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ABSTRACT 
 

Many authors have considered a gravitational origin of the magnetic field of 

celestial bodies. In this approach the Wilson-Blackett or Schuster hypothesis has been 

playing an important role for more than a century. This hypothesis connects the 

magnetic moment M of the body to its angular momentum S. In this paper the 

gravitomagnetic ratios M/S deduced from observational data for a series of very 

different rotating massive bodies are compared with predicted values. 

The considered magnetic moments M and corresponding angular moments S 

of the rotating bodies range from metallic cylinders in the laboratory, moons, planets,  

pulsars, white dwarfs and Ap stars to the Milky Way. Furthermore, the lightest 

neutrino of mass m1 has also been added to the list. 

For huge intervals of more than 100 decades for the values of M and S the so-

called Wilson-Blackett relation seems to be approximately valid. On smaller scales 

deviations become more manifest. Effects from electromagnetic origin may be 

responsible for these deviations. 

 
1. INTRODUCTION 

 

 The subject of magnetism from gravitational origin has been going through a long 

and turbulent history. In 1891, Schuster [1], considering the magnetic field of the Earth 

and the Sun, already put the question: “Is every large rotating mass a magnet?” He 

suggested that every moving molecule causes a magnetic field, as if it was electrically 

charged. Following Schuster, Wilson [2] proposed in 1923, that electrically neutral 

moving matter bears a residual charge Q* of magnitude β G
½
 m. Here β denotes a 

dimensionless constant, G is the gravitational constant and m the mass of the moving 

body (Gaussian units are used throughout this paper). Wilson tried to measure the 

magnetic field of a swinging bar in the laboratory, but he found no detectable field. In this 

experiment he tested his assumption in the case of translational motion, but not for 

rotational motion. Applying the theory of electromagnetism to a massive rotating sphere 

like the Earth, he implicitly deduced an approximate form of the relation 
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where c is the velocity of light, M the magnetic dipole moment and S the angular 

momentum of the rotating sphere. 
 In 1947 Blackett [3] reinvestigated a gravitational origin of the magnetic field of 

rotating celestial bodies. He explicitly proposed relation (1.1) and calculated a value of β 

of 0.3, 1.14 and 1.16 for the Earth, the Sun and the Ap star 78 Virginis, respectively. In 

addition, Blackett [4] tried to measure the magnetic field of a 10×10 cm gold cylinder, at 

rest in the laboratory and so rotating with the Earth, but he detected no measurable field. 

 Due to the growing number of observed magnetic of planets and stars, the validity 

of relation (1.1) was reconsidered by several authors since 1977. Ahluwalia and Wu [5] 

and Sirag [6] extended the series of celestial bodies approximately obeying to (1.1) and 

proposed to measure the possible magnetic field generated by a rotating metallic sphere in 

the laboratory, a test already discussed by Blackett [4]. 

 Such an experiment was performed by Surdin [7, 8], who measured a mean value 
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of the square of the magnetic field generated by a rotating cylinder of both brass and 

tungsten. The values of the magnetic field squared appeared to be in reasonable 

agreement with the fields predicted by (1.1), but the sign did not follow from the 

experiment. Moreover, the observed fields appeared to fluctuate. 

 Attempts to derive relation (1.1) from a more general theory have been made by 

many authors [9–16]. Luchak [9], for example, generalized the Maxwell equations by 

introducing a gravitational field. Considering rotational motion only, he obtained (1.1). 

Other authors [10–15] tried to explain relation (1.1) as a consequence of general 

relativity. For example, it is possible to deduce (1.1) from a special version of the 

gravitomagnetic theory [10–12]. In this interpretation the so-called “magnetic-type” 

gravitational field or gravitomagnetic field B(gm) generated by rotating mass and the 

electromagnetic induction field B(em) due to moving charge are supposed to be equivalent. 

A review of alternative explanations has been given in ref. [11]. For example, Vasiliev [16] 

tried to explain the magnetic moments of moons, planets and stars in terms of electric 

polarization induced by their gravitational field. 

