝜑, above.  Beyond this point, temperature-wise, 

𝐺 simply did not exist, and there was no expansion of space, as determined by the Friedmann 

equation.  It is hypothesized that when the universe started to expand, it had a finite size, of 

the order of the earth’s radius.  In the 𝛬𝐶𝐷𝑀 model, expansion started from a singularity. 

Finally a variable 𝐺 model cannot be dismissed based on 𝑆𝑁𝐼𝑎 events.  In fact, there is now 

some very solid astronomical evidence indicating otherwise.  A variable 𝐺 may be needed to 

interpret 𝑆𝑁𝐼𝑎 energy release properly, as well as rise and fall times for these events.  See 

equations, (2 − 1) , and (2 − 2).  Specific predictions for luminosity distance are possible using 

our two models for, 𝐺−1(𝑎) , models, 𝐴, and, 𝐵.  As specific examples, equations, (2 − 4), and 

(2 − 6), are results that apply for 𝑧 = 1/2 .  And for a larger redshift, 𝑧 = 2/3 , we obtain 

equations, (2 − 7) , and (2 − 8).  It may well turn out that 𝑆𝑁𝐼𝑎 events, in order to serve as 

good standard candles, need to include a variation in Newton’s constant, 𝐺.  Without taking 

into account a weakening 𝐺 with an increase in cosmological time, erroneous results and 

interpretations occur.  Dark energy may have more to do with a weakening in 𝐺 with decreased 

redshift, than anything else. 
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