 It is noticed that the angular momentum S in (1.1) for a spherical star of radius R can 

be calculated from 
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5s s s, or ,I S I f m R    S Ω  (1.2) 

 

where m is the mass of the star, Ωs = 2πPs
–1

 is its angular velocity (Ps is the rotational 

period of the star) and I = 2/5 f m R
2
 is its moment of inertia. The factor f is a 

dimensionless factor depending on the homogeneity of the mass density in the star (for a 

homogeneous mass density f = 1). 

 Furthermore, the value of the gravitomagnetic dipole moment M(gm) = M in (1.1) 

and the electromagnetic dipole moment M(em) can both be calculated from the expression 
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Here Bp is the magnetic induction field at, say, the north pole of the star, at distance R 

from the centre of the star to the field point where Bp is measured. 

 Combination of (1.1), (1.2) and (1.3) yields the following gravitomagnetic 

prediction for Bp(gm) and Bp(gm), respectively 
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When β is negative, the directions of Bp(gm) and Ωs are parallel. The sign and magnitude 

of β are unknown, however. See ref. [12] for an ample discussion of this point. 

 As pointed out earlier [11], moving electric charge in the magnetic field from 

gravitomagnetic origin may cause additional magnetic fields from electromagnetic origin. 

In general, the magnetic field generated by rotating neutral mass is much smaller than the 

magnetic field generated by moving charge. For a charge e (e < 0) with mass m one may 

compare the following magnetic moment to angular momentum ratios 
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Choosing β = –1, the following dimensionless ratio for an electron is obtained 
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From this relation follows, that magnetic fields from gravitomagnetic origin are usually 

extremely small and difficult to isolate from fields due to electric charges. 
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 In situations where both a magnetic induction field Bp(gm) from gravitomagnetic 

origin and a field Bp(em) from electromagnetic origin are present, e.g., at the north pole of a 

star, the total polar magnetic induction field Bp(tot) is given by (see [17]) 

 

 
p p p(tot) = (gm) + (em).B B B  (1.7) 

 

According to (1.4), the direction of Bp(gm) is parallel to Ωs for β = –1. Another 

dimensionless factor β* following from observations will now be introduced 

 

 
p p(tot) = (gm),B B  (1.8) 

 

where Bp
ǀǀ
(tot) is the component of parallel to Bp(gm). Usually, the sign of the empirical 

factor β* does not follow from observations. For convenience sake, a positive sign for β* 

is chosen in the calculations below. When the field Bp
ǀǀ
(tot) would only be due to 

gravitomagnetic origin, Bp(em) = 0, the factor β* would reduce to β*(gm) = 1. 

 A more general expression for factor β* has previously been deduced for accreting 

stars displaying quasi-periodic oscillations, like pulsars, white dwarfs and black holes [18]. 

In that case a term β*current, due to toroidal currents, was added to the expression for β*. 

 In section 2 observational data for a large sample of rotating electrically neutral 

bodies are gathered and values for S, M and β* for these masses are calculated. These 

results are discussed in section 3. In section 4 conclusions are drawn. 

 

2. OBSERVATIONAL DATA 

 

 In table 1 data are summarized for a series of rotating massive bodies, ranging from 

metallic cylinders in the laboratory, moons, planets, Ap stars, pulsars and white dwarfs to 

the Milky Way. Furthermore, attention is paid to the lightest neutrino of mass m1. In 

particular, values are summarized for mass m, rotation period Ps, radius R, factor f and the 

absolute value of the observed total polar magnetic field Bp(tot). When data are available, 

estimates of the angle δ (0º ≤ δ ≤ 180º) between the directions of M and S are also given. 

Note that equation (1.1) predicts parallel directions for M and S for β = –1. 

 Subsequently, the values of the angular momentum S and the magnetic moment M 

are calculated from (1.2) and (1.3), respectively. In addition, the absolute values of factor 

β* have been calculated by combining (1.4), (1.8) and the observed polar magnetic field 

Bp
ǀǀ
(tot), or Bp(tot). The quantity β* is equal to β, when the Wilson-Blackett formula is 

valid. In table 1 all calculated absolute values for angular momentum S, magnetic dipole 

moment M and factor β* are summarized. Additional details of the observations and 

calculations can be found in refs. [6, 11] or are given below: 

 

1. Neutrino of mass m1 

It is noticed that the Wilson-Blackett formula (1.1) may be extended to fundamental 

particles like neutrinos with masses mi, (i = 1, 2, 3). For the lightest neutrino of mass m1 

the following magnetic moment Mz and angular momentum Sz has been proposed [19, 20] 
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where Sz = ½ ℏ = 5.273×10
–28

 g.cm
2
.s

-1
. It is noticed that a gravitomagnetic factor g1 = 2 

has been added to the ratio Mz/Sz, analogous to the derivation of the factor g = 2 for the 

electron. Analogous to the factor g = 2, the factor g1 = 2 may be deduced from the Dirac 

equation [19]. 

 An alternative formula for the magnetic moment Mz of neutrinos, proportional to 

the mass mi of the neutrino i, has been deduced for massive Dirac neutrinos in the context 

of electroweak interactions. As has been shown in ref. [19], combination of this formula 
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for Mz and Mz from (2.1) for the neutrino of mass m1 yields a value of 1.530 meV/c
2
 or 

2.727×10
–36

 g for mass m1. Note that the value of m1 does not occur in Sz or Mz in (2.1). 
 

14. Isolated pulsars 

In ref. [17] the individual values of β* for a sample of 96 isolated pulsars are given. The 

calculated arithmetic mean value β̄*̄ = 0.061 of this class of pulsars is shown in ref. [21] 

and in table 1 of this work. This value is more representative than the value of some 

arbitrarily chosen single pulsar. In addition, the mean values of S and M of the total 

sample are calculated here, resulting in S̄̄  = 1.6×10
46

 g.cm
2
.s

-1 and M̄̄  = 1.8×10
30

 G.cm
3
. 

From the ratio M̄̄ / S̄̄  of these values a value β* = 0.026 is obtained. In order to retain the 

mean value β̄*̄ ≈ 0.061, the mean values S̄̄  and M̄̄  in table 1 are modified. 

 

15. Slowly rotating pulsars in binaries 

In ref. [17] the individual values of β* for a sample of 14 slowly pulsars in binaries are 

given. The mean value β̄*̄ = 14 of this class of pulsars has been calculated in ref. [21] and 

is shown in table 1. In addition, the mean values of S and M of the total sample are 

calculated here, resulting in S̄̄  = 7.9×10
44

 g.cm
2
.s

-1 and M̄̄  = 1.95×10
30

 G.cm
3
. From the 

ratio M̄̄ / S̄̄  of these values a value β* = 0.57 follows. In order to retain the mean value β̄*̄ 

= 14, the mean values S̄̄  and M̄̄  in table 1 are modified. 

 

16. Millisecond pulsars in binaries 

In ref. [17] the individual values of β* for a sample of 3 millisecond pulsars are given. The 

mean value β̄*̄ = 6.4×10
–6

 of this class of pulsars has been calculated in ref. [21] and is 

shown in table 1. In addition, the mean values of S and M are calculated here, resulting in 

S̄̄  = 2.9×10
47

 g.cm
2
.s

-1 and M̄̄  = 2.5×10
27

 G.cm
3
. From the ratio M̄̄ / S̄̄  of these values 

follows a value β* = 2.0×10
–6

. In order to retain the mean value β̄*̄ ≈ 6.4×10
–6

, the mean 

values S̄̄  and M̄̄  in table 1 are modified. 

 

17. Isolated white dwarfs 

In ref. [21] the individual values of β*, the mean value β̄*̄ = 32 and the mean values S̄̄  = 

2.7×10
47

 g.cm
2
.s

-1 and M̄̄  = 6.9×10
33

 G.cm
3
 for a sample of 10 isolated white dwarfs have 

been calculated. From the ratio M̄̄ / S̄̄  of these values a value β* = 5.9 follows. In order to 

retain the mean value β̄*̄ ≈ 32, the mean values S̄̄  and M̄̄  in table 1 are modified. 

 

18. AM Herculis white dwarfs 

In ref. [21] the individual values of β*, the mean value β̄*̄ = 12 and the mean values S̄̄  = 

2.8×10
47

 g.cm
2
.s

-1 and M̄̄  = 1.0×10
34

 G.cm
3
 for a sample of 11 AM Herculis white dwarfs 

have been calculated. From the ratio M̄̄ / S̄̄  of these values a value β* = 8.3 follows. In 

order to retain the mean value β̄*̄ = 12, the mean values S̄̄  and M̄̄  in table 1 are modified. 

 

19. Binary white dwarfs 

In ref. [21] the individual values of β*, the mean value β̄*̄ = 0.38 and the mean values S̄̄  = 

2.0×10
48

 g.cm
2
.s

-1 and M̄̄  = 2.5×10
33

 G.cm
3
 for a sample of 3 white dwarfs in double-

white-dwarfs binaries have been calculated. From the ratio M̄̄ / S̄̄  of these values a value 

β* = 0.29 follows. In order to retain the mean value β̄*̄ = 0.38, the mean values S̄̄  and M̄̄  

in table 1 are modified. 

 

22. Milky Way galaxy 

As an estimate for mass m of the Milky Way a value of m = 8.9×10
11

m


 within the galactic 

radius of 200 kpc is taken from Karukes et al. [22]. The galactic constants R0 = 8 kpc and 

V0 = 240 km.s
-1

 are used to obtain a value for R and Ωs = V0/R0, respectively. The angular 

momentum S is calculated from the expression S = ½ mΩs R
2
 for a cylinder. The polar 

magnetic field Bp has been approximated by Bp = 2 Beq, where Beq is the local equatorial 
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interstellar magnetic field of 3.75 μG (i.e., unperturbed by the interaction with the Sun) given 

by Izmodenov and Alexashov [23]. The data are given in table1. 

 
Table 1. Calculated values of factor β* from magnetic moment M and angular momentum S. For details 

see text. 
 

 
 

Body 
[refs.] 

f m 
(g) 

Ωs 

(rad.s-1) 
R 

(cm) 
S 

(g.cm2.s-1) 
Bp(tot) 

(G) 
M 

(G.cm3) 
β* δ 

(º) 

1 Neutrino of 

mass m1 [19, 20] 

 2.727×10–36   5.27×10–28  4.54×10–42 g1 = 2  

2 Cylinder of brass 

[7, 8; 11] 

1.00 1.04×104 2.83×103 5 3.68×108 3.6×10–8 2.25×10–6 1.42  

3 Cylinder of 

tungsten [7, 8; 11] 

1.00 2.07×104 2.73×103 5 7.06×108 3.8×10–8 2.38×10–6 0.78  

4 Moon 

[6, 11] 

0.998 7.35×1025 2.66×10–6 1.738×108 2.36×1036 8.6×10–4 2.26×1021 0.22 ≈ 0 

5 Ganymede 
[11] 

0.776 1.48×1026 1.02×10–5 2.63×108 3.24×1037 1.5×10–2 1.36×1023 0.97 170 

6 Mercury 
[11] 

1.0 3.3×1026 1.23×10–6 2.44×108 9.67×1036 5×10–3 3.6×1022 0.86 168 

7 Mars 

[11] 

0.943 6.45×1026 7.088×10–5 3.39×108 1.98×1039 1.3×10–3 2.5×1022 0.0029 ≈ 163 

8 Venus 

[11] 

0.85 4.87×1027 2.99×10–7 6.052×108 1.81×1038 2.7×10–4 

 

2.99×1022 0.038  

9 Earth 

[11] 

0.827 5.98×1027 7.292×10–5 6.378×108 5.87×1040 6.1×10–1 7.91×1025 0.31 168.5 

10 Uranus 

[11] 

0.575 8.72×1028 1.01×10–4 2.56×109 1.33×1043 4.6×10–1 3.86×1027 0.067 60 

11 Neptune 
[11] 

0.725 1.03×1029 1.09×10–4 2.48×109 2.00×1043 2.7×10–1 2.06×1027 0.024 47 

12 Saturn 
[11] 

0.55 5.69×1029 1.71×10–4 6.00×109 7.71×1044 4.2×10–1 4.54×1028 0.014 1.0 

13 Jupiter 

[11] 

0.625 1.90×1030 

 

1.77×10–4 

 

7.14×109 

 

4.29×1045 7.4 

 

1.35×1030 0.073 9.6 

14 96 isolated pulsars 

[17, 21] 

0.898 2.785×1033 

(1.4 m


) 

 106 

 

1.0×1046  2.6×1030 0.061 

 
 

15 14 slowly rotating 

pulsars [17, 21] 

0.898 2.785×1033 

 

 106 

 

1.6×1044  9.7×1030 14  

16 3 binary millisec. 

pulsars [17, 21] 

0.898 2.785×1033 

 

 106 

 

1.6×1047  4.5×1027 6.4×10–6  

17 10 isolated white 
dwarfs [21] 

1 1.7×1033 
(0.86 m


) 

 6.7×108 1.2×1047  1.6×1034 32  

18 11 AM Herculis 
white dwarfs [21] 

1 1.6×1033 
(0.81 m


) 

 7.2×108 2.4×1047  1.2×1034 12  

19 3 binary white 

dwarfs [21] 

1 1.9×1033 

(0.98 m


) 

 5.8×108 1.7×1048  2.8×1033 0.38  

20 Sun 

[6, 11] 

0.145 1.99×1033 2.8×10–6 6.96×1010 1.57×1048 8 1.35×1033 0.2  

21 78 Virginis 

[3, 6] 

0.16 4.6×1033 7.3×10–5 1.4×1011 4.2×1050 1.5×103 2.1×1036 1.16  

22 Galaxy 

[11, 22, 23] 

1 1.8×1045 9.6×10–16 2.5×1022 5.4×1074 7.5×10–6 5.9×1061 25  
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3. DISCUSSION OF THE RESULTS 

 

 The following general relationship between the magnetic moment M and the 

angular momentum S is tested 

 

 log log ,M a S b   (3.1) 

 

where a and b are assumed to be constant. 

 For the complete series of 22 rotating bodies in table 1 values for the parameters a 

and b, the relative standard deviations in a and b and the correlation coefficient are 

obtained from a linear regression analysis. The summarized results are shown as case 1 in 

table 2. An almost linear relationship between log M and log S is found: a has nearly 

unity value and the correlation coefficient is high. In figure 1, the values of log S versus 

log M of all 22 rotating bodies are plotted. Note that the values of M and S and cover an 

interval of more than 100 decades. 

 These results mainly obtained from observational data are compared with the 

prediction following from the Wilson-Blackett relation (1.1) for β = – 1 

 

 1 1/21
2log log log log 14.366.M S c G S     (3.2) 

 

Combination of the value b = – 14.77 from case 1 in table 2 and b = – 14.366 from (3.2) 

yields a factor β* = 0.39. 

 
Table 2. Calculated constants a and b from (3.1), corresponding standard deviations and correlation 

coefficient for different series of rotating bodies. The corresponding factors β* are also given. 
 

Case  a 
Standard 

deviation of a 
b 

Standard 

deviation of b 
β* 

Correlation 

coefficient 

 Wilson-Blackett eq. (1.1) 1  – 14.366  1  

1 Numbers 1-22 of table 1 0.995 ± 0.017 – 14.77 ± 0.65 0.39 0.997 

2 Numbers 2-22 of table 1 1.006 ± 0.025 – 15.26 ± 1.07 0.13 0.994 

3 Vasiliev [16] - - – 14.82 ± 0.87 0.35 - 

 
 Since the values for Mz and Sz of the neutrino m1 are not yet measured, number 1 of 

table 1 will be omitted in a more reduced selection of rotating masses. The values of 

parameters a and b, corresponding standard deviations, correlation coefficient and value 

of β* for the series with numbers 2 through 22 are also calculated and appear as case 2 in 

table 2. The intervals of M and S are then reduced to about 65 decades. 

 Another selection, only consisting of moons, planets and a number of Ap and Bp 

stars from Vasiliev [16] is denoted as case 3 in table 2. This less general selection covers 

intervals for M and S of about 20 decades. As can be seen from table 2, the obtained 

values for parameter b and factor β* remain comparable to the corresponding values for 

cases 1 and 2. 

 Up to now, the selection of the celestial bodies has largely followed the availability 

of the necessary data, but such a selection need not to be representative. Schuster [1] and 

Wilson [2] only considered the Earth, whereas Blackett [3] added the Sun and the Ap star 

78 Virginis to the list. Later on, Ahluwalia and Wu [5], Sirag [6] and Vasiliev [16] 

selected 13, 9 and 29 celestial bodies, respectively. Since the magnetic fields of stars may 

be changed by additional mechanisms from electromagnetic origin, like specific dynamo 

mechanisms, three different classes of pulsars and white dwarfs are distinguished in this 

work. Of course, such an introduction of classes is also arbitrary to a certain extent. 

 



 

7 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Log M versus log S. The units of M and S and the numbers 1 through 22 of the rotating 

bodies are the same as in table 1. The regression line of case 1 in table 2 is displayed as the solid line. 

 
 As an example of a smaller group of related pulsars, the class of 14 binary, slowly 

rotating, accretion-powered X-ray emitting pulsars (number 15 in table 1) can be chosen. 

The values of S vary over an interval of only 3 decades in this case, whereas the values of 

M remain almost constant. The deviations from (1.1) on this small scale may reveal an 

additional mechanism that changes the basic magnetic field from gravitational origin. 

 Another example of related pulsars is formed by the less abundant class of 

millisecond pulsars. Omission of this class (3 millisecond pulsars with a mean value of 

β̄*̄ = 6.4×10
–6

; number 16 in table 1) from the series of case 2 in table 2 changes the 

value of β* from the regression analysis from a value of β* = 0.13 into β* = 0.11, 

whereas the values of a, b and the correlation coefficient are nearly unchanged. So, the 

influence of a single outlier decreases in the large sample of case 2. 

 As has previously been discussed in refs. [17, 18], the small value of β* in milli-

second pulsars may be caused by a toroidal current, leading to a contribution β*current ≈ –1. 

In that case the observed value of β* is given by β* = β*(gm) + β*current = +1 + β*current ≈ 0. 

It is noticed that values for β*current are calculated for a number of pulsars displaying high 

frequency quasi periodic oscillations (QPOs) [18]. 

 

4. CONCLUSIONS 

 

 The validity of the Schuster-Wilson-Blackett hypothesis, embodied in equation 

(1.1), is reinvestigated in this work. Especially, additional observational evidence is 

gathered and discussed. For attempts to deduce this relation from a more general theory, 

the reader is referred to refs. [9–18], in particular to ref. 11. 

 It appears that the values of the magnetic moment M and the angular momentum S 

for the complete series of 22 very different rotating massive bodies of table 1 vary over a 

huge interval of more than 100 decades. As can be seen from figure 1 and case 1 in table 

2, reasonable agreement with the Wilson-Blackett or Schuster relation (1.1) is then 

obtained. The agreement between observations and formula (1.1) is still qualitative, 

however. For example, in many cases the directions of the vectors of M and S are 

1 

2  3 

4 

5 6 
7 8 

9 

10 11 
12 

13 14 
15 

16 

17 18 
19 20 

21 

22 

log M = 0.995 log S – 14.77 

correl. coeff. = 0.997 

-50

-30

-10

10

30

50

70

-30 -10 10 30 50 70

lo
g
 M

 

log S 



 

8 
 

unknown, or only partially parallel. Moreover, the proposed value Mz for the neutrino of 

mass m1 has not yet been verified experimentally. 

 Omitting the neutrino m1 is from the selection of table 1, results into case 2 of 

table 2. Both M and S then still vary over an interval of about 65 decades. Again, 

reasonable agreement between observations and formula (1.1) is found, but standard 

deviations in parameters a and b become bigger. As a result, the value of the 

dimensionless quantity β*, a measure for the deviation from (1.1), becomes more uncertain. 

 Summing up, the Wilson-Blackett relation (1.1) seems to be approximately valid 

on large scales. Observed magnetic moments M and angular momenta S of massive 

rotating bodies are nearly proportional and the proportionality constant is of the expected 

order of magnitude. Many deviations occur, however, especially for smaller intervals of 

M and S and in particular for individual massive rotating bodies. Various dynamo 

mechanisms from electromagnetic origin may change a possible basic gravitomagnetic 

field Bp(gm) and may explain the discrepancies (see (1.6)). 
